
Generating Test Databases for
Database-Backed Applications

Cong Yan
Microsoft Research

Redmond, USA
cong.yan@microsoft.com

Suman Nath
Microsoft Research

Redmond, USA
suman.nath@microsoft.com

Shan Lu
University of Chicago

Chicago, USA
shanlu@uchicago.edu

Abstract—Database-backed applications are widely used. To
effectively test these applications, one needs to design not only
user inputs but also database states, which imposes unique
challenges. First, valid database states have to satisfy complicated
constraints determined by application semantics, and hence are
difficult to synthesize. Second, the state space of a database is
huge, as an application can contain tens to hundreds of tables
with up to tens of fields per table. Making things worse, each
test involving database operations takes significant time to run.
Consequently, unhelpful database states and running tests on
them can severely waste testing resources.

We propose DBGRILLER, a tool that generates database states
to facilitate thorough testing of database-backed applications. To
effectively generate valid database states, DBGRILLER strategi-
cally injects minor mutation into existing database states and
transforms part of the application-under-test into a stand-alone
validity checker. To tackle the huge database state space and
save testing time, DBGRILLER uses program analysis to identify
a novel branch-projected DB view that can be used to filter out
database states that are unlikely to increase the testing branch
coverage. Our evaluation on 9 popular open-source database
applications shows that DBGRILLER can effectively increase
branch coverage of existing tests and expose previously unknown
bugs.

Index Terms—Automated testing, Test data generation,
database-backed application, database-state generation

I. INTRODUCTION

Database-backed applications, which store application states
in persistent databases, are ubiquitous. Many of today’s most
important and most popular applications are database-backed.

Thorough testing of a database-backed application is chal-
lenging as its behavior depends not only on traditional user
inputs, but also on the underlying database states. Our study
of 30 popular database-backed applications (details in §III)
shows that the conditions of more than half of the branches
in these applications are affected by underlying databases. To
ensure that existing tests cover these DB-dependent branches,
developers manually create various test databases. However,
given the large number of DB-dependent branches, developers
often struggle to create a sufficient number of test databases
that can ensure a good coverage of the DB-dependent branches
(and thus find bugs in those branches). In our aforementioned
study, existing tests, with developer provided test databases,
cover only 55% of the DB-dependent branches.

This paper aims to automatically synthesize test databases
that can increase DB-dependent branch coverage of existing
tests. This problem is challenging for two key reasons.

First, validity. Synthesized databases need to be valid ac-
cording to the application semantics. The underlying database
of an application is typically populated by the application
itself, and hence it can contain only semantically meaningful
states. For example, in an enterprise application, an employee’s
salary cannot be negative and an employee name in the
Salary table must also appear in the Employee table. With
a semantically invalid database, a test may fail due to invalid
data, without revealing application bugs (i.e., a false positive).

Second, efficiency. Popular database-backed applications
typically contain tens to hundreds of tables, with up to tens
of fields per table. Therefore, the number of possible test
databases is huge, if not unlimited. Making things worse,
running a test on each database state takes non-negligible
amount of time due to expensive database operations (more
than 10 seconds per test in our experiments).

These challenges particularly affect the effectiveness of
traditional fuzzing techniques [1], [39] that would waste much
computation resource in testing many database states that are
invalid or unhelpful in improving test coverage. In theory,
one may use symbolic execution and constraint solving to
synthesize database states that are feasible to be produced by
the application and also capable of improving test coverage.
However, given the complexity of popular database-backed ap-
plications and their extensive use of third-party libraries [41],
this approach would be intractably expensive.

We address these challenges with a novel solution that
leverages existing features of database-backed applications. To
address the validity challenge, we use two mechanisms. First,
we use database states that are designed by developers for
existing tests as seed states and mutate them to generate new
test databases. For example, we replace a non-null value in a
seed state with a null value, which may increase the coverage
of branches conditioning on whether the value is null or
not. We propose five mutation mechanisms to synthesize new
databases that, as our experimental results show, are mostly
valid. This strategy relieves us from the daunting task of
synthesizing valid databases from scratch. Second, to discard
the small number of invalid databases, we leverage the fact that
database-backed applications commonly contain functions to

validate semantic correctness of their database updates. We
use static analysis to extract those validation functions and
combine them into a stand-alone checker function that can
efficiently identify invalid databases.

In our experiments, the above process easily generates tens
of thousands to hundreds of thousands of valid database states
per application, and running existing tests on all of them can
take several months. We therefore face the efficiency challenge.

To address the efficiency challenge, we use program analysis
to filter out database states that are unlikely to improve the
testing branch coverage. The insight is that only a subset
of database tables and fields can potentially improve branch
coverage, by affecting the conditional predicates of uncovered
branches. We can use program analysis to identify the subset.
Given a database state, we refer to the values of this subset of
tables/fields as branch-projected view of the database. For the
purpose of code coverage, two database states with the same
branch-projected view are equivalent (since the values outside
the view do not affect branch conditions). This enables us to
identify and filter out redundant database states that have the
same branch-projected view as an already considered database
state (and hence they are unlikely to improve the testing branch
coverage). The technique is effective (it discards 90% of the
synthesized databases in our experiments) and efficient (an
order of magnitude faster than executing the checker or a test),
making the entire pipeline of database generation + validation
+ test highly efficient.

We have implemented the techniques in a system called
DBGRILLER, and evaluated DBGRILLER on nine popular
open-source Ruby applications. Our evaluation shows that,
compared with the database states originally designed by
application developers, DBGRILLER covers 25% more DB-
dependent branches on average (up to 63%), increasing the
overall coverage of DB-dependent branches from 42–69%
to 51–80% across these nine applications. Among all DB-
dependent if-else branch pairs that are partially covered with
original database states (i.e., only the if branch or only the
else branch is covered), 35% (up to 52%) become fully
covered after using DBGRILLER. Although DBGRILLER is
not a bug finding tool by itself, its increased branch coverage
may expose more bugs with suitable test oracles. In evaluation,
using a simple test oracle catching 404 webpage, DBGRILLER
identifies 22 unique bugs that are not exposed by existing tests.

II. BACKGROUND

Database-backed applications commonly use the Model-
View-Controller (MVC) architecture, where each user request
triggers a controller action. For instance, a checkout request
through the URL https://foo.com/checkout?uid=1&oid=2

triggers a controller with the request parameters uid and oid.
Inside a controller action, the application interacts with back-
end database via an Object-Relational Mapping (ORM) library
such as ActiveRecord in Rails. The ORM library translates
database-related tasks into SQL queries and issues them to the
database. The library also serializes query results into a model
object (e.g., an ActiveRecord object), which is then used by

the application to generate a response. Thus, the ORM library
enables applications to work on model abstractions, instead of
directly interacting with underlying databases.

1 class Order < ActiveRecord
2 # constraint checker for Order
3 validate: validate_email
4 def validate_email
5 if email.nil? || email.blank?
6 return error("email address missing in order")
7 end
8 end
9 end

10 # interaction with database through ORM library
11 order = Order.find_by_id(param[:order_id])
12 order.line_items.each do |item|
13 # DB-dependent branches
14 if Inventory.find_by_id(item.inventory_id).count() >=

item.quantity
15 render :successful_checkout(order)
16 else
17 render :insufficient_inventory(order,item)
18 end

Listing 1. An example test code snippet, abridged from Spree[18]

Often, data stored in the database needs to satisfy cer-
tain constraints. Such constraints are expressed either in the
database or in the application. This is illustrated with an
example shown in Listing 1, which is abridged from Spree[18].
Here the constraint checker ensures that the name field of the
Order table is not null or empty (Line 3-8). The listing also
shows how the application interacts with the database through
an ORM function (find_by_id in Line 11) and how the data
in the database affects branch coverage.

1 # populate test database
2 before do
3 c = create(User, :id=1, :pass=’1234’, ...)
4 o = create(Order, :id=2, :token=’abc’, ...)
5 i = create(LineItem, :id=1, :order_id=2, ...)
6 end
7 # run test with the test database
8 response=post("https://foo.com/checkout?uid=1&orderid=2")
9 expect(response.status).to eq(200)

Listing 2. An example application test

Developers commonly write end-to-end tests that take URLs
with parameters as inputs and check assertions on response.
Because a test needs to interact with an underlying database,
a developer populates the database before the test starts with
carefully designed values that we call DB-state. An example
is shown in Listing 2 where the developer first populates the
database with three tables (Lines 2-7) and then issues a post
query to be executed with the test database (Line 9).

Note that a DB-state can affect the code coverage of a test.
For example, in Listing 1, the database value read in Line 11,
12 and 14 affects how the following DB-dependent branches
execute. As we will show later, developer-provided DB-states
often achieve poor coverage of DB-dependent branches, a
problem that we aim to address with DBGRILLER.

III. EXTENDED MOTIVATION

In this section, we motivate our problem and solution
by analyzing popular open-source database-backed apps built
with Ruby on Rails, a popular framework to build such
apps. We use a combination of static and dynamic analysis
techniques. We statically analyze (details in § VI-B1) 30

TABLE I
DETAILS OF THE APPLICATIONS

Name Abbr. Category Stars LoC Database # Table # Field # Constraints # test # branch∗ # DB-branch
Forem[7] Fr Forum 18.8k 158K Postgres 84 922 890 1852 5478 3126 (57%)

Lobsters[11] Lb Forum 3.2k 20K MySQL 23 165 243 67 1024 564 (55%)
Chatwoot[3] Ch Customer service 12.1k 35K Postgres 48 374 412 374 1068 554 (52%)

Spree[18] Sp Online shopping 11.7k 52K Sqlite 83 648 645 438 3870 2044 (53%)
Tracks[20] Tr Task mgmt 1.1k 29K MySQL 17 136 73 232 2416 1206 (50%)
Huginn[10] Hg Event tracking 35k 48K MySQL 11 113 76 155 1828 998 (55%)

Openstreetmap[12] Om Map service 1.4k 104K Postgres 57 355 479 462 3082 1286 (41%)
AutoLab[2] Al Homework grading 600 30K MySQL 26 241 109 103 2262 1388 (61%)

GrowStuff[8] Gs Farming mgmt 365 33K Postgres 43 334 221 144 1204 696 (58%)
∗We follow the standard branch counting and an if-else block contains two branches.

popular applications with > 350 stars on GitHub. Our dynamic
analysis (and evaluation of DBGRILLER) is based on a smaller
subset of 9 applications (shown in Table I) that could be set
up locally to run tests with reasonable efforts,1 and have been
actively maintained in last one year. These 9 applications are
diverse in category (including forum, online shopping, task
management, etc.), highly starred, developed for years, and
deployed to serve a large number of users everyday.
Q1: How important is DB-state for testing applications?
Our static analysis shows that over 98% of end-to-end tests
interact with database state (by using ORM APIs such as in
Line 11 of Listing 1). Moreover, 52% of all branches are DB-
dependent; i.e., their conditions depend on DB-states. These
numbers show that DB-states are crucial for tests and increas-
ing their coverage in database-backed applications. However,
our dynamic analysis shows that existing tests consider specific
scenarios (and associated DB-states) and cover mostly below
60% of the DB-dependent branches (details in § VII-B). This
motivates for a tool to improve such coverage.
Q2: How complex is the application code? Rail’s Ac-
tiveRecord provides over 70 methods to interact with the
database [15], meanwhile we observe many customized SQL
queries used in these 9 applications. Furthermore, we observe
that each application uses over 30 (up to 157) libraries
whose source code may be unavailable for analysis. These
complexities, adding to the dynamically-typed nature of Ruby,
makes it difficult to apply either static analysis or symbolic-
execution and constraint solving to generate DB-states.
Q3: How long does it take to run a test and how complex
is a database state? End-to-end tests on database are slow:
in the 9 apps listed in Table I, a test takes from 5 to 25
seconds to finish, with the majority taking over 12 seconds.
This prohibits the use of traditional fuzzing techniques that
assume thousands of invocations per second and hence can
try many tests quickly. The space of possible database states
is also huge, if not infinite. We find that each application
has 11 to 84 tables, with up to a total of 922 fields in one
app. Moreover, each includes from 73 to 890 data constraints
specified in the application code and the database. While some
constraints are generic (e.g., unique, not null, and foreign-

1For example, we could not dynamically analyze Diaspora[5]. It requires
setting up multiple machines with public facing URLs which is non-trivial to
configure, and the app fails to run tests even after following its installation
instructions.

Fig. 1. Workflow of DBGRILLER.

key constraint), some are complicated and written in Ruby
code (e.g., returned item does not overlap with final sale
items), making them hard to model. Due to the large space
of database states and complexity of data constraints, it is
extremely challenging to design application-specific DB-state
fuzzing technique that can efficiently explore the space and
generate valid DB-states.

Q4: How prevalent are tests and constraints? 27 out of
the 30 apps we studied include a good number of end-to-end
tests: ranging from 67 to 3468 tests and an average of 561
tests per app. Each test includes a DB-state. Applications also
include a large number of data constraints, ranging from 73 to
890. This is encouraging since DBGRILLER aims to leverage
existing tests, DB-states, and constraints.

IV. WORKFLOW OF DBGRILLER

For a given test T , we have three design goals for DB-
GRILLER: (1) validity: feed to T not only syntactically but
also semantically valid database states (DB-states), as testing
results on invalid database states are not trustworthy; (2) ef-
fectiveness: increase branch coverage of T ; and (3) efficiency:
synthesize few DB-states while satisfying the first two goals
to save testing resources.

DBGRILLER has three key innovations to achieve these
goals, reflected in its workflow shown in Figure 1. First,
to achieve the validity goal, DBGRILLER re-purposes data
validation functions that already exist in applications, rewriting
them into a constraint checkers that can validate any given
DB-state. Second, to achieve the effectiveness goal, we design
a series of mechanisms that leverage DB-states created by
developers to generate new DB-states that are likely to be
valid and can effectively increase coverage of DB-dependent
branches. Third, to achieve the efficiency goal, we design a
novel algorithm to filter out DB-states that are not useful to

increase branch coverage. The algorithm computes a branch-
projected view which contains tables and fields used by
conditions of uncovered branches in T and filters out DB-
states with duplicate branch-projected views.

V. CONSTRAINT CHECKER

As observed by prior works[46], database-backed applica-
tions contain many data-validation constraints that are invoked
before data is stored in database. For example, while creating a
new account, an application may use a constraint to ensure that
the account id is unique before storing the account information
in the database. DBGRILLER extracts such constraints that are
scattered around in an application and wraps them into a stand-
alone checker, to be used later to validate a DB-state generated
by DBGRILLER. This requires addressing two key questions:
(1) how to identify constraints checking code in an app? and
(2) what tables are checked with what constraints?

To answer the first question, we leverage the observation
from prior work [46] that most application-level constraints
are expressed in validation callbacks. This callback is invoked
every time a tuple is inserted/updated into the database, and
throws an exception if the tuple fails the validation logic spec-
ified by developers. An example is shown in Listing 1 at Line
2-9: developers define a validation callback, validate_email,
that is invoked every time an order record is saved and
returns an error if the order’s email field is NULL or blank.
DBGRILLER extracts all such validation callback functions
through static analysis using the method described in [46].

We answer the second question with the observation that ap-
plications using ORM frameworks often implement operations
on a database table inside a Model class whose name matches
the table name. For example, the validation code in Listing 1
that checks a constraint on the orders table is implemented
with the Order class. This enables DBGRILLER to identify the
set of validation functions for each table (validation involving
multiple tables is implemented in one class model whose
invokation automatically extracts data from all other tables).

Once all the validation functions and their relevant tables
are identified, DBGRILLER wraps them in a constraint checker
program. Given a DB-state, it iterates over all tables, identifies
the set of validation functions defined for that table, and then
invokes each validation on all tuples of the table. It returns
the set of validator functions failing on the input DB-state.
An empty return value indicates a successful validation.
Filtering irrelevant constraints. It is possible that a constraint
C is irrelevant to a test T , e.g., when C involves tables or
columns that are not accessed by T . In such a case, violation
of C should not prevent a DB-state from being used by T .
For instance, in application Chatwoot, one validation function
V checks that every message inbox is associated with an
account (i.e., account_id of inboxes table is not null and
the corresponding tuple in table accounts exists). However,
a test may not query the account table and do not use the
account_id field. To minimize effort, developers design a DB-
state including inboxes tuples but empty account table for
these tests, on which the tests still run successfully.

To allow these invalid DB-states whose failed constraints do
not affect test T , we run the constraint-checking procedure on
the DB-state defined by the developer for T . Any constraints
that are violated by this original DB-state are considered as
not required for T . These constraints are then ignored while
validating DB-states generated for T .

VI. DATABASE STATE GENERATOR

This section describes our algorithms to produce DB-states
for a given test T , with the workflow shown in Figure 1.

A. Candidate Generation

The goal of this step is to generate DB-states that are likely
to be (1) valid according to the application constraints, and (2)
diverse to increase code coverage. These enable DBGRILLER
to avoid many unnecessary invocations of expensive checkers
on invalid DB-states and of T on DB-states that do not
increase branch coverage.

Generating such DB-states from scratch is non-trivial. One
might consider leveraging the schema of the database to
generate syntactically correct DB-states. However, given the
complicated data-semantic constraints and the complicated
application-database relationship, such a state is very likely to
be semantically invalid or unhelpful in increasing branch cov-
erage. We experimentally confirm this in §VII-D. We therefore
leverage the large number of seed DB-states developers have
already created for T and other tests of the applications and
mutate them to generate new states. Such new states are likely
to be valid since seed states are valid. Moreover, they are likely
to be diverse since they are derived from seed-states defined
for not only T , but also for other tests of the application.
These seed-states provide not only diverse field values but also
diverse relationships between table rows (like foreign keys)
that are important to the application.

We have designed five mechanisms to generate new DB-
states from seed DB-states. The first two mechanisms, mutat-
ing table fields and deleting tuples, directly mutate the DB-
state the developer has created for T (denoted as stateT).
They target increasing coverage of branches that condition
on specific field value or empty/non-empty query results.
However, they alone only produce few mutations, and hence
we use seed DB-states to bring more changes beyond a single
field or a single tuple. We have three additional mechanisms
for this purpose. We merge states to bring tuples from seed
database to T ’s DB-state, use seed DB-state directly and
obtain mutated seed DB-states by running tests on them. As
we will show in §VII-C, these mechanisms produces highly-
likely valid states, individually increasing branch coverage yet
complimentary to each other, achieving much higher coverage
altogether. The five mechanisms are described as follows.

1) Mutating table field: This mechanism starts with the
DB-state stateT for T as defined by the developer and mutates
the value of every table field to increase the chance of covering
branches whose condition depends on a specific field value,
like the quantity field Listing 1 Line 14. Similar to existing
fuzzing tools, new values are obtained based on predefined

rules for the type of a field. For fields with limited value
space like boolean and enum fields, or fields with an inclusion
constraints (meaning that its value can only be one of a set
of predefined values), all values in this space will be used to
update that field. For other fields like integer, float or string,
DBGRILLER chooses 5 values: a NULL value, one special value
("" for string field and 0 for numerical field), one random
value sampled from corresponding value space and two values
randomly chosen from the same field of other seed states.
For each new value, DBGRILLER issues an UPDATE query on
stateT to obtain a candidate DB-state. Listing 3 shows the 5
mutating-field queries mutating email field of string type from
the orders table, resulting in 5 candidates.

1 UPDATE emails SET name = NULL;
2 UPDATE emails SET name = ’’; //empty string
3 UPDATE emails SET name = ’xkosk2ldo’; //random value
4 UPDATE emails SET name = ’foo at gmail.com’; //from seed
5 UPDATE emails SET name = ’bar at yahoo.com’; //from seed

Listing 3. Example queries generated by mutating field

2) Deleting tuple.: DBGRILLER deletes existing tuples in
stateT to increase the chance of covering branches that depend
on empty/non-empty query result. DBGRILLER issues DELETE

query with primary key to delete one tuple from stateT each
time to generate a candidate DB-state. To ensure a successful
deletion, it nullifies all foreign key reference to that tuple or
deletes the referencing tuple if the foreign key field has a not-
null constraint. For instance, when deleting an orders tuple
which is referenced by a line_items tuples belonging to that
order, DBGRILLER issues two queries as shown in Listing 4.

1 UPDATE line_items SET order_id=NULL WHERE order_id=1;
2 DELETE orders WHERE id = 1;

Listing 4. Example queries generated by deleting tuple

3) Merging DB-states.: Tuple deletion may cover branches
that depend on empty query results, yet covering branches on
non-empty results may require adding new tuples to T . Since
generating a new tuple with random values is likely to fail the
data constraint, DBGRILLER adds new tuples to stateT from
other seed DB-states. To do so, it randomly selects a few seed
DB-states (20 in our prototype) to merge into stateT , runs
an INSERT query for each tuple with IGNORE keyword to skip
insert failures (for instance, failure due to duplicated primary
key). In our prototype, DBGRILLER generates 10 candidate
states using this method. We also experimented with different
numbers of candidates and found that generating more than
10 candidates adds limited values while producing states with
duplicated views.

4) Using other seed DB-states.: This mechanism simply
uses a seed DB-state that is different from stateT . Since seed
DB-states are designed by developers, they are likely to be
valid. Using a DB-state different from stateT is likely to
increase the branch coverage.

5) Mutating seed DB-states by running test.: This mecha-
nism expands the pool of seed DB-states by running tests on
the seed DB-state. When a test modifies DB-states, it often
brings new interesting tuples or field values that not seen in
the seed DB-states originally designed by developers. Because

each seed DB-state is designed for one particular test, this
mechanism simply runs each test on their associated database
to obtain a new candidate DB-state.

B. Candidate filtering

The above mechanisms can potentially generate a pro-
hibitively large number of candidates, yet most of them do
not increase branch coverage. Suppose a DB-state state1 is
already executed by T and we have a new candidate DB-state
state2. Let δ12 be the set of fields where state1 and state2
differ in their values. It is easy to see that state2 can increase
T ’s branch coverage over state1 only if there exists a field
in δ12 that is (1) retrieved by T ’s queries, and (2) used by
an uncovered branch’s condition. Intuitively, state2 contains
a value that can flow via T to affect an uncovered branch.
Otherwise, the candidate state2 can be discarded. Since the
intersection of the fields retrieved by a test and the fields used
by branches is usually small, most candidates can be discarded.

We use the above insight to design a filtering algorithm.
The algorithm relies on branch analysis and branch-projected
view computation, as described next.

1) Branch Analysis: DBGRILLER uses a combination of
static and dynamic analysis to identify which tables and
columns affect a branch condition.

Static Analysis. DBGRILLER uses static taint analysis to
identify DB-dependent branches whose conditions are affected
by values retrieved from the database (i.e., database is the
source and branch conditions are the sinks), and which table
and which field is involved in the branch condition.

Dynamic Analysis. Static analysis may not be precise enough
to identify the exact table that a branch condition depends on.
For example, in a language that supports polymorphism, static
analysis may identify an interface whose exact type can only
be determined at runtime. Knowing the exact type is important
because in Object-Relational Model, there exists a one-to-one
mapping between a type and an underlying database table. For
instance, developer can define that each user associates with
an account, where the type of account is polymorphic [16],
meaning that it can be a FacebookAccount, a TwitterAccount

or any account type class defined in the application, where
each class corresponds to a different database table. The actual
account type will be decided dynamically, depending on the
value of account_type field of the User object. Therefore
if a branch condition involves an account, which table this
branch depends on cannot be determined statically. To tackle
this issue, DBGRILLER compliment static analysis with dy-
namic tracing to identify the type of each variable instead of
static type inference. Specifically, DBGRILLER instruments
application and test code to dynamically identify the exact
types and their corresponding tables during execution.

We use the example in Listing 1 to illustrate the process.
DBGRILLER first performs static analysis and figures out that
variable item is used in the branch condition on line 14, and
the quantity and inventory_id field of item is used. Then
it instruments and runs the test and finds that the instance of

Algorithm 1 Computing branch-projected views
1: procedure BRANCHPROJECTEDVIEW(test, dbState, branches)
2: queries ← FILTERANDPROJECTQUERY(test, branches)
3: try
4: view ← run queries with dbState in memory
5: return view
6: catch QueryFailExpection e
7: Populate database with dbState
8: view ← run queries against the database
9: return view

10: end try

11: procedure FILTERANDPROJECTQUERY(test, branches)
12: queries ← All queries in test
13: output_queries ← ∅
14: for q ∈ queries do
15: used_in_branch ← False
16: for table t involved in q do
17: if t is not used in any branch in branches then
18: continue
19: else if some branch in branches depends on t but not on

any specific field of t then
20: used_in_branch ← True
21: else
22: fields ← all fields of t involved in branches
23: q← replace SELECT t.* with SELECT fields in q
24: used_in_branch ← True
25: if used_in_branch == True then
26: output_queries.add(q)
27: return output_queries

item used in the branch condition is of type LineItem which
derives from ActiveRecord class and maps to line_items

table. Combining static and dynamic analysis, DBGRILLER
understands that the branch condition on line 14 involves the
quantity,inventory_id field of the line_items table (as well
as inventories table by a similar analysis).

2) Computing Branch-Projected View: At the core of
DBGRILLER’s filtering algorithm is computation of branch-
projected views that enables DBGRILLER to efficiently iden-
tify and discard DB-states that do not increase branch cov-
erage. Intuitively, a branch-projected view of a DB-state is a
set of its tables/fields that are retrieved by the test T and can
potentially influence the execution of an uncovered branch.
We define a view view(T, S) of a test T and a DB-state S to
be the results of all queries executed by T on the DB-state S.
Based on the branch analysis results, not all tables/fields in a
view may affect a set of given branches B. A projection ΠB of
a view keeps only the columns that affect any of the branches
B. Thus, for a test T and the set of uncovered branches B,
if two DB-states S and S′ have the same branch-projected
views, i.e., ΠB(view(T, S)) = ΠB(view(T, S

′)), they affect
branches in B in the same way. Hence if S is already executed
by T , S′ can be discarded as duplicate or equivalent.

DBGRILLER computes branch-projected views in two steps,
as shown in Algorithm 1. First, it rewrites the queries made by
the given test such that the rewritten queries contain only the
tables/fields that affect uncovered branches (procedure FIL-
TERANDPROJECTQUERY). Given a test and a set of branches
to cover, it identifies all queries executed by the test (by
examining query logs of the underlying database) (Line 12).
It ignores the queries that involve only tables/fields that none
of the branches depend on (Line 18). Remaining queries are

included in the output. However, if all uncovered branches
depend only on a subset of fields in a query in the output, it
is rewritten to select only those fields (Line 23).

Next, DBGRILLER executes the rewritten queries (proce-
dure BRANCHPROJECTEDVIEW). However, running a large
number of such queries on a database can be very time-
consuming, taking up to tens of seconds due to the cost
to populate database and expensive database interaction. To
reduce the cost, DBGRILLER loads the DB-state in memory
(e.g., into a DataFrame in Python) and tries to run all the
queries in-memory through a lightweight interface [13] (Line
4). While this reduces the view-construction time (to half a
second in our experiments) and works for the majority of the
queries, a few queries cannot be processed due to limited SQL
syntax support by the in-memory processing engine. In this
case DBGRILLER will fall back to populating the database
with DB-state and running the queries against it (Line 7-8).
The query results represent the branch-projected view for the
given test, DB-state, and branches.

3) Discarding unhelpful candidates: Finally, DBGRILLER
uses branch-projected views to compare DB-states: A newly
generated DB-state S is unhelpful in increasing branch cov-
erage if there exists an already selected state S′ such that
they both have the same branch-projected view computed with
respect to the currently uncovered branches.

Algorithm 2 illustrates the process of filtering candidate
states for a given test. To initialize for the test, it computes its
branch-projected view over its default DB-state and all the DB-
dependent branches in the application (Line 2-4). This view
is saved to global state prior_view.

For each new candidate DB-state dbState for the test,
DBGRILLER invokes the procedure FILTERCANDIDATE. It
first retrieves the set of branches that are not yet covered by the
test, and discard dbState if no such uncovered branches exist
(Line 7-9). Then it computes the branch-projected view view

of dbState and performs the important step of determining if
the dbState is unhelpful. This is done by checking if view

matches any already selected views, stored in prior_views.
Note that the set of uncovered branches strictly shrinks, and
the views in prior_views may be computed over a superset of
branches projected in the current view. Therefore, the compar-
ison with prior_views must be made after their projections
with respect to the tables/columns that affect current set of
branches. This is shown by the Πbranches operator in Line
11. If the comparison finds a match, dbState is discarded.
Otherwise, view is added to prior_views and dbState is
passed to the constraint checker. After the checker confirms
its validity , the test is invoked with the dbState (Line 17).

During execution of the test with a candidate state, DB-
GRILLER monitors if any new branch is covered; and if so, it
is removed from the global set of uncovered branches (Line
18-19) used by future invocations of FILTERCANDIDATE. This
feedback ensures that the set of uncovered branches shrinks
over time. This has two important implications. First, it ensures
the correctness of our comparison based on projection over
currently uncovered branches (Line 11). Second, as the set

Algorithm 2 Filtering Candidate DB-State Using View
1: procedure INIT(test)
2: stateT ← default db-state of test as defined by developer
3: branches ← All branches in the application
4: view ← BRANCHPROJECTEDVIEW(test, stateT , branches)
5: prior_views ← { view }

6: procedure FILTERCANDIDATE(dbState,test, prior_views)
7: branches ← Set of branches uncovered by test
8: if BRANCHES is empty then
9: Discard state and return

10: view ← BRANCHPROJECTEDVIEW(test, dbState,
branches)

11: is_dup ← True, if there exists a v ∈ prior views such that
Πbranches(v) = view, False otherwise

12: if is_dup == True then
13: Discard candidate
14: else
15: prior_view.add(view)
16: if state passes constraint checker then
17: run test on state
18: if new DBdependent branch b covered then
19: Remove b from branches

of branches shrinks, the branch-projected views contain fewer
tables/columns, making it more likely for a new candidate state
to match an already selected state in Line 11. Therefore, over
time, more and more candidate states are discarded, avoiding
the expensive invocations of checker and test.

C. Optimizations

We add several optimizations that leverage branch analysis
to avoid generating DB-states that will eventually be discarded.
First, when mutating fields, instead of mutating every field, we
only mutate the ones that are used in branch conditions, as the
remaining fields will not be included in the view. Second, we
only delete tuples from tables involved in branch conditions
for a similar reason. Third, we compute hash for each state and
perform duplicate checking, only keeping distinct DB-states as
some mutations may produce already-seen states.

VII. EVALUATION

A. Experiment setup

We evaluate DBGRILLER on the 9 open-source web appli-
cations listed in Table I. Note that, the test suites provided
by web developers do not necessarily touch all web pages.
Our evaluation focuses on those web pages that are touched
by existing test suites. Our prototype of DBGRILLER is built
in Python and Ruby. Ruby code performs static analysis on
the application source code while the Python code handles the
rest of the workflow. We run DBGRILLER on a server with
a 4-core 2.4GHz processor and 16GB memory. The branch
coverage is counted using simplecov [17], which is the most
popular library already used in 8 out these 9 applications to
report coverage. We sequentially generate DB-states for each
test, and set a time limit, 120h, to stop DBGRILLER if the
limit is reached.

B. Branch Coverage Results

▶How effective is DBGRILLER in increasing DB-
dependent branch coverage? To answer this, we perform

TABLE II
CAPABILITY IN FLIPPING THE OUTCOME OF DB-DEPENDENT BRANCH

CONDITION.

Fr Lb Ch Sp Tr Hg Os Al Gs Avg
ifelse-partial 409 53 71 208 143 98 170 95 55 145
ifelse-fully 142 20 37 84 52 16 44 29 22 49

% 35% 38% 52% 40% 36% 16% 26% 31% 40% 35%

static analysis to identify all DB-dependent branches as de-
scribed in §VI-B1. We then follow the standard branch cov-
erage counting: every if-else branch condition that is DB-
dependent presents two DB-dependent branches to cover, the
if branch and the else branch.

Figure 2 shows the branch coverage of the tests in different
applications with existing tests (provided by developer) and
with the extra DB-states produced by DBGRILLER. As shown,
DBGRILLER improves the DB-dependent branch coverage by
14 percentage points on average (up to 31 percentage points),
increasing the overall DB-dependent branch coverage from
42–69% to 51–80%.

We further look into the capability of DBGRILLER in
flipping the outcomes of DB-dependent branch conditions.
Intuitively, if a DB-dependent branch condition has never been
evaluated by existing tests, covering the corresponding if and
else branches may require test input changes in addition
to database state changes, which is beyond the scope of
DBGRILLER. Instead, if a DB-dependent branch condition
has been evaluated by existing tests and yet its outcome has
always led to one branch (e.g., the if), additionally covering
the other branch (e.g., else) could be achieved through a new
database state. We refer to these cases as turning partially
covered if-else branch pairs into fully covered. As shown in
Table II, on average, 35% (up to 52%) of the partially-covered
if-else branch pairs become fully-covered under DBGRILLER,
showing that DBGRILLER is effective in flipping the outcome
of DB-dependent branch conditions. For instance, the existing
test on order checkout only covers the if branch shown in
Listing 1 Line 14 where the checkout can complete, but not the
else branch (Line 16). DBGRILLER successfully generated
new database states to help cover the else branch, effectively
checking how the application performs under insufficient in-
ventory.

As DBGRILLER generates DB-states for each test individ-
ually, we also count the per-test coverage, with the average
number of DB-dependent branches covered originally and after
running DBGRILLER shown in Table III. With only a few
number of DB-state to run per test (43 DB-states on average,
as we will show in §VII-C), these DB-states are able to
significantly increase the number of DB-dependent branches
covered per test (33% on average), showing the capability
of DBGRILLER to explore diverse test behavior for each
individual test.

▶How much does each mutation mechanism contribute
to the increased coverage? To answer this, we configure
DBGRILLER to use only one mechanism at a time, and
report its coverage increase compared to the overall increase
of DBGRILLER (100%). Figure 3 shows the result. We can

TABLE III
THE NUMBER OF COVERED DB-DEPENDENT BRANCH AVERAGED per-test

(ORIGINALLY COVERED BY EXISTING TESTS AND AFTER RUNNING
DBGRILLER), AND THE % OF INCREASE BY DBGRILLER.

Fr Lb Ch Sp Tr Hg Os Al Gs Avg
orig 20.1 17.2 4.3 30.3 20.7 8.5 11.2 7.7 13.3 14.8

DBGRILLER 29.3 20.1 6.2 37 27.3 10.2 16.6 11.6 15.7 19.3
% increase 46% 17% 44% 22% 32% 20% 48% 51% 18% 33%

w/o other tests 22% 10% 38% 12% 24% 6% 21% 41% 11% 21%

Fig. 2. DB-dependent branch coverage in %, with the number and percentage
of branch increase at the top of orange bar.

see that among all the mutation mechanisms, MutateField and
DeleteField are often the most effective methods. Note that
these mechanisms sometimes overlap where some branches
covered by DB-states generated with one mechanism are also
covered using another mechanism. However, none of these
mechanisms alone can achieve the same increase as overall,
showing that they are still complimentary to each other.

Fig. 3. DB-dependent branch coverage in %

▶How much does DBGRILLER rely on DB-states from
other tests? For a given test T , DBGRILLER leverages not
only its own DB-state, but also DB-states from other tests. In
the worst case when no other tests are available, DBGRILLER
can still produce new DB-states for T by mutating its own
DB-state, thanks to its MutateField and DeleteTuple mutation
mechanisms. The last line in Table III shows this worst case
scenario: DBGRILLER is still able to achieve an average
coverage increase of 21%.

C. Efficiency and effectiveness Results

DBGRILLER’s efficiency comes from its ability to quickly
filter out many unhelpful DB-states. Its effectiveness comes
from its ability to produce mostly valid DB-states. We now
empirically evaluate these two aspects, with various statistics
shown in Table IV.

▶Is tool effective in discarding unhelpful DB-states? As
shown in Table IV, various mutation mechanisms of DB-
GRILLER generate a large number of DB-states (up to 303K).
This number varies across applications because their numbers

of seed database differ. Despite the large number of initial
candidates, DBGRILLER is able to filter out most of them,
from 78% up to 97%, leaving only a few thousands for
validation (shown in highlighted row % reduced in filter),
showing the effectiveness of DBGRILLER’s candidate filtering
algorithm. Effective filtering is crucial for tool’s efficiency be-
cause running the checker on all generated DB-states without
filtering and running tests on all valid DB-states would be
prohibitively expensive (a few months for the applications in
Table IV) while still producing the same branch coverage.

▶Is tool effective in generating valid and many DB-states?
The % invalid candidate row in Table IV shows that only a
small fraction of DB-states after filtering is discarded by the
checker (2-10%). This highlights that the DB-states produced
by DBGRILLER’s mutation mechanisms are mostly valid. The
DB-states row shows that the final number of unique DB-
states that pass the checker is large (0.6K-34.9K), which
achieves the coverage increase reported in Figure 2. This
highlights that DBGRILLER, despite filtering a large number
of unhelpful DB-states, is able to produce a large number of
diverse and valid DB-states.

▶How much time does DBGRILLER take? The overall time
row in Table IV shows the total time spent to sequentially run
our experiments for each application. The time includes the
time to generate DB-states, filtering them, validating them,
and running tests on them. Three applications, Forem, Spree
and OpenStreetMap include many tests (e.g., it takes over
8h to run all original tests in Forem), and DBGRILLER
could not finish running all the tests within our time limit
of 120h. The remaining applications take from 8h to 66h. We
believe the overhead is acceptable for offline testing. It can be
potentially accelerated by running multiple tests in parallel or
in a continuous integration test environment that runs only the
tests that are affected by recent code changes.

Figure 4 shows the breakdown of total time spent into
state generation+filtering, validation, and test execution time.
Despite generating a large number of DB-states, genera-
tion+filtering step is the fastest in all but one applications
(Forem). The majority of the time is still spent on DB-state
validation and running tests. This is because filtering is almost
an order of magnitude cheaper than the other two steps (row
generation + filtering time in Table IV). In comparison, the
time it takes to validate a DB-state or to run a test is much
longer, from a few seconds to tens of seconds.

DBGRILLER’s filtering efficiency comes from the fact that
even though it requires creating views by running queries,
DBGRILLER is able to run most of the queries in-memory
(Line 4 in Algorithm 1) without interacting with the actual
database. This happens for 81% to 100% of the queries, as
shown in the % views constructed in-mem row in Table IV.

D. Comparison with Random Fuzzing

We compare DBGRILLER with simple baselines that gener-
ate random DB-states using the fuzzing tool Zest [39]. Because
all the applications we tested are written in Ruby while Zest

TABLE IV
NUMBER OF DB-STATES PRODUCED BY DBGRILLER, RUNNING TIME BREAKDOWN, AND OVERALL RUNNING TIME AND STATE COUNT.

Fr Lb Ch Sp Tr Hg Os Al Gs Avg

candidate # before filter 303K 7.6K 114K 217K 77.2K 50.1K 71.4K 13.4K 33.6K 9.9K
% reduced in filter 97% 91% 91% 82% 84% 94% 78% 91% 87% 88%

DB-state
after filter 8.4K 0.7K 10.1K 39.0K 12.1K 3.0K 15.9K 1.4K 4.3K 10.5K

% invalid candidate 2% 7% 4% 10% 10% 5% 10% 5% 9% 7%
candidates pass checker 8.3k 0.6K 9.7K 34.9K 11.0K 2.9K 14.3K 1.3K 3.9K 9.6K

running time
% views computed in-memory 99% 90% 91% 96% 99% 100% 81% 100% 96% 95%

breakdown
generation + filtering time (per-candidate) 0.7s 2.9s 1.0s 0.6s 0.3s 0.1s 4.1s 0.3s 1.0s 1.3s

per-test
validation time (per-candidate) 13.1s 11.4s 7.1s 2.2s 8.3s 6.2s 6.4s 34.5s 13.5s 11.4s

test time (per-test) 13.9s 28.4s 9.4s 8.3s 10.7s 9.8s 20.2s 24.7s 17.6s 15.9s

Overall
target test processed 120 67 374 378 232 155 160 103 144 193

DB-states 8.3K 0.6K 9.7K 34.9K 11.0K 2.9K 4.3K 1.3K 3.9K 9.6K
states per test 65 9 26 92 47 19 90 13 27 43

time per test 57min 7min 9min 19min 17min 6min 45min 14min 16min 21min
overall time running original tests 8h 0.6h 1.1h 1.1h 0.8h 0.5h 3h 0.8h 1h 2h

overall time w/ DBGRILLER (sequential) 120h 8h 56h 120h 66h 15h 120h 24h 40h 63h

Fig. 4. The breakdown of time spent in filtering candidate, validating
candidate DB-state and running test on DB-state.

works on Java programs, we only use the generator-based
fuzzing framework but not the coverage-guided feature. We
write a generator that takes in a database schema and randomly
generates values for each table field based on two strategies
we describe next. We also implement the Assume function
that calls the constraint checker to check the validity of the
generated DB-state, leaving the test body empty.

For generating values for each field, we use two strategies:

Random values: This strategy generates random values for
each table field according to its type (integer, float, string,
etc.). Each generated table contains a random number of tuples
ranging from 0 to 10 (a larger number causes Zest to crash).
For each application, we set the time budget as the amount of
time DBGRILLER takes (shown in Table IV).

The number of DB-states produced and those that passed
the validation is shown in Table V. Even though the baselines
produced a large number of DB-states, none of them passed
the validation. This is because randomly-generated field value
easily fails even simple single-field constraint, like a string
field which expects JSON format, or an integer field storing
a ratio from 0 to 100. Random easily fails because any failed
constraint would make the database invalid and there are
hundreds of constraints per application.

Seed values: Based on the above observation, we improve the
baseline by using only values from seed databases. Instead of
generating a random value for each field and a random number
of tuples for each table, this strategy randomly samples a value
of the same table field from seed databases, and sets the bound
for the number of tuples in a table to the maximum number of
tuples in the same table in seed databases (usually smaller than
10). We generate the same number of DB-states as Random.

TABLE V
NUMBER OF STATES GENERATED/PASS-CHECKER BY FUZZING BASELINE.

Fr Lb Ch Sp Tr Hg Os Al Gs
DB-states 20.0K 1.9K 22.7K 16.8K 18.8K 6.7K 45.3K 2.2K 9.3K
Random

pass check 0 0 0 0 0 0 0 0 0

Seed
pass check 0 0 0 0 1.9K 5.2K 0 0 0

increased cov 0 0 0 0 15 18 0 0 0

This improved strategy improves the situation slightly: it
succeeded in generating valid databases for two of the applica-
tions, Tracks and Huginn. These are the two applications with
the smallest number of tables, fields and constraints among
all applications, yet random fuzzing still has a much lower
chance to produce a valid state compared to DBGRILLER.
We run all the tests on the valid databases and report the DB-
dependent branch coverage increase in Table V. Compared
to DBGRILLER, random fuzzing achieves a slightly better
increase (+18 compared to +17) for Huginn and a much
lower increase (+15 compared to +73) for Tracks. For the
remaining 7 applications, DB-states generated by this strategy
are often failing on constraints involving multiple fields or tu-
ples, like unique constraint, foreign key constraint, functional-
dependency (e.g., the value of two fields must be equal), etc.

E. Analysis of Uncovered Branches

To understand DBGRILLER’s potential limitations in in-
creasing branch coverage, we examine two applications
with relatively small coverage increase: Huginn and Open-
StreetMap. Many of Huginn’s DB-dependent branches are
related to parsing the JSON text read from a database field.
As DBGRILLER mostly uses seed values or random values
and Huginn’s seed value does not include diverse JSON text,
DBGRILLER is unable to cover these branches. For Open-
StreetMap, a test often includes multiple assertions (instead of
one at the end of the test, like tests in other apps) and when
the first assertion fails (as DBGRILLER changes DB-state, test-
specific assertions often fail), the test returns without executing
the code after the assertion, limiting coverage. This can be
potentially addressed by removing/disabling test assertions
when using DBGRILLER-produced DB-state.

TABLE VI
BUGS FOUND AND FP RATE OF DBGRILLER AND CODEQL

Method Fr Lb Ch Sp Tr Hg Os Al Gs FP-rate
DBGRILLER-found 11 2 0 5 2 4 0 0 2 15%
DBGRILLER-real 9 2 0 3 2 4 0 0 2 -

codeql-found 60 16 35 26 6 2 23 24 34 97%
codeql-real 2 1 0 0 0 0 0 1 2 -

Then we sample 60 uncovered branches and look into why
DBGRILLER fails to cover them. We find three main reasons.
First, 55% of uncovered branches require specific values of
one or multiple fields, or the result of an aggregate query,
whose values are not included in the seed databases. Second,
28% of branches are affected not only by the database but
also with other inputs such as user input and application
configuration. Changing DB-states alone is not sufficient to
cover them. Third, 17% of branches are unreachable for any
valid DB-state. Examples include a branch checking a field
value which is being reset to a constant before the branch.

F. Bugs found

Like all techniques that increase testing coverage[28], [37],
DBGRILLER can help testing to expose more bugs by exer-
cising more and important code paths. However, DBGRILLER
is not a bug-detection tool by itself. Good testing oracles have
to be in place to report the manifestation of bugs. In the
following, we offer a baseline evidence of this with the most
generic and basic type of oracle that reports a likely bug when
Rails catches an unhandled exception (and eventually returns
the HTTP error 404: Not Found). We expect many more bugs
to be detected with more application-specific oracles.

With this basic oracle, we found 34 distinct cases of
unhandled exceptions from 6 applications. Manual inspection
showed that 22 are caused by actual bugs in the applications,
8 are caused by incomplete test cases (exceptions unhandled
by tests but are actually handled in the application), and 4 are
false positives — the test database violates data constraints that
DBGRILLER fails to extract due to the limitations discussed
in SectionVIII. Among the actual bugs, 12 are confirmed by
developers and 3 are already fixed.

Most of these bugs are null bugs, a common bug in database
backed applications [19] which directly invokes method from
a query result without checking whether it is null or not. In
retrospect, these bugs look simple, but are actually hard to
accurately pinpoint. To demonstrate this, we use a static null-
checker. We are not aware of any publicly-available static null-
checker for Ruby-On-Rails applications, and hence we build
our own based on CodeQL [4], [43]. The checker analyzes
dataflow (provided by CodeQL) and reports a potential null
bug if (1) there is a database query result object on which
some method is invoked later, and (2) between where the query
result is computed and where a method is invoked on it, there
is no branch condition inspecting if the query result is null.

Table VI compares the static checker with DBGRILLER.
The checker has a high false positive rate of 97%, and it finds
only 6 real bugs, much fewer compared to DBGRILLER. This
is due to multiple factors including (1) fundamental limitations
of static analysis of a dynamic language such as Ruby [35],

(2) widely-used asynchronous callbacks [14] that are hard to
analyze statically [44] and are not analyzed by CodeQL that
we use, (3) static analysis not being aware of data constraints
implicitly imposed by database and validation functions (e.g.,
certain query result will never be NULL), and so on.

VIII. DISCUSSION

Generality. Although DBGRILLER’s prototype is built for
Rails applications, none of its components are Rails specific.
Some features DBGRILLER relies on, e.g., Model-like class to
map object class to tables, data constraints specified through
validation callback, are common in other ORM frameworks
(model class and validation callback in Django[6], persistent
class and bean validator in Hibernate [9], etc.).

Limitations. DBGRILLER’s constraint extraction and DB-
related branch analysis have limitations due to static analysis.
The constraints extracted by DBGRILLER are sound but
incomplete, as it does not detect constraints implied by how
the value in database is generated (e.g., the score field of a
post is computed from field votes, but DBGRILLER cannot
detect such constraint). The static analysis on branches is
conservative and may include more fields and tables than
actually used, making DBGRILLER select more candidates
than necessary. Dynamic taint analysis is potentially more
accurate, but unfortunately not supported in Ruby right now.

IX. RELATED WORK

Testing database-backed applications. Prior works apply
symbolic execution related techniques to test database-backed
applications. SynDB [41], [40] replaces the interaction with
a database system with a synthesized interaction that runs
queries on a symbolic database, then applies dynamic symbolic
execution. It considers all program, query and database con-
straints in tandem and generates both test input and database
state. XDataPro [22] performs static analysis on the program
code to collect the conditions that a database state needs to
satisfy in order to follow a certain program path, and uses a
solver to generate state. However, these tools model a small
subset of SQL semantics and are only good for small to
medium size, self-contained applications, while DBGRILLER
is targeting real-world applications which issue arbitrary query
and use external libraries.

Testing big data applications. Much research has explored
testing big data applications. Prior work widely explored
testing Spark applications, which is composed of calls of
Spark functions and user-defined functions (UDFs) and works
on a database state. BigTest [23] uses symbolic execution to
automatically enumerate different path conditions and generate
database states using an SMT solver. BigFuzz [47] proposes
an efficient fuzzing technique that focuses on exploring paths
in user-defined functions instead of Spark libraries. Big data
applications differ from database applications in three major
aspects. 1) Big data applications targeted in prior work are
expected to work on any database state. Consequently, data
validity is not a concern. 2) The space of database states is

much smaller as they include only a few tables. 3) The Spark
libraries only include a few data operators which are relatively
easy to model, while modeling complete SQL semantics
requires huge effort. Furthermore, the complexity of UDFs in
Spark program is much lower compared to the entire database
application. As a result, these techniques cannot be directly
applied to database applications.

Another line of work in testing big data applications targets
performance testing of query workload. QAGen [27] takes in
database schema, cardinality and data distribution constraints,
MyBenchmark [34] takes in parameterized queries with de-
rives constraints, and Arasu et. al. [24] proposed a language
to specify data distribution constraints. They output large
database states satisfying these constraints. Our work focuses
on integrity constraints instead of distribution constraints.

Database testing. A lot of research work has explored gen-
erating queries to test database systems. SQLancer [21], [42]
includes a series of techniques, including query partitioning
and pivot query synthesis, to generate SQL queries paired
with certain properties of query results. These queries can
find logical bugs of database systems. AMOEBA [33] detects
query performance bug by exploring equivalent query rewrites
and check whether rewritten queries have similar performance.
These techniques tackle the validity challenge by designing
program mutations to produce queries with desired properties
such semantic equivalence to a given query. In contrast,
DBGRILLER’s mutation produces states that are likely-valid
only empirically because it would be impossible to generate
guaranteed valid states due to the complexity of application-
specific data constraints.

Random testing and fuzz testing. A big challenge for random
and fuzz testing is to generate valid inputs. Randoop [36]
permutes method-call sequences to generate valid inputs,
and eliminates redundant execution by keeping track of the
sequences. Zest [39], [38] proposes generator-based testing
that increases the chance to produce a semantically valid
input by converting random-input generators into deterministic
parametric generators. Other work proposed grammar-based
fuzzing techniques. Saffron [32] relies on the user to provide
an approximate grammar and refines it during the fuzzing pro-
cess. Superion [45] proposes grammar-aware grey-box fuzzing
that mutates the abstract syntax tree of the test input instead of
random mutation to increase code coverage. Such techniques
can be potentially used for database applications, yet designing
application-specific grammar or DB-state generator can be
very challenging due to the large number of data constraints.

Testability transformation (TT). TT [30] transforms pro-
grams to improve the performance and effectiveness of test
data generation techniques. Previous works proposed vari-
ous TT techniques, e.g., to enrich functions to return better
descriptive and heuristics values that can enhance search-
based software testing [25], to remove from programs binary
flags that can hurt evolutionary testing[29], [26], to produce
simplified and coverage-preserving versions of a program that
are easier to analyze/test and for which test data generation

is easier [29], [31]. DBGRILLER introduces a novel kind of
TT by transforming parts of an application’s logic into a DB-
state validity checker, which helps to ensure that a generated
DB-state is reasonable for tests.

X. CONCLUSION

Generating test databases for database-backed applications
is challenging, due to the large space and validity of the
databases, and the long running time to validate and run tests.
In this paper we propose DBGRILLER to address these chal-
lenges. DBGRILLER 1) extracts application constraints into a
checker program to validate any given database state, and 2)
leverages seed databases designed by developers and computes
branch-projected views to generate likely-valid DB-states that
are prone to increase branch coverage. Evaluation shows its
effectiveness in increasing test coverage and exposing bugs in
database-backed applications.

Acknowledgments. We would like to thank the anonymous
reviewers for their insightful comments on the paper. Shan
Lu’s research is partly supported by NSF (grants CCF-
2119184, CNS-1764039), the CERES Center for Unstoppable
Computing, and the Marian and Stuart Rice Research Award.

REFERENCES

[1] American Fuzz Loop. http://lcamtuf.coredump.cx/afl/.
[2] Autolab: course management service that enables auto-graded program-

ming assignments. https://github.com/autolab/Autolab.
[3] Chatwoot: open-source customer engagement suite, an alternative to

Intercom, Zendesk, Salesforce Service Cloud etc. https://github.com/
chatwoot/chatwoot.

[4] CodeQL: the analysis engine used by developers to automate security
checks, and by security researchers to perform variant analysis. https:
//codeql.github.com/docs/.

[5] Diaspora: A privacy-aware, distributed, open source social network.
https://github.com/diaspora/diaspora.

[6] Django, a python web application framework. https://www.
djangoproject.com/.

[7] Forem: open source software for building communities. https://github.
com/forem/forem.

[8] Growstuf: open data project for small-scale food growers. https://github.
com/Growstuff/growstuff.

[9] Hibernate, an ORM framework for java. http://hibernate.org/orm/.
[10] Huginn: create agents that monitor and act on your behalf. https://github.

com/huginn/huginn.
[11] Lobsters: computing-focused community centered around link aggrega-

tion and discussion. https://github.com/lobsters/lobsters.
[12] Openstreetmap: rails application powering OpenStreetMap. https://

github.com/openstreetmap/openstreetmap-website.
[13] Pandas: read SQL query or database table into a DataFrame. https:

//pandas.pydata.org/docs/reference/api/pandas.read sql.html.
[14] Rails ActiveRecord callback mechanism. https://guides.rubyonrails.org/

active record callbacks.html.
[15] Rails model APIs. https://devhints.io/rails-models.
[16] Rails polymorphic association. https://guides.rubyonrails.org/

association basics.html#polymorphic-associations.
[17] SimpleCov: code coverage tool for ruby. https://github.com/

simplecov-ruby/simplecov.
[18] Spree: open source headless multi-language/multi-currency/multi-store

eCommerce platform. https://github.com/spree/spree.
[19] Top errors from Ruby on Rails project. https://rollbar.com/blog/

top-10-errors-from-1000-ruby-on-rails-projects-and-how-to-avoid-them/.
[20] Tracks: web-based application to help you implement David Allen’s

Getting Things Done methodology. https://github.com/TracksApp/tracks.
[21] Testing database engines via pivoted query synthesis. In 14th USENIX

Symposium on Operating Systems Design and Implementation (OSDI
20), Banff, Alberta, November 2020. USENIX Association.

http://lcamtuf.coredump.cx/afl/
https://github.com/autolab/Autolab
https://github.com/chatwoot/chatwoot
https://github.com/chatwoot/chatwoot
https://codeql.github.com/docs/
https://codeql.github.com/docs/
https://github.com/diaspora/diaspora
https://www.djangoproject.com/
https://www.djangoproject.com/
https://github.com/forem/forem
https://github.com/forem/forem
https://github.com/Growstuff/growstuff
https://github.com/Growstuff/growstuff
http://hibernate.org/orm/
https://github.com/huginn/huginn
https://github.com/huginn/huginn
https://github.com/lobsters/lobsters
https://github.com/openstreetmap/openstreetmap-website
https://github.com/openstreetmap/openstreetmap-website
https://pandas.pydata.org/docs/reference/api/pandas.read_sql.html
https://pandas.pydata.org/docs/reference/api/pandas.read_sql.html
https://guides.rubyonrails.org/active_record_callbacks.html
https://guides.rubyonrails.org/active_record_callbacks.html
https://devhints.io/rails-models
https://guides.rubyonrails.org/association_basics.html#polymorphic-associations
https://guides.rubyonrails.org/association_basics.html#polymorphic-associations
https://github.com/simplecov-ruby/simplecov
https://github.com/simplecov-ruby/simplecov
https://github.com/spree/spree
https://rollbar.com/blog/top-10-errors-from-1000-ruby-on-rails-projects-and-how-to-avoid-them/
https://rollbar.com/blog/top-10-errors-from-1000-ruby-on-rails-projects-and-how-to-avoid-them/
https://github.com/TracksApp/tracks

[22] Pooja Agrawal, Bikash Chandra, K. Venkatesh Emani, Neha Garg, and
S. Sudarshan. Test data generation for database applications. In 2018
IEEE 34th International Conference on Data Engineering (ICDE), pages
1621–1624, 2018.

[23] Muhammad Ali Gulzar, Madanlal Musuvathi, and Miryung Kim.
Bigtest: A symbolic execution based systematic test generation tool
for apache spark. In 2020 IEEE/ACM 42nd International Conference
on Software Engineering: Companion Proceedings (ICSE-Companion),
pages 61–64, 2020.

[24] Arvind Arasu, Raghav Kaushik, and Jian Li. Data generation using
declarative constraints. In Proceedings of the 2011 ACM SIGMOD
International Conference on Management of Data, page 685–696, 2011.

[25] Andrea Arcuri and Juan P Galeotti. Testability transformations for
existing apis. In 2020 IEEE 13th International Conference on Software
Testing, Validation and Verification (ICST), pages 153–163. IEEE, 2020.

[26] David W Binkley, Mark Harman, and Kiran Lakhotia. Flagremover: A
testability transformation for transforming loop-assigned flags. ACM
Transactions on Software Engineering and Methodology (TOSEM),
20(3):1–33, 2011.

[27] Carsten Binnig, Donald Kossmann, Eric Lo, and M. Tamer Özsu. Qagen:
Generating query-aware test databases. In Proceedings of the 2007
ACM SIGMOD International Conference on Management of Data, page
341–352, 2007.

[28] Ankit Choudhary, Shan Lu, and Michael Pradel. In ICSE, pages 266–
277, 2017.

[29] Mark Harman, André Baresel, David Binkley, Robert Hierons, Lin
Hu, Bogdan Korel, Phil McMinn, and Marc Roper. Testability
transformation–program transformation to improve testability. In Formal
methods and testing, pages 320–344. Springer, 2008.

[30] Mark Harman, Lin Hu, Rob Hierons, Joachim Wegener, Harmen
Sthamer, André Baresel, and Marc Roper. Testability transformation.
IEEE Transactions on Software Engineering, 30(1):3–16, 2004.

[31] Robert M Hierons, Mark Harman, and CJ Fox. Branch-coverage
testability transformation for unstructured programs. The Computer
Journal, 48(4):421–436, 2005.

[32] Xuan-Bach D. Le, Corina Pasareanu, Rohan Padhye, David Lo, Willem
Visser, and Koushik Sen. Saffron: Adaptive grammar-based fuzzing for
worst-case analysis. SIGSOFT Softw. Eng. Notes, 44(4):14, sep 2021.

[33] Xinyu Liu, Qi Zhou, Joy Arulra, and Alessandro Orso. automatic
detection of performance bugs in database systems using equivalent
queries. In ICSE, 2022.

[34] Eric Lo, Nick Cheng, and Wing-Kai Hon. Generating databases for
query workloads. Proc. VLDB Endow., 3(1–2):848–859, sep 2010.

[35] Magnus Madsen. Static analysis of dynamic languages. : http://pure.
au. dk/ws/files/85299449/Thesis. pdf, 2015.

[36] Carlos Pacheco, Shuvendu K. Lahiri, Michael D. Ernst, and Thomas
Ball. Feedback-directed random test generation. In ICSE, 2007.

[37] Rohan Padhye, Caroline Lemieux, and Koushik Sen. Jqf: Coverage-
guided property-based testing in java. In Proceedings of the 28th ACM
SIGSOFT International Symposium on Software Testing and Analysis,
page 398–401, 2019.

[38] Rohan Padhye, Caroline Lemieux, and Koushik Sen. Jqf: Coverage-
guided property-based testing in java. In Proceedings of the 28th ACM
SIGSOFT International Symposium on Software Testing and Analysis,
page 398–401, 2019.

[39] Rohan Padhye, Caroline Lemieux, Koushik Sen, Mike Papadakis, and
Yves Le Traon. Semantic Fuzzing with Zest. 2019.

[40] Kai Pan, Xintao Wu, and Tao Xie. Automatic test generation for
mutation testing on database applications. In ASE, 2013.

[41] Kai Pan, Xintao Wu, and Tao Xie. Guided test generation for database
applications via synthesized database interactions. ACM Trans. Softw.
Eng. Methodol., 23(2), apr 2014.

[42] Manuel Rigger and Zhendong Su. Finding bugs in database systems via
query partitioning. Proc. ACM Program. Lang., 4(OOPSLA), nov 2020.

[43] Max Schäfer and Oege de Moor. Type inference for datalog with
complex type hierarchies. In Proceedings of the 37th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages (POPL), page 145–156, 2010.

[44] Thodoris Sotiropoulos and Benjamin Livshits. Static analysis for
asynchronous javascript programs. arXiv preprint arXiv:1901.03575,
2019.

[45] Junjie Wang, Bihuan Chen, Lei Wei, and Yang Liu. Superion: Grammar-
aware greybox fuzzing. In Proceedings of the 41st International
Conference on Software Engineering, ICSE ’19, page 724–735. IEEE
Press, 2019.

[46] Junwen Yang, Utsav Sethi, Cong Yan, Alvin Cheung, and Shan Lu.
Managing data constraints in database-backed web applications. In
ICSE, page 1098–1109, 2020.

[47] Qian Zhang, Jiyuan Wang, Muhammad Ali Gulzar, Rohan Padhye, and
Miryung Kim. Bigfuzz: Efficient fuzz testing for data analytics using
framework abstraction. In ASE, 2020.

	Introduction
	Background
	Extended Motivation
	Workflow of DBGriller
	Constraint Checker
	Database State Generator
	Candidate Generation
	Mutating table field
	Deleting tuple.
	Merging DB-states.
	Using other seed DB-states.
	Mutating seed DB-states by running test.

	Candidate filtering
	Branch Analysis
	Computing Branch-Projected View
	Discarding unhelpful candidates

	Optimizations

	Evaluation
	Experiment setup
	Branch Coverage Results
	Efficiency and effectiveness Results
	Comparison with Random Fuzzing
	Analysis of Uncovered Branches
	Bugs found

	Discussion
	Related Work
	Conclusion
	References

