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Inference latency has become a crucial metric in running Deep Neural Network 
(DNN) models on various mobile and edge devices. To this end, latency prediction of 
DNN inference is highly desirable for many tasks where measuring the latency on real 
devices is infeasible or too costly. Yet it is very challenging and existing approaches 

fail to achieve a high accuracy of prediction, due to the varying model-inference latency 
caused by the runtime optimizations on diverse edge devices. In this paper, we propose and 
develop nn-Meter, a novel and efficient system to accurately predict the DNN inference 
latency on diverse edge devices. The key idea of nn-Meter is dividing a whole model 
inference into kernels, i.e., the execution units on a device, and conducting kernel-level 
prediction. nn-Meter builds atop two key techniques: (i) kernel detection to automatically 
detect the execution unit of model inference via a set of well-designed test cases; and  
(ii) adaptive sampling to efficiently sample the most beneficial configurations from a large 
space to build accurate kernel-level latency predictors. nn-Meter achieves significant high 
prediction accuracy on four types of edge devices.
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DNNs have been widely used in today’s 
mobile and edge applications [1]. In many 
applications, such as on-device video 
analytics, face recognition, AR/VR, etc., 
DNN models are constrained by efficiency 
constraints (e.g., latency). To design a model 
with both high accuracy and efficiency, 
model compression [2,3] and the recent 
Neural Architecture Search (NAS) [4,5] 
consider the inference latency of DNN 
models as the hard design constraint.

However, measuring the inference 
latency for DNN models is laborious and 
expensive. It requires developers to perform 
a deployment process on the physical device 
to obtain the latency. The engineering effort 
is tremendous for diverse edge devices 
(e.g., mobile CPU/GPU and various 
AI accelerators) and different inference 
frameworks (e.g., TFLite and OpenVINO). 
Even on a single device, it may be extremely 
time-consuming to measure a large number 
of models in NAS tasks (e.g., ProxylessNAS 
[4] explores ~0.3 millions of models in 
just one round of search). Such a high cost 
can hinder the scalability and make the 
measurement-based method practically 
infeasible to support the fast-growing 
number of edge devices.

Consequently, approaches have been 
proposed to predict the inference latency. 
For example, the FLOPs (i.e., the number 
of multiply-adds) based method has been 
widely applied to evaluate the efficiency [3,6], 
which is simple but not a direct metric of 
latency. To predict a model latency, many NAS 
works [4,5] build the operator-wise lookup 
table. Such operator-level methods sum up the 
latencies of all operators. However, they do not 
consider the model latency differences caused 
by runtime optimizations of model graphs. For 
instance, many frameworks merge multiple 
operators into one fused operator to accelerate 
the inference, which impacts the inference 
latency significantly. Recently, the state-of-the-
art BRP-NAS [7] uses graph convolutional 
networks (GCN) to predict latency of the 
NASBench201 [8] dataset on various devices. 
It captures the runtime optimizations by 
learning the representation of model graphs 
and corresponding latency. However, this 
model-graph based approach depends heavily 
on the tested model structures and may not 
work for many unseen model structures.

In this work, we propose and develop a 
novel system called nn-Meter that aims to 

of DNN models, the kinds of operators and 
kernels are stable with a relatively small set. 
Any models are just different combinations 
of operators/kernels. Therefore, kernel-level 
prediction is generic enough to support 
unseen new models.

Figure 1 illustrates the system archi-
tecture of nn-Meter. nn-Meter employs 
two core components to realize accurate 
latency prediction for a DNN model: Kernel 
Detection and Adaptive Data Sampling. 
Conceptually, the former automatically 
divides the target model into a set of 
kernels, and the latter samples the most 
beneficial configurations from a large 
space to build accurate kernel-level latency 
predictors. For each kernel of a given 
model, we extract the features and predict 
its latency. Then, nn-Meter sums up all the 
predicted kernel latencies as the whole-
model latency.

KERNEL DETECTION
Challenges
The first challenge of nn-Meter is how to 
split a model into a proper set of kernels 
on various edge devices. Due to the diverse 
runtime optimizations, the executed kernels 
are varying on different devices. For example, 
the Conv+add is a fused kernel on a mobile 
GPU, but not on a mobile CPU or Intel VPU. 
Furthermore, many inference frameworks 
are not open-sourced. Even for the open-
sourced ones, it requires runtime expertise  
to determine the kernels.

To address this challenge, nn-Meter 
employs a kernel detector that automatically 
detects the possible kernels on various 
edge devices in a black-box matter. We 
design a set of test cases to detect whether 
two operators can be fused or not. A DFS 

accurately predict the latency of arbitrary 
DNN models on diverse edge devices. The 
key idea of nn-Meter is dividing a whole 
model inference into multiple kernels that 
are independent execution units of the 
model inference on a device. A kernel may 
be either a single primitive operator or a 
fusion of multiple operators, depending 
on the runtime and hardware. nn-Meter 
builds latency predictors for kernels and 
predicts the total latency of a model by the 
latency sum of all kernels of the model. 
We implement and evaluate nn-Meter on 
four popular platforms of edge devices: 
mobile CPU, mobile Adreno640 GPU, 
mobile Adreno630 GPU and Intel VPU 
(a representative AI accelerator for edge 
devices). Significantly, nn-Meter achieves 
a prediction accuracy of 99.0%, 99.1%, 
99.0%, 83.4% on the CPU, Adreno640 GPU, 
Adreno630 GPU and VPU, respectively.

In this article, we first introduce the 
high-level system design of nn-Meter, then 
we present our two key components: kernel 
detection and adaptive data sampling. 
Finally, we report the evaluation results to 
demonstrate the effectiveness of nn-Meter. 

nn-METER DESIGN
One key design choice of nn-Meter for high 
prediction accuracy is to conduct kernel-
level prediction. This design choice is based 
on two observations. First, kernel is the 
basic scheduling and execution unit (e.g., 
GPU kernels) in deep-learning frameworks, 
particularly on edge devices. Thus, the 
notion of kernel naturally captures the 
diverse runtime optimizations including 
operator fusion, the most important 
optimization that can largely impact the 
latency. Second, despite a very large number 

FIGURE 1. System architecture of nn-Meter. It offline detects fusion rules and builds  
machine learning predictors of kernels.
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multi-outbound and multi-inbound, which 
are the targets of the fusion rules. 

Based on the analysis above, for operator 
type, our test cases include the single in/
outbound connection permutation of 
every two possible operators, to detect 
whether they can be fused. Then, the fusible 
operators are selected to compose multi-in/
outbound connections to detect the rules  
for different connections. 

The inference latency difference of 
connected and separated operators is used  
as the metric to judge whether fusion 
happens. That is, for a single in/outbound 
connection (op1, op2), if the time of 
operators follows the formula Top1 + Top2 
 – T(op1,op2) > a*min(Top1, Top2), they 
are regarded as being fused as op1+op2. 
In the formula, Top1 and T(op1,op2) are 
the measured time of op1 and (op1, op2) 
connection respectively. α is the empirical 
coefficient as a threshold.

Find All Kernels of a Model. With the 
detected fusion rules, for a model graph, 
nn-Meter recursively applies the rules to 
the graph to find all the constituent kernels 
(i.e., fused operators). For example, with 
matching the fusion rules on mobile GPU, 
nn-Meter divides a ResNet18 subgraph into 
three different kernels in Figure 2.

LATENCY PREDICTOR
Challenges
By applying the kernel detection to the target 
model, we get a set of kernels. The next 
step is to build latency predictors for these 
kernels. However, it is non-trivial to build 
accurate kernel predictors. The kernels show 
non-linearity between latency and prediction 
features (shown in Figure 3). Moreover, the 
multiple configurable dimensions of kernels 
lead to a huge possible sampling space for 
the latency prediction. For instance, Conv 
kernels usually have a 6-dimension of 
configuration parameters: input height H,  
input width W, kernel size K, stride S, input  
channel number Cin, and output channel 
Cout. The size of the sample space is the  
multiplication of the size of every dimension  
and can easily reach billions. Sampling the 
whole space to get labeled training data is 
infeasible. Thus, how to do efficient sampling 
while ensuing high prediction accuracy 
remains a big challenge.

To reduce the data sampling cost, 
nn-Meter uses an adaptive data sampling 
algorithm that leverages both the model 
design and hardware latency characteristics. 

(Depth-first search) rule matching algorithm 
is designed to search for the maximum 
fusion unit (i.e., kernel) in a model.

Test Case Design. Our test case design 
is driven by two features of a NN model, 
which can impact the fusion rules on target 
devices, i.e., operator type and operator 
connection. Operator type can impact 
fusion rules because the fusion of different 
operators requires different implementation 
efforts. For example, the code of injective 
operators can be easily connected (and 
thus fused) to the code of other operators 
compared to that of non-injective operators. 
Operator connection also impacts fusion 
rules. This is because improper fusion may 
not only cause additional time cost, but 
also cyclic operator dependency. Although 
the model graphs are arbitrary, they are 
all composed of three basic operator 
connection types, i.e., single in/outbound, 

FIGURE 2. A kernel search example on a subgraph of ResNet18 model.  
The found kernels are maxpool, Conv+bn+relu, Conv+bn+add+relu.

WE PROPOSE  
nn-METER… 
TO PREDICT THE  
DNN INFERENCE 
LATENCY ON DIVERSE 
EDGE DEVICES

FIGURE 3. Latency of Conv+bn+relu with different output channel number Cout. The groundtruth 
exhibits a staircase pattern on GPU and VPU. Random sampling misses many hardware-crucial data.  
(HW=112, Cin =32,  K=3, S=1)
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It firstly prunes the kernel configurations 
that are rarely considered in DNN models. 
Then, an iterative sampling process is 
executed to automatically detect the most 
beneficial configurations to sample, instead 
of random selection. Finally, we build 
machine-learning regressors to learn the 
non-linearity with the sampled data.

Adaptive Data Sampling. We now describe 
the main steps of the adaptive data sampling 
algorithm in Figure 4. First, to generate 
sufficient configurations that are likely to 
be considered in NN design, we sample 
by a prior possibility distribution, which 
is calculated with kernel configurations 
in existing CNN models. The distribution 
describes the boundary and the possibility 
of each data (i.e., kernel configuration) 
to sample. Through sampling from the 
distribution, we can prune lots of rarely 
considered configurations. 

Then, we run an iterative process to 
sample more data around inaccurate 
prediction data. Since large errors usually 
indicate that prediction model requires more 
information around them, we treat them as 
the hardware-crucial data and perform more 
fine-grained sampling. At each iteration, we 
first collect all the available data to update 
the machine learning predictor. We adapt the 
Random Forests Regression as the predictor 
model, which can learn the non-linearity. 
Then, we use the predictor to evaluate each 
data in the test set and pick out those with 
large errors. We further conduct fine-
grained sampling around them. Specifically, 
we leverage our observation in Figure 3 to 
sample more data in the channel number C 
dimension. For each data, we fix all the other 
dimensions except the channel number C. 
We randomly sample M data from [0.4 × 
C, 1.2 × C]. The iterative process continues 
until the predictor accuracy meets the user’s 
requirements.

Finally, we collect all the sampled data to 
build the predictors for kernels. For a given 
model, we sum up all the kernels’ predicted 
latencies as the model latency.

EVALUATION 
Benchmark dataset collection. To evaluate  
the effectiveness of nn-Meter on an arbitrary 
DNN model, we need a representative data-
set that covers a large prediction scope. First, 
we collect 12 state-of-the-art CNN models 
on the ImageNet2012. For each model, we 
generate 2,000 variants by re-sampling the 
output channel number and kernel size for 
each layer. Besides, we add 2,000 models with 
the highest test accuracy on CIFAR10 from 
the NASBench201, where each model has a 
different set of edge connections. In total, our 
dataset contains 26,000 models.

End-to-end prediction results. We evaluate 
nn-Meter on the benchmark dataset for 4 
types of devices in Table 1. We predict the 
latency of 26,000 models on each evaluated 
device. We report the ±10% accuracy [7], that 
are the percentage of models with predicted 
latency within the corresponding error bound 
relative to the measured latency. Remarkably, 
we achieve 99.0%, 99.0% and 99.1% prediction 

accuracy on the CPU, Adreno630 and 
Adreno640 GPU, respectively. On the Intel 
VPU, we can predict 83.4% models within the 
±10% error boundary. With detailed manual 
analysis, we found that VPU performs ad-hoc 
optimizations that merges the computation 
of Conv+bn+relu and the next maxpool 
layer in VGG models. Fortunately, these  
ad-hoc optimizations are rare, and their 
impact on prediction accuracy is limited.

Comparison with baselines on unseen 
models. In real-world scenarios, a usable 
predictor must be able to predict unseen 
models (i.e., a new model). nn-Meter 
requires no model-level data for building 
the predictors and can make predictions on 
models it has not seen before. To demon- 
strate it, we implement 3 baselines for 
comparison: (1) FLOPs, (2) FLOPs+MAC, 
(3) BRP-NAS. Baselines (1) and (2) are the 
widely used latency predictors. Baseline (3) 
is the latency predictor in BRP-NAS, one 
of the state-of-the-art model-graph based 
prediction by GCN on the NASBench201 
dataset. Since the three baselines require 
model-level information, we design a 
k-fold cross-validation experiment for 
evaluation. 

Figure 5 shows the prediction accuracy 
achieved by different predictors. Compared 
with the baselines, nn-Meter is the only 
approach that consistently achieves accurate 
predictions on various devices. None of 
the baselines can achieve comparable 
performance for unseen models on any 
device. Specifically, on average, nn-Meter 
achieves 89.2% accuracy, significantly better 
than FLOPs (22.1%), FLOPs+MAC (17.1%), 
and BRP-NAS (8.5%) on the three devices.

FIGURE 4. The adaptive data sampling algorithm.

Device Processor Framework Accuracy

Pixel 4  CortexA76 CPU TFLite v2.1 99.0%

Pixel 3XL Adreno630 GPU TFLite v2.1 99.0%

Mi9 Adreno640 GPU TFLite v2.1 99.1%

Intel NCS2 Myriad VPU Openvino 2019R2 83.4%

TABLE 1. End-to-end latency prediction for 26,000 models on mobile CPU, GPU and Intel VPU.
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CONCLUSION 
We propose nn-Meter, a kernel-based 
prediction system that accurately predicts 
the latency of DNN models on diverse edge 
devices. nn-Meter introduces kernel detection 
that captures the various operator-fusion 
behaviors. By sampling the most beneficial 
data, nn-Meter efficiently builds latency 
predictors for kernels. We demonstrate the 
effectiveness of nn-Meter with experiments on 
a large dataset and four types of edge devices.

While we have obtained promising results 
of nn-Meter on the three platforms, it requires 
joint efforts across the community to apply  
nn-Meter onto many other types of edge devices. 
To this end, we open-source1 our code for other 
researchers and developers to build latency 
predictors for their own devices. Collectively,  
we expect that the community can work 
together to realize accurate latency prediction 
of DNN models for a variety of edge devices. n
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FIGURE 5. Compared to the baselines, nn-Meter achieves much higher accuracy on unseen models.

(a) Mobile CPU (b) Adreno640 GPU (c) Intel VPU
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