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In this document we provide an overview of the optimization tools that have been central
in our research.

1 Integer Programming

Integer Programming (IP) is one of the most important tools in optimization whose impact
spans a variety of applications, such as train scheduling in Europe, planning the MLB season
in the U.S., and numerous supply-chain optimizations.

Our research provides fundamental understanding of the main algorithmic components in-
volved in solving IPs, such as branching [27, 28] and cutting planes [7, 20, 16, 21, 8, 25, 11, 29,
32, 31, 9, 13, 33, 14, 12], which are crucial for enhancing the solution of complex and large scale
problems. In particular, we recently showed that Branch-and-Bound (the standard algorithm
for solving Integer Programs) solves random knapsack problems in polynomial time [26]. Sur-
prisingly, although the Branch-and-Bound algorithm has been widely applied in practice over
several decades, this is the first theoretical proof of its effectiveness. See [54, 15, 30, 10] for our
additional theoretical work in this area.

Based on our deep understanding of IP, our group is also conducting research on accelerating
IP methods using Machine Learning (ML). As an example, we are currently exploring the use
of ML for speeding up the sequential solution of related Integer Programming instances, e.g.,
where the input data does not differ by much across instances.

2 Stochastic Optimization

In many applications, there is inherent uncertainty, e.g., about future demands, prices, etc.,
which needs to be taken into account for appropriate decision-making. Multi-stage stochastic
optimization is one important tool for tackling such problems, especially when there is some
a-priori knowledge about the distribution of uncertain elements. Unfortunately, off-the-shelf
stochastic optimization solutions suffer from the curse of dimensionality and cannot handle
larger problem instances.

In our research, we develop new and more tractable ways of incorporating uncertainty, as
well as new computational methods for handling stochastic problems at scale. Some examples
are:

� By exploiting theoretical properties of the problem, we are able to perform end-to-end
optimization of server deployment at Microsoft datacenters, taking into account fine-
grained practical constraints, as well as multiple risk measures [40].

� We propose a new lightweight method based on simulating future realizations of uncer-
tainty. Not only do we provide theoretical support for this method, but we have also suc-
cessfully employed it in production for optimizing infrastructure placement at Microsoft
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datacenters; this is expected to reduce stranded power across Microsoft datacenters, which
would translate into annual savings of hundreds of million dollars [24].

3 ML-Augmented Optimization

Machine Learning-based predictions have become an important component in decision-making.
However, in many real scenarios, the predictions are fairly noisy. One fundamental research
question here is how to judiciously utilize noisy predictions and obtain outcomes that are better
than ignoring them. In our research, we design provably robust algorithms that incorporate
noisy predictions. Our work in this area has led to novel VM allocation algorithms which
utilize VM lifetime information and lead to higher packing efficiency [17, 6]. We are working
on deploying these algorithms within Azure’s VM allocator.

4 Online Algorithms

Solving complex problems under uncertainty often requires designing strategies that perform
provably well even without predictions. Online algorithms target sequential decisions under
such conditions.

Our research on online algorithms includes foundational theoretical aspects, where we ob-
tained state-of-the-art results for some of the most classical problems in the area (e.g., Load-
Balancing and Online Resource Allocation [35, 34, 39]). An important general direction herein
is designing “best-of-both-worlds” algorithms, which automatically adapt to the uncertainty
nature of the problem, while performing significantly better than worst-case guarantees when-
ever the uncertainty is more “benign”. We obtained several state-of-the art result in this
area [47, 38, 48, 1].

Another large body of our work studies fundamental resource allocation problems that arise
in different cloud settings, including big-data analytics systems [36, 41, 19, 3], database-as-a-
service [46, 51], VM allocation [17], WAN routing [37], systems for ML [5] and cloud security
[4]. See [50, 34, 18, 49, 2, 52, 44] for some of our additional work in this area.

5 Large-scale Heuristics

Due to the scale of some real-life problems, their large solution space precludes the use of classic
optimization techniques such as Integer Programming. In our research, we design novel large-
scale heuristics to tackle such problems. As an example, we designed a hybrid approach that
uses Adaptive Large Neighborhood Search augmented with Linear Programming to optimize
large food-service operations [43]. We have also developed similar techniques for performing
multi-itinerary optimization [22, 23], which are currently used in production as part of Bing
Maps APIs. We also designed large-scale optimizers for Dynamics’365 Field and Retail offerings,
where we combine LP solvers and our own combinatorial methods for trimming the huge search
space.

6 Optimization via ML

Traditionally, Machine Learning has been largely applied to provide and refine the input for
optimization models, which are then responsible for making decisions, an approach referred to
as predict-then-optimize.
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However, motivated by the advances in ML’s scope and scale, our group has been researching
the possibility of using ML directly for performing end-to-end decision-making, bypassing the
need for separate ML and optimization components. This may lead to improved solution quality
given the more direct coupling between data and decisions. As an example, in recent work [53]
we apply stochastic gradient descent to solve a WAN routing problem with demand uncertainty.
We prove the asymptotic optimality of our scheme, and show empirically that it outperforms
the current state-of-the-art (which relies on a predict-then-optimize), in both accuracy and
execution time.

We have also been examining, both theoretically and empirically, the use of other direct
schemes for resource management, including deep RL [42, 55] and bandits [45]. Finally, in
on-going work, we are investigating how GNNs and LLMs can be used to solve challenging
combinatorial problems.
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