
CoWrangler: Recommender System for Data-Wrangling Scripts
Bhavya Chopra, Anna Fariha, Sumit Gulwani, Austin Z. Henley, Daniel Perelman, Mohammad Raza,

Sherry Shi, Danny Simmons, Ashish Tiwari

Microsoft

{t-bhchopra,annafariha,sumitg,austinhenley,danpere,moraza,shersh,dsimmons,astiwar}@microsoft.com

ABSTRACT

WepresentCoWrangler, a real-time data-wrangling recommender

system, that can recommend the next-best data-wrangling opera-

tions along with the corresponding human-readable and efficient

code snippets to expedite data exploration and wrangling efforts.

A key feature of CoWrangler is that it provides explanations for

the generated suggestions in the form of data insights, allowing the

user to place confidence in the system. Under the hood, CoWran-

gler relies on intelligent generation of candidate suggestions using

program synthesis techniques and ranking of a set of suggestions

based on the notion of data quality improvement. We demonstrate

how CoWrangler provides a human-in-the-loop data-wrangling

experience, and helps users make informed data pre-processing

decisions, while saving their time and effort.

1 INTRODUCTION

Real-world data is often riddled with data quality issues, such as

missing values, inconsistent/poor formatting, and duplicate entries.

Data wrangling is an iterative process that involves data preparation

for analysis by imputing missing values, performing appropriate

typecasting and encoding, extracting features, removing duplicates,

and so on. Data scientists spend up to 80% of their time in data

extraction and preparation—continuously assessing and improving

data quality by applying and validating chains of transformations—

making wrangling a tedious and error-prone process [7].

Several libraries and interface designs allow effective data explo-

ration and wrangling. However, the onus of writing correct code

and learning specific tools still lies with the data scientist. With the

advent of big data, organizations strive to be data-driven, and data

analysis often needs to be performed by low-code or no-code users

to propel business decisions. Several industry products enable vi-

sual data preparation with pre-built transformations and wrangling

suggestions. However, the capabilities of such tools are limited due

to the lack of human-readable code, which is essential to customize

transformations, gain visibility, and replicate results across runs.

Example 1.1. Consider a 911 emergency calls dataset (Fig. 2),

where the attribute desc describes call information—address, town-

ship, station, and timestamp—separated by semicolon (;). Liam, a

data scientist wants to perform temporal analysis to identify rea-

sons for emergency calls at different times of the day, month, and

year. To prepare the data for analysis, Liam tries to split desc using
semicolon as the delimiter using Python (pandas).

He believed he knew how to split a string column, but it takes 4

tries and a web search for Liam to find the correct API and parame-

ters. Next, he casts the derived attribute timestamp to DateTime

format, and subsequently derives attributes: day, month, and hour.
Liam now checks for missing values and realizes that missing val-

ues in the derived attribute station must be imputed with the

+

+

Figure 1: Snapshot of code authored by Liam. CoWrangler can

automate generation of the code marked by , and eliminate the

need for code marked by . CoWrangler adopts a human-in-the-

loop approach for custom operations marked by and .

string “Not Available”. Fig. 1 displays a snapshot of the 11 lines
of wrangling code authored by Liam in 38 minutes. □

Building a tool to ease and accelerate the task of data preparation

is challenging. First, the tool needs to generate human-readable and

efficient code because the user would want to read, understand, and

edit the code to achieve the intended transformation in their desired

development environment. Moreover, readable code promotes trust

and transparency in the tool’s working. While it is often possible to

generate working code, it is challenging to generate code that the

user would have preferred writing themselves. Second, the space

of all possible code snippets is enormous. For instance, the pandas

library has a wide breadth of an order of 100 methods, where each

method has an order of 10 arguments. Data scientists (as seen in

Example 1.1) find it increasingly difficult to recall the correct API

method and its relevant arguments. Machines find it difficult to

search the space of all possible programs to find the one the user

may want [1]. Finally, there are often many valid data wrangling

steps that can be presented as recommendations to expedite the

wrangling process, and it is challenging to pick the most relevant

snippets to show.

Related Work. Visual data preparation services like Mito
1
, Bam-

boolib
2
and Databricks

3
fit in data scientists’ workflows to aid data

exploration andwrangling. Commercial tools, such as Google Cloud

DataPrep (Trifacta)
4
, AWS Glue DataBrew

5
, and Einstein Discov-

ery
6
, and other work [4, 6], attempt to alleviate data wrangling

1
trymito.io

2
bamboolib.8080labs.com

3
databricks.com/product/data-lakehouse

4
docs.trifacta.com/display/SS/Overview+of+Predictive+Transformation

5
docs.aws.amazon.com/databrew/latest/dg/

6
help.salesforce.com/s/articleView?id=sf.bi_edd_prep_terminology.htm

https://trymito.io/
https://bamboolib.8080labs.com/
https://www.databricks.com/product/data-lakehouse
https://docs.trifacta.com/display/SS/Overview+of+Predictive+Transformation
https://docs.aws.amazon.com/databrew/latest/dg/
https://help.salesforce.com/s/articleView?id=sf.bi_edd_prep_terminology.htm

barriers with visual data preparation interfaces, and automated

recommendations. These tools enable professionals and as low-

code users (e.g., users in management roles) to prepare data for

analysis. However, due to the absence of code (no-code) for the

applied wrangling steps, these tools prevent data scientists from

(1) customizing suggested transformations and their parameters and

authoring custom code, which is necessary to achieve the desired

transformation, (2) trusting suggestions as there is no explanation

(transparency) towards why (how) the suggestion is proposed (ex-

ecuted), and (3) saving/replicating interleaved workflows in their

desired development environment. Data scientists commonly use

languages such as Python, R, and SQL to author wrangling code,

making it difficult for no-code suggestions to match their complete

intent.

The need to accelerate data wrangling is also illustrated by code-

first recommendations for varied transformations, such as data re-

shaping (join, pivot, unpivot), extraction, and error detection [9]. Re-

cent work attempts to capture the user’s intent in natural language

(NL) to synthesize code using large language models (LLMs) [5].

However, to provide NL prompts, the user must know the exact

wrangling steps and must have sufficient knowledge of the data at

hand, which requires additional effort.

These limitations motivate the development of CoWrangler, a

tool that aims to leverage the best of the three dimensions identified

in prior work: (1) visual data preparation interfaces, (2) automated

wrangling suggestions, and (3) code-first paradigm. CoWrangler

presents meaningful and most-relevant wrangling suggestions with

explanations, that not only automate, but also inform the wrangling

process with a human-in-the-loop approach.

They key properties of CoWrangler are: (1) it exploits the user’s

data context to automatically generate data-wrangling suggestions

using predictive program synthesis, along with explanations, (2) it

is a visual and code-first tool that generates human-readable and

efficient code for each wrangling suggestion, and (3) it ranks sugges-

tions based on the principle that the wrangling step that improves

the data quality more is more desirable. Consequently, CoWran-

gler provides users flexibility to use the suggested code as is or

edit the suggested code to customize it.

2 SOLUTION SKETCH

CoWrangler generates wrangling suggestions for the user based

on the data in their working set. We assume we have access to (a

sample of) the dataset. We internally learn programs in a domain-

specific language (DSL). Each program transforms tables (2D data

grid) into new tables. Unlike program synthesis by example where

users provide example output [2], we synthesize suggestions just

based on the input table (without any user prompt), which is called

predictive program synthesis [8]. The synthesized programs are inter-

nally executed over the input table, and then ranked based on their

capability to improve the quality of the output table. Top-ranked

programs are then translated to the user’s target programming

language and suggested as next possible wrangling steps.

2.1 Suggestion DSL

The suggestion DSL currently consists of a few popular data wran-

gling operators. However,CoWrangler is designed to be extensible

and the DSL can be extended with new operators modularly. We

analyzed 730 Python (Jupyter) notebooks from Kaggle to identify

and include the most frequently occurring operators in the first

version of CoWrangler:

(1) Drop column: This DSL operator indicates which columns to

drop and the reason for dropping those columns; e.g., the column

is (mostly) empty, has some constant value throughout, is a

duplicate of another column, or is an index column that doesn’t

contribute to certain tasks.

(2) Drop row: This operator indicates whether to drop certain rows

and the reasons. Two possible reasons are: the row is mostly

empty, or it is a duplicate of another row.

(3) Fill missing values: This operator indicates the column with

missing values, the markers for the missing values (e.g., NaN),

and a replacement value (e.g., -1) or a mechanism to use to

impute the missing values (e.g., mean, mode, or median).

(4) Encoding: The encoding operator indicates the column that can

be either label-encoded or one-hot encoded.

(5) Split: This operator indicates the column whose string values

can be split to create multiple new columns.

(6) Type cast: This operator indicates that the data in the identified

column can be cast to the identified data type (datetime, integer,

float, boolean, or categorical).

We focus on the above operators in this demonstration; however,

we envision adding many more to CoWrangler.

2.2 Predictive Synthesis of Suggestions

Given an input table, the synthesis problem is to generate programs

in the above DSL that denote meaningful data-wrangling steps,

which can be applied on the input table. We solve this synthesis

problem by creating separate individual learners for each of the

top-level DSL operators described above. Each learner analyzes the

input table and determines if the corresponding operation can be

applied to the input table, and if so, it determines the best values for

the various arguments of that operator. We finally collect programs

learned by individual learners and rank them.

Certain individual learners are simple. For example, the drop row

(or drop column) learner detects if the input table contains rows

(columns) that are duplicates of another row (column). It similarly

checks if the input table has mostly empty rows (columns). If either

is true, then it generates the corresponding DSL program. We also

have some complex learners. The “type-cast learner”, for example,

finds all possible types that are consistent with values in a column

and then uses complex logic to disambiguate and pick a fixed type

for that column. The “split learner” analyzes the strings in a column

to find delimiting characters or strings that can be used to generate

consistent splits across all column values [8].

2.3 Ranking using Data Quality Metric

Given a set of possible data wrangling operations that are learned in

the above step, we next rank them to identify the most relevant op-

erations to surface to the user. We rank by assigning a score to each

operation. This score measures the improvement in terms of data
quality of the output table obtained by applying that operation over

the input table. When computing data quality, we penalize missing

values and redundancy, while giving credit for uniformity in the

2

form of data. Thus, data quality is high if the concrete data has high

entropy (less redundancy), but its abstraction (as patterns or types)

has low entropy (uniformity). While we use a certain data-quality

metric in this work, this is a pluggable unit and CoWrangler can

work with any user-defined notion of data-quality.

2.4 Translation

The top-ranked DSL programs are finally translated to a user-

specified target language. Here we focus on Python (pandas), but

CoWrangler can support translations to other languages such as

pyspark and Power Query M. The translation generates the most

performant code (using vector APIs wherever possible) and using

comments and meaningful variables to improve code readability.

2.5 Preliminary Evaluation

We performed an initial evaluation over 730 notebooks obtained

from Kaggle, consisting of 2248 transformations using pandas APIs.
We found CoWrangler’s DSL vocabulary supports 33% (742 of
2248) transformations and CoWrangler’s suggestions accurately

predict 53.4% (396 of 742) of the supported transformations.

3 DEMONSTRATION

We will demonstrate CoWrangler on a real-world dataset of emer-

gency 911 calls from Montgomery County, Pennsylvania
7
. It con-

tains several attributes including latitude, longitude, desc (con-
taining address, township, station, and timestamp of the call), zip,
title, and emergency. Fig. 3 displays CoWrangler’s user inter-

face. Here, the user wants to pre-process the dataset to identify

associations between variables, such as: reason of emergency, lo-

cation, time, day of the week, and so on. Fig. 2 shows the user’s

data wrangling journey with CoWrangler. Below we describe the

demonstration scenario based on Fig. 3:

• Uploading the data: The user first uploads a subset of the emer-

gency 911 calls dataset A○, over which CoWrangler will generate

wrangling suggestions.

• View wrangling suggestions: Once the data is loaded B○,

CoWrangler displays wrangling suggestions in natural language

C○. CoWrangler generates 4 different types of suggestions: (1)

& (2) split column using delimiter, (3) drop column, (4) fill miss-

ing values, and (5) label-encode. Upon observing the suggestions

and their explanations, the user immediately identifies important

characteristics of the data: (1) missing values in zip, (2) categorical
nature of title, (3) common pattern across desc and title, and
(4) emergency being a constant valued column. This provides data

insights and a quick and informed assessment of suggestions, along

with identification of other actionable wrangling steps.

• Select and preview a suggestion: The user finds the first sug-

gestion, Split title using delimiter colon (:), relevant for feature

extraction and selects it. CoWrangler then generates code in the

selected language (Python pandas) D○ and presents a preview of the

two new derived columns (title1 and title2) denoted in green

E○. Before accepting the suggestion provided by CoWrangler,

the user inspects the generated code and to-be-transformed data

preview to validate the suggested transformation.

7
https://www.kaggle.com/datasets/mchirico/montcoalert

Add text

[8B] Fill Missing
Values in station

(with mode)

[9B] Fill Missing
Values in station

(with mode)

Emergency 911 Calls Dataset

lat long desc zip title emergency

40.29

40.12

40.10

-75.58

-75.35

-75.29

REINDEER CT & DEAD END; NEW HANOVER;
Station 332; 2015-12-10 @ 17:10:52

HAWS AVE; NORRISTOWN; Station STA27;
2015-12-10 @ 14:39:21

BLUEROUTE & RAMP I476 NB TO CHEMICAL
RD; PLYMOUTH; ; 2015-12-10 @ 17:35:41

19525

19401

19462

EMS: BACK PAINS/
INJURY

Fire: GAS-ODOR/LEAK

Traffic: VEHICLE
ACCIDENT

1

1

1

[1A] Split title
using delimiter

colon (:)

 Rename columns

i. title1 -> department

ii. title2 -> reason

 Rename columns

i. desc1 -> address

ii. desc2 -> township

iii. desc3 -> station

iv. desc4 ->timestamp

[3C] Label-encode
department

[1B] Split desc
using delimiter
semicolon (;)

[4A] Split desc
using delimiter
semicolon (;)

[6A] Change data
type of timestamp

(string->DateTime)

 Custom encoding

for month

{1 -> Jan, 2 -> Feb, ... }

[1C] Drop
emergency

[5C] Fill Missing
Values in desc3

(with mode)

[2B] Drop
emergency

[2A] Split desc
using delimiter
semicolon (;)

[2C] Label-encode
title1

[3B] Drop
emergency

[3A] Split desc
using delimiter
semicolon (;)

[4B] Drop
emergency

[5A] Change data
type of desc4
(string->DateTime)

[5B] Drop
emergency

[6B] Drop
emergency

[7A] Drop
emergency

[8A] Drop
emergency

 Derive from

timestamp by example:

 i. date

 ii. month

 iii. hour

Due to const value: 1

Due to const value: 1

Due to const value: 1

Due to const value: 1

Due to const value: 1

Due to const value: 1

Due to const value: 1

Due to const value: 1

[9A] Drop
emergency

Due to const value: 1

 CoWrangler SuggestionsHITL Wrangling

[6C] Fill Missing
Values in station

(with mode)

[7B] Fill Missing
Values in station

(with mode)

Modify suggestion: Fill
Missing Values in station

(with “Not Available”)

+

[10A] Drop
emergency

Due to const value: 1

[11A] Drop
emergency

Due to const value: 1

Legend

User flow

User performs custom operation

User derives column(s) by example
(Flash Fill)

+
User modifies a suggestion

1

2

3

4

5

6

7

8

9

10

11

3 unique values

3 unique values

36% missing values

36% missing values

36% missing values

36% missing values

36% missing values

Figure 2: A user’s 11 step journeywithCoWrangler to prepare their

dataset for visualization tasks. Arrows indicate the user flow, with

the applied transformations highlighted in blue. For each step, the

first column shows HITL actions (if any), while the second column

shows an ordered list (from left to right) of CoWrangler sugges-

tions in each row.

• Accept a suggestion: Once convinced, the user clicks ‘Apply’

to accept the suggested transformation, which then reflects in the

‘Applied Transformations’ pane F○. CoWrangler then refreshes

the data preview B○ and the suggestions pane C○ (not visible in

Fig. 3), populating it with suggestions for the updated data.

3

https://www.kaggle.com/datasets/mchirico/montcoalert

A

B

E

G
C

F D

Figure 3: Demonstrating CoWrangler: (A) Upload reference data; (B) 911 calls data is loaded into the data preview panel; (C) CoWrangler

populates the suggestions pane with wrangling suggestions. The user selects the first suggestion, highlighted in blue; (D) Human-readable

pandas code appears in the ‘Generated Code’ panel; (E) Data preview panel highlights changes that will be made if the suggestion is accepted;

(F) Wrangling history is tracked in the ‘Applied Transformations’ panel; (G) Export the resulting CSV file and code after wrangling.

•Human-in-the-loopwrangling: The user nowwants to rename

the newly derived columns: title1 to department, and title2 to

reason. To achieve this, the user selects ‘Click here to add custom

operation’ from the suggestions pane C○ and writes the desired

code using the pandas rename API in the code editor D○. The user

then applies their custom operation to the dataset, which gets

appended to the ‘Applied Transformations’ pane F○.

Users can collaboratewithCoWrangler in three differentmodes

to customize wrangling transformations as desired (Fig. 2): (1) edit-

ing the generated code while previewing (steps 9–10), (2) expressing

intent by providing examples with Flash Fill [3] (step 7), and (3) au-

thoring code from scratch (steps 2, 5, and 8).

• Select and preview subsequent suggestion:When the data

preview and suggestions get refreshed B○& C○, a new suggestion—

Label-encode department (REASON: contains 3 unique values)—
appears and the user selects this suggestion. They validate the

transformation by previewing the data and generated code.

• Accept subsequent suggestion: The user accepts the label-

encode suggestion, which is appended to the ‘Applied Transforma-

tions’ pane F○. CoWrangler again refreshes the data preview B○
and wrangling suggestions C○ and the above processes go on.

• Export generated code and wrangled data: Once the user has

made the desired transformations, they can export the transformed

data to a CSV file and export the code to a notebook G○.

Demonstration engagement. Following our demonstration, partic-

ipants can load their own datasets into CoWrangler to receive

automated wrangling suggestions depending on their data context.

They can then preview the effects of different suggestions and make

modifications to the generated code to fullfil their requirements.

4 CONCLUSIONS AND FUTUREWORK

This demonstration is our attempt to inform and accelerate the data

wrangling process by (1) recommending the most meaningful wran-

gling transformations with explanations in real-time, (2) generating

human-readable and efficient wrangling code, and (3) enabling flex-

ibility with human-in-the-loop interactions for intent expression.

In future, we aim to extend CoWrangler’s vocabulary to increase

the coverage of suggestions, and add capabilities to understand data

semantics for more contextualized and smarter suggestions.

REFERENCES

[1] R Bavishi, C Lemieux, R Fox, K Sen, and I Stoica. 2019. AutoPandas: Neural-Backed

Generators for Program Synthesis. Proc. ACM Program. Lang. OOPSLA, Article
168 (oct 2019), 27 pages.

[2] A Fariha and A Meliou. 2019. Example-Driven Query Intent Discovery: Abductive

Reasoning using Semantic Similarity. PVLDB 12, 11 (2019), 1262–1275.

[3] S Gulwani. 2011. Automating string processing in spreadsheets using input-output

examples. In POPL. 317–330.
[4] P J Guo, S Kandel, J Hellerstein, and J Heer. 2011. Proactive Wrangling: Mixed-

Initiative End-User Programming of Data Transformation Scripts. In UIST. 65–74.
[5] N Jain, S Vaidyanath, A Iyer, N Natarajan, S Parthasarathy, S Rajamani, and R

Sharma. 2022. Jigsaw: Large Language Models Meet Program Synthesis. In ICSE.
1219–1231.

[6] S Kandel, A Paepcke, J Hellerstein, and J Heer. 2011. Wrangler: Interactive Visual

Specification of Data Transformation Scripts. In CHI. 3363–3372.
[7] G Press. 2016. Cleaning Big Data. https://www.forbes.com/sites/gilpress/2016/

03/23/data-preparation-most-time-consuming-least-enjoyable-data-science-

task-survey-says/

[8] M Raza and S Gulwani. 2017. Automated data extraction using predictive program

synthesis. In AAAI, Vol. 31.
[9] C Yan and Y He. 2020. Auto-Suggest: Learning-to-Recommend Data Preparation

Steps Using Data Science Notebooks. In SIGMOD. 1539–1554.

4

https://www.forbes.com/sites/gilpress/2016/03/23/data-preparation-most-time-consuming-least-enjoyable-data-science-task-survey-says/
https://www.forbes.com/sites/gilpress/2016/03/23/data-preparation-most-time-consuming-least-enjoyable-data-science-task-survey-says/
https://www.forbes.com/sites/gilpress/2016/03/23/data-preparation-most-time-consuming-least-enjoyable-data-science-task-survey-says/

	Abstract
	1 Introduction
	2 Solution Sketch
	2.1 Suggestion DSL
	2.2 Predictive Synthesis of Suggestions
	2.3 Ranking using Data Quality Metric
	2.4 Translation
	2.5 Preliminary Evaluation

	3 Demonstration
	4 Conclusions and Future Work
	References

