
Make Your Tools Sparkle with Trust:
The PICSE Framework for Trust in Software Tools

Brittany Johnson
George Mason University

Virginia, USA
johnsonb@gmu.edu

Christian Bird
Microsoft Research
Washington, USA

cbird@microsoft.com

Denae Ford
Microsoft Research
Washington, USA

denae@microsoft.com

Nicole Forsgren
Microsoft Research
Washington, USA

niforsgr@microsoft.com

Thomas Zimmermann
Microsoft Research
Washington, USA

tzimmer@microsoft.com

Abstract—The day to day of a software engineer involves a
variety of tasks. While many of these tasks are collaborative
and completed as such, it is not always possible or feasible to
engage with other engineers for task completion. Software tools,
such as code generators and static analysis tools, aim to fill this
gap by providing additional support for developers to effectively
complete their tasks. With a steady stream of new tools that
emerging to support software engineers, including a new breed
of tools that rely on artificial intelligence, there are important
questions we should aim to answer regarding the trust engineers
can, and should, put into their software tools and what it means
to build a trustworthy tool. In this paper, we present findings
from an industry interview study conducted with 18 engineers
across and external to the Microsoft organization. Based on these
interviews, we introduce the PICSE (pronounced “pixie”) frame-
work for trust in software tools to provide preliminary insights
into factors that influence engineer trust in their software tools.
We also discuss how the PICSE framework can be considered
and applied in practice for designing and developing trustworthy
software tools.

Index Terms—trust, software tools, artificial intelligence,
framework

I. INTRODUCTION

Engineers rely on tools to support the completion of their
day to day tasks, as evidenced by the rapid and consistent
increase in available tooling. In fact, the software engineering
research community has long encouraged and celebrated new
techniques that can help engineers solve new problems or old
problems better than before (hence the emergence of tracks
such as New Ideas and Tool Demos).

Despite the enthusiasm for creating and disseminating new
tools, we still struggle with building bridges between new
tools and the engineers they are intended to support. Research
suggests that many tools may go unnoticed and unused in
practice [1], [2].

As we continue to struggle with tool adoption and use in
practice, the tool landscape continues to evolve with technol-
ogy. With the advent of huge amounts of data and increasingly
powerful artificial intelligence (AI) models, new types of
software tools are being created that rely on AI for decision-
making and recommendations [3], [4]. Most notably is GitHub
Copilot [5], an AI-assisted software tool that uses code models
to generate code snippets and subprograms that engineers can
adapt and integrate into their codebases.

There have been numerous efforts aimed at both improving
the techniques and models that power software tools (both
AI-assisted and traditional) and exploring what tasks they can
support [6]–[9]. However, there is a dearth of understanding
about how to build and deploy these tools such that they will
be adopted and then effectively used beyond adoption. We
know from prior work that developers only use tool that they
trust [10], however, we know much less about how trust is
formed and what factors effect its evolution over time in the
context of software tools.

To help fill this gap, we conducted a qualitative investigation
to better understand the key components of trust formation
and evolution when adopting and using software tools. We
interviewed 18 engineers engineers across and external to
the Microsoft organization to answer the research question
“What factors influence engineers’ trust in software tools?”.
Our findings identified important factors, along with concrete
examples, and serve as guides for those seeking to foster trust
around their tools.

Based on these findings, we introduce the PICSE frame-
work which organizes factors into five high-level categories:
Personal, Interaction, Control, System, and Expectations.
While many of the factors in the PICSE framework hold for
the majority of tools, we do find some differences in trust
dynamics between AI-powered software tools and so-called
“traditional” software tools. Finally, as AI-assisted tools have
often been compared to artificial team members (e.g., Copilot,
is so named in an effort to anthropomorphize the AI into “your
pair programmer”) we compare and contrast engineer-engineer
trust dynamics with engineer-tool dynamics.

The main contributions of this paper are as follows:
• We contribute a conceptual framework, called the PICSE

framework, that outlines factors that impact the formation
and evolution of trust in software tools (Section III).

• We outline guidance on considering and applying the
PICSE framework in practice to increase tool trustwor-
thiness (Section V and Section VI).

II. METHODOLOGY

A. Research Question

We designed our study to answer the question: What factors
influence engineers’ trust in software tools? For the purpose

1

TABLE I
PARTICIPANT DEMOGRAPHICS

Role Gender Race

P1 Software Engineer II Male White
P2 Software Engineer Male Asian
P3 Software Engineer Male Asian
P4 Senior Software Engineer Male Asian
P5 Principal Software Engineer Male White
P6 Principal SE Lead Male Asian
P7 Software Dev Engineer Lead Male White
P8 Software Engineer II Male White
P9 Senior Software Engineer Woman White
P10 Systems Engineer Male Black
P11 Software Engineer II Woman White
P12 Software Engineer Woman White
P13 Software Engineer/Product Owner Male White
P14 Senior Security Engineer Male Asian
P15 Software Engineer Woman Asian
P16 Software Engineer Woman Asian
P17 Software Engineer Woman White
P18 Software Engineer II Woman Black

of this study, we define a software tool as any technology that
supports software engineering. For example, this can include
an integrated development environment (IDE), an issue tracker,
or even Notepad.

B. Interviewees

We recruited software engineers internal and external to
Microsoft. To recruit internal engineers, we reached out to
individual engineers using Teams. We found engineers to
contact on tool distribution lists and in relevant Teams groups.
We also got help recruiting interviewees from other engineers
who advertised our study in their respective circles. To recruit
external engineers, we posted advertisements for our study on
Twitter and LinkedIn.

Each potential interviewee was required to provide consent
and sign up for an available interview slot via a pre-interview
survey. We also used this survey to collect basic demographic
information from interviewees. Our recruitment efforts yielded
a total of 19 interviewees. We conducted the first interview as
a pilot run to test our interview script and catch any issues we
may have missed. The results reported in this paper are from
the 18 interviews that followed.

Our final set of interviewees is listed in Table I. Our final
sample included 12 Microsoft employees and 6 non-Microsoft
employees. Eleven of our interviewees identified as male and
7 who identified as female. Most of our interviewees were
located in the United States, with the exception of one who
was located in the United Kingdom and one located in Canada.
Two interviewees self-identified as Black or African American,
7 self-identified as Asians, and the remaining self-identified
as White. P12 identified as a White Woman of Hispanic or
Latino descent. Most engineers in our sample are software
engineers, but we also interviewed security, systems, and
lead engineers. Interviewees’ years of professional software
development experience range from 1 year to 15 years and of
the 18 interviewees included in our final data set, six consider
themselves to also be open source developers.

C. Data Collection

To answer our research question, we conducted semi-
structured interviews. The interview was divided into three
main portions: background, trust in other engineers, trust in
software tools. The interview guide can be found online in the
supplemental materials [11].

We designed the background portion of the interview to
gather insights on the day to day tasks and interactions for each
interviewee. This also helped set the stage for the questions to
follow on their trust in the individuals and tools they interact
with. We asked questions such as “What project or team do
you currently work on?” and “What are the typical activities
or tasks you typically work on in your current role?”.

We designed the second portion of our interview to gain
insights into our interviewees’ thoughts about trust when
developing and maintaining software with other engineers. We
first asked them to define trust when it comes to collaborators
on software projects. To determine if there are nuances to trust
in different contexts, we asked a series a follow-up questions
on trust when coding with and learning from other engineers.

The third portion of our interview shifted the dialogue
from humans to tools. We again asked interviewees to first
define trust, but this time in the context of tools they use
to develop and maintain software. The follow-up questions
in this portion mapped explicitly to tasks developers could
use tools for: writing code, generating tests, finding bugs, and
fixing bugs. We concluded the third portion of the interview
with an opportunity for interviewees to share any ideas they
had for creating or improving software tools that aide in the
completion of their day to day tasks. Following the third
portion of the interview, we opened the floor for interviewees
to share any additional insights or thoughts they had on trust
in software tools, or specifically AI-assisted software tools.

Each interview lasted approximately 1 hour and took place
on Teams. We recorded both audio and the screen for the dura-
tion of each session. Following each session, we compensated
interviewees with a $50 Amazon.com gift card. Each interview
video was transcribed using a transcription company.

D. Data Analysis

To analyze our data, we conducted a mixed qualitative
coding approach led by the first author. Given we conducted
this research with a partially distributed research team, all
discussions regarding data analysis occurred virtually.

We followed a combination deductive and inductive cod-
ing approach, which means that we first created an initial
codebook for coding our interviews (deductive) [12]. We
derived the categories and code for the initial codebook
based on the questions we asked our interviewees and the
information we intended to collect from those questions. For
example, the first category in our codebook was “Background”
given we designed the first portion of our interview to col-
lect background information. Codes in this category include
background-project (what project or team the interviewee
works on), background-daytoday (typical tasks or activities

2

Fig. 1. Snapshot of the open card sort conducted to elicit final set of categories
for the PICSE framework.

interviewees complete in their current role), and background-
tooluse (tools interviewees use in their day to day). Our initial
codebook included fourteen codes across the six categories
(background, human trust, tool trust, AI tools, tool ideas, and
other).

After deriving our initial codebook, we began coding our
transcripts using ATLAS.ti [13] As we came across data that
suggested the need for a new code (e.g., a commonly used sub-
or follow-up question), we added new codes to our codebook
(inductive) [12]. Once the first author finished coding all
18 interviews and refining the codebook, we conducted two
validation tasks to improve the trustworthiness of our findings.
The first validation task followed guidelines by Lincoln &
Guba [14]. We invited an outside auditor to review our
methodology and developing codebook. Our external auditor is
an empirical researcher that is external to Microsoft, an expert
in qualitative work, and has published qualitative work in top
tier venues. They have knowledge of the space in which we
are collecting data (human factors and software tools).

We provided the auditor with samples of raw, coded data
along with the coding process and codebook used. We gave
instructions to confirm that the initial codebook was in fact
driven by the interview script, the emergent codes were
properly documented, and that the inferences from the data
made sense. We discussed and revised codes based on this
person’s feedback, but there were no disagreements in our
coding and categorizing the data. Under their advice regarding
our code and category descriptions, we updated code and
category descriptions, as well as corresponding examples when
necessary. Our final codebook, which includes 31 codes across
six categories, can be found in the supplemental materials [11].

Once we determined our final set of codes, the final step
in our data analysis was to conduct a thematic analysis of
the resulting codes and categories [15] to determine the high
level themes that eventually form the PICSE framework. This

process was also led by the first author, who started by created
code groups in ATLAS.ti in order to narrow data analysis to
quotations that map to trust in software tools.

In the first iteration through the relevant code groups,
the first author went through each of the quotations and
documented the higher order themes as they emerged across
quotations. After going through all the quotations that mapped
to trust in tools, the first author made a second pass through
the emergent themes to identify any potential overlap across
themes. We iteratively discussed as a group each round of
themes until we determined a final set of unique themes from
our findings (the factors in our framework).

To form the high level categories of the PICSE framework,
the second author conducted an open card sort on the final
set of unique themes. Figure 1 depicts the initial themes and
categories. The second author shared the initial categories
with the research team for discussion. This discussion led
to the renaming and clarification of some of the themes and
categories, resulting in the final categories and themes in
Figure 2.

III. FINDINGS

Our interviews gathered insights on how engineers think
about trust in the context of software development. Figure 2
summarizes the various factors that engineers may consider
when determining initial trust and working to build, or re-
build, trust before and during use.

Based on the interviews we conducted with software engi-
neers, the following categories emerged to form the PICSE
framework of trust in software tools:

• Personal: internal, external, and social factors that impact
trust

• Interaction: various aspects of engineer’s engagement
with the tool that impact trust

• Control: factors that impact trust as it pertains to engi-
neers’ power and control over the tool and its usage

• System: properties of the tool that impact trust
• Expectations: meeting engineers’ expectations that they

have built impacts trust

Below we outline each of the categories in the PICSE
framework and factors within them. It is important to note
that each factor can be impacted by (or have impact on)
different users and stakeholder; no one person can make sure
all components are considered. We discuss ways in which
practitioners can attempt to make use of the PICSE framework
in Section V.

A. Personal Factors

Personal factors in the PICSE framework represent the
intrinsic, extrinsic, and social aspects of tool adoption and
use that impact trust. Based on our findings, this includes
community, source reputation, and clear advantages.

3

System
Ease of installation & use: ability
to quickly and easily install and
initially use tool

Polished presentation: careful
and thoughtful design apparent
on first use

Safe and secure practices: visible
consideration of important concerns,
such as security and privacy

Correctness: contributions are
accurate and appropriate for the
program or system

Consistency: contributions are
consistently accurate
and appropriate

Performance: tools is performant,
or exhibits few performance issues

Personal

Community: an accessible
community of developers that
use the tool

Source reputation: reputation
of or familiarity with the
individual, organization, or
platform associated with
introduction to the tool

Clear Advantages: benefits
of using the tool validated
by other users

Interaction

Contribution Validation
Support: contributions can
be easily validated

Feedback loops: tool includes
mechanisms for
injecting developer insights,
experiences, and preferences

Educational Value: tool
contributes new knowledge
or augments developer existing
knowledge

Control

Ownership: tool was developed
in some part by the user

Control: developer has final say
in application or use of tool’s
contribution

Workflow integration: tool
is easy to integrate into workflow

Expectations

Meeting expectations: contribut
ions match what developer
expects

Transparent Data Practices:
documentation
includes information on data
behind the model (e.g., licenses or
data sources)

Style matching:
contributions match style of user

Goal matching: contributions
match the goal, context, or scenario
the developer currently cares about

The PICSE Framework

Fig. 2. The PICSE framework for trust in software tools

Community We found that one aspect of a tool that can impact
trust is the community of users (or lack there) behind a given
tool.

For some, like P5 who polls collaborators and co-workers
about tools they should trust, the community of users should
be in their own circles. For others, like P7, community can be
more broad and a part of that trust is knowing the practice is
a preferred practice by others.

“That’s probably recommended because over the
community that’s how it’s preferable. Then you’re
leaning towards more into the more community-wide
practices.” (P7)

P17 compared tool adoption and use to that of social media
platforms, stating “Even if I trust the brand, nobody else is
on there... I wouldn’t download the app, the social media. If
there is no network, why would I use it?”

Having a community of users publicly available also
provides current and potential users with a way to easily
ascertain use cases, success stories, failures, and other relevant
information regarding the tool. According to P3, “if a lot of
people think it’s a good idea, then I would probably follow
and assume it may be a good idea...that I should try it out.
He goes on to explain the value of community around tools,
noting that he especially relies on the discussions happening
around “sketchy” or less than favorable things regarding the
tool.

Source Reputation Another way engineers may form and

build trust is through the reputation of (or familiarity with)
the individual, organization, or platform associated with their
introduction to the tool.

The most prominent aspect of this factor among engineers
in our study was the individual that they learned about the
tool from. This factor can be impacted by users seeking or
acquiring insights regarding the tool from others they know.
Our findings suggest that for some engineers it is intentional
that they seek the input of reputable individuals when looking
for or considering using a tool. For others, they do not
necessarily seek out reputable sources for recommendations,
but their familiarity with and the reputation of the individual(s)
they associate with the tool “carries weight”.

While most of our interviewees were in agreement that the
reputation of or familiarity with an individual is an influential
factor, our data suggests engineers may be split on how much
weight other source-related attributes carry, such as brand
name or company. For some engineers, like P17, the company
or brand name behind the tool has a definite impact on trust.

“We would still use GitHub because it’s such a
massive brand, everybody uses GitHub.” (P17)

For others, like P9, while a tool coming from a “reputable
company” can impact trust, it may not weigh in as much as
others given the fact that “there’s so many companies that do
put out good tools.”

Clear Advantages According to our interviews, the ability
to clearly see the potential benefits that come with using a

4

given tool has an impact on trust. For most interviewees in our
study, determining the advantages or disadvantages of using a
tool involved gauging benefits claimed by other users. Some
like P5 search for “anything online which says that for this
application, this tool is good.” Others rely on personal or
professional contacts for this information. When discussing
how he became an avid VS Code user, P10 noted that when
some co-workers gave a presentation on the tool “it was a
combination of [...] seeing how powerful it was and how easy
it was.”

For some engineers in our study, it is not enough to hear
what others’ experiences are like. They need to see the benefits
themselves. P7 described his thoughts on this matter using the
analogy of autonomous vehicles:

“But as more and more people use it, and while I’m
in that car and AI Is doing the right thing, I’ll see, it
actually stopped the right car. It actually identified
that someone crossing the road and all those small
nitpick details. Then that trust will build up and I
can rely on AI okay.” (P7)

B. Interaction Factors

Interaction factors pertain to considerations engineers make
regarding the kind of support and outcomes they expect from
their interactions with the tool. The factors from our study
that fall into this category include contribution validation
support, feedback loops, and educational value.

Contribution Validation Support Engineers in our study
have increased trust in a tool that supports quick and easy
validation of the tool’s contributions or recommendations. This
factor speaks to the provision of mechanisms for confirming
aspects of a contribution such as its correctness, fit, or quality.
For P3, this is especially important because the process of
validating tool contributions can “create a lot of annoyances”
and comes with a time cost. P8 was especially particular about
this factor when it comes to AI-assisted tools that produce
outcomes he “wouldn’t have come to naturally.”

“When that’s the case, I think there’s even more
expectations around being able to validate that it’s
actually valid and correct.” (P8)

Our interviewees highlighted that an important part of
providing contribution validation support is providing rationale
for the contributions or recommendations being made. For
engineers like P12, tools are like human collaborators and
should be able to explain contributions made:

“It’d be great if they could explain to me the
rationale behind its change, because I think just
reflecting on what I’ve been saying, it sounds to me
like I’m treating these things as if another person
wrote them, and as I said before, when I’m working
with someone else, it matters to me if they tell me

why. I think with these tools, it would also matter
to me if it explained why it made that change. That
would help me gain more trust in that system.” (P12)

Feedback Loops Engineers want to feel like the tools they
use are taking their preferences and needs into consideration.
For AI-assisted and traditional tools, our findings suggest
that it builds trust when tools have mechanisms for injecting
developer insights, experiences, and preferences. P3 used VS
Code as an example of a tool that successfully integrates one
form of feedback loop:

“The other thing is the level of care towards the
user. For example, I see that VS Code is pretty
responsive to what people want and they try to create
something that everyone enjoys. I think that helps
because they really show that they care about your
user experience.” (P3)

Educational Value Engineers find value in tools that add
value. More specifically, our findings suggest trust increases
when tools make contributions that either the engineer them-
selves would not have thought of or improves upon their own
solution. In fact, some engineers (like P12) feel that “if it’s
telling you to fix something and that’s it...giving no other
information...I’m not really going to pay attention or trust it.”

The most common form of educational value that emerged
from our study was a tool making a contribution that the
engineer themselves may not have thought of themselves, or
as P8 put it “wouldn’t have come to naturally.” This is a
less intentional form of learning; some engineers in our study
explicitly look to tools as learning aids.

“Copilot is one of the things I’m going to try and
make time to play with because I feel like it will help
me learn Python quicker, and write better quality
code than I can immediately with Python.” (P9)

C. Control Factors

Control factors are considerations tool users make regarding
their ability to make the tool experience what they want and
need it to be. The factors in this category include ownership,
autonomy, and workflow integration.

Ownership We find that that engineers may have increased
trust when they have some ownership over the tool that is being
used. This factor was most prevalent amongst tool developers,
like P8. They elaborated further, stating:

“As a developer, do I trust it or not? Especially if
it’s using something that I own versus moving to
something that somebody else owns.” (P8)

Autonomy Another factor we find can have an influence
on trust is the extent to which engineers feel they have
autonomy over the integration of contributions. This factor

5

takes contribution validation support a step further by includ-
ing mechanisms that ensure the engineer “take[s] the final
decision” (P15).

According to P17, the most important attribute that helps
with feeling “comfortable” with a tool that automatically
contributes to your code base is if one can “actually see the
code that’s been written” and be able to “at least review it
and see what’s happening.”

Workflow Integration This factor covers matters that pertain
to how well the tool fits into the user’s existing workflow. This
factor is related to ease of installation & use in that it speaks
to the ability to easily integrate into a workflow. However,
workflow integration is much more user-dependent than ease
of installation & use. In our study, engineers may trust tools
more that fit into the platforms and processes they are already
using.

“For something I’m using every day and that I really
want to rely on, I want to have that built in and also
something that’s as easy as possible, as I mentioned,
to get into my workflow. I don’t want to spend a ton
of time.” (P13)

D. System Factors

System factors in the PICSE framework outline
considerations tool users may make regarding properties
that a tool does, or does not, possess when determining trust.
Based on our findings, this includes ease of installation
and use, polished presentation, safe and secure practices,
correctness, consistency, and performance.

Ease of Installation and Use It helps if a tool is easy to
install and set up inorder to quickly begin use. As pointed
out by P12 “a lot of it’s [the] setup.” This includes having
easily accessible and useful documentation around getting
started with the tool, as engineers like P9 “hate reading 10
pages of documentation” and having to put in “so much
work to understand how to use [the tool].” When it comes
to complexity in tool setup, P7 summarized the sentiments of
many of our interviewees:

“If it’s complex, I’ll probably won’t spend too much
time. If it’s simple enough, installable, and easy to
adopt. Then it also gives what you are looking for.”

Polished Presentation When it comes to trust building, our
findings suggest a little polish can go a long way. Engineers
in our study valued a tool that looks like the developers paid
attention to detail when building the resulting tool. As stated
by P4, it helps to see that the tool creators “went the extra
mile and did a little bit more than strictly necessary” and
that a little extra polish gives a good first impression. P10
elaborated on the importance of polish further, noting that
if engineers can “see stuff that looks broken...or any little

visual inconsistencies” he may think the tool is poorly made
and thereby less trustworthy.

Safe and Secure Practices Another factor that can impact
trust is the ability for users to see if and how tool creators made
important considerations that impact trust, such as security and
safety-related concerns like privacy, in the design, implemen-
tation, and documenting of their tool. P15 summarized this
factor best:

“Second thing is what public information do they
have detailing the technical architecture? How are
they trying to influence others by saying that they are
trustworthy? What evidence do they have?” (P15)

Most of our interviewees felt strongly about the importance
of considerations around safety and security in software tools.
P18, for example, noted that she “really appreciate tools that
have clear privacy policies” and “invest in trust and safety.”
P4 used a medical analogy to explain his stance:

“It’s like if there’s a somebody who has invented a
brand new brain chip, are you going to install that
in your head? Well, maybe not the first version. You
let some people take it and then you figure out, okay,
is it safe? Then you start using it. Because using the
wrong tool can do some damage, right?” (P4)

Correctness Another factor that can impact engineers’ trust
in a given tool is the accuracy of the contributions made.
According to P12, engineers want “alerts that are accurate,
that are actually valid”, a part of which according to P4 is
setting the right expectations regarding tool use. By providing
“right recommendations,” (P7) tools can easily build trust with
time. A part of building trust over time is being consistent, the
next factor in the System category.

Consistency For engineers in our study, consistency with
respect to both tool features and contributions can have an
impact on overall trust in a given tool. For most interviewees in
our study, they are looking for consistency with respect to the
tool’s functionality. This includes facets such as consistency in
the code it contributes, how quickly it makes contributions or
suggestions, the issues it reports, and overall in the anticipated
outcomes.

“If I’m accustomed to or I have been programmed to
do things a certain way, I expect that it will turn out
the same every time and then the trust really, like for
most services it’s like that already [...] You submit
something, you expect that it’s going to work.” (P11)

Another aspect to consistency that emerged from our find-
ings is consistent maintenance of the tool. This includes things
like consistency in the features available, how those features
work, and relevant packages or technologies it supports. For
P9, this meant “not breaking things that are working already”

6

and making sure “to support new technology as it comes out.”

“Anything that is not getting updates is suspicious.
[...] Getting to the more technical, software that is
maintained consistently, that is actually supported
versus something that someone built in 2003 and
packaged for download. Naturally, when it comes
to the security folks, anything that is not receiving
updates is suspicious.” (P15)

Performance Finally, and possibly obviously, performance
emerged as a relevant consideration with respect to trust in
software tools. Our findings suggest that trust may be higher
in tools that are performant and lower in tools that exhibit
performance issues. P7 summed up the sentiments of several
of our interviewees, stating “, it should be performant and
reliable. If it’s taking too much time and making computer
slower and all those things, then you lose that trust, because
it’s not worth it.”

E. Expectations Factors

Expectation factors represent tool users’ considerations
regarding expectations they have built from their own
experiences and would like tools to consider. The factors
in this category include transparent data practices,
style matching, goal matching, and of course meeting
expectations.

Transparent Data Practices According to engineers in our
study, trust is increased when there is visibility into the data
behind the model. This includes licenses, data sources, and
guarantees, such as legality, regarding data being used. For
engineers in our study, this boiled down to where the data is
coming from and how the data users contribute will be used.

“Let’s say that you’re using some software tool. Do
I trust that this is not selling my data to some third
party versus do I trust that it’s not going to give
me bogus information or it’s not going to break my
[code].” (P4)

Style Matching We find that when building trust, it is also
important to provide contributions or suggestions that match
the coding style that their project is using. This factor was
much less prevalent in our data than others. But for some
engineers, like P10, they expect “reasonable” contributions
that “follow the same style as any other code in the file.”

Goal Matching This factor conveys the importance of making
contributions that map to the goals of the engineer using the
tool at the time they are using it. Of course goals vary by task;
as does the way goal matching can be implemented.

“To me, it’s a tool [...] that are tuned to my context.
That can mean a number of different things. It can

mean it’s only relevant to what I’m working on right
now versus the whole system. Or it can mean maybe
something like prioritization, it’s showing me the
most critical things first. It’s not wasting my time,
essentially.” (P12)

Engineers in our study realize that goal matching may not
always be easy, or even feasible, to achieve. We find that the
current landscape of AI-assisted debugging tools may not lend
themselves well to goal matching. This is because it is not
obvious if and how the tests generated, bugs found, and fixes
suggested would match with what they wanted to accomplish
(or the scenarios they care about). This was especially the case
for the idea of AI-assisted test generation, which P2 noted
“can never know what scenarios I care about.”

Meeting Expectations As implied by the emergence of the
Expectations category, engineers develop expectations regard-
ing the tools they have and will use. This factor represents the
setting expectations and then meeting set expectations. Gener-
ally, according to P11, “you break trust when the outcome is
not as expected,” so it is important to adequately communicate
about the tool to help engineers set appropriate expectations.

“That’s certainly something when thinking about the
design or how to just give verbiage that describes
how the tool will work. You want to be cognizant
of making sure that you’re very accurate with those
expectations.” (P8)

Put it plainly, and in the words of P4, any given tool “should
really be good at one thing.” Our findings suggest tools should
be explicit and upfront about what the tool can and cannot do
in order to build trust.

IV. THREATS TO VALIDITY

External. We conducted our interviews by selecting develop-
ers across Microsoft and working in industry, including those
with experience in open source and small startups. We asked
interviewees to refer others we should talk to, and endeavored
to diversify the pool of developers in our study. While we
continued to interview and code until saturation was reached,
the extent to which our findings generalize across settings may
be limited and warrant some future research.

Findings reported in this paper are based on a qualitative
study conducted with a convenience sample of 18 engineers,
mostly located in the US. We report our findings in the form
of aggregated, emergent categories and that factors that our
data suggests are relevant. While quantitative insights provide
useful information, prior work has cautioned against using
quantitative methods on qualitative data [16]. Therefore, we
center the discussion in this paper on the qualitative insights
gathered rather than frequency of their occurrence.

The goal of our research was the identify and categorize
factors that contribute to trust. As with most qualitative
studies, we endeavoured to identify as many unique factors

7

as we could from our data. While the potential for overlap is
difficult to completely avoid, we conducted our data analysis
to reduce overlap and produce a set of unique factors that,
while inter-operable in practice, each contribute something
unique to the framework.

Internal. We conducted most of our interviews virtually,
which lends itself to a variety of scenarios that could effect
the validity of our data and findings. To reduce the potential
for issues during our interviews, we used a familiar and
commonly used platform and informed participants up front
of a contingency plan if the call is disconnected. We did not
encounter any major technical issues that would effect the
integrity of our data.

Construct. The goal of our study was to better understand
how developers think about trust in the context of completing
software engineering tasks. However, because we did not have
developers complete any actual tasks during the interview, we
were only able to collect data on thoughts based on remem-
bered experiences. We mitigated this threat by beginning the
interview with background questions that helped participants
center their responses in relevant experiences.

As outlined above, we used Suply and Atlas.ti to support the
analysis of our data. Subply provides automated transcription
support, which could affect the integrity of the data. To reduce
the potential for any issues with our data, we manually read
through each transcript to ensure it matched the audio files.

Atlas.ti provides a collaborative environment for coding
qualitative data. Using Atlas.ti still requires the knowledge and
rigor of qualitative data analysis, but makes organizing and
collaborating with the data easier which does reduce some of
the effort. Both of these tools improve the ability to conduct
qualitative research without compromising the integrity or
rigor of the research.

V. APPLYING THE PICSE FRAMEWORK IN PRACTICE

The PICSE framework provides insights into considerations
engineers make when determining if and to what extent they
trust a tool. There are some things that tool developers can
leverage to improve trustworthiness, while other may be less
in the control of the tool creator and more in control of the
engineer, context, or task in which the tool would be used.
In this section, we outline considerations that can be made
to increase tool trustworthiness in practice. To do so, we
introduce Aisha, an engineer who leads a team that maintains
a suite of software engineering tools.

Much of trust building relies on usage of and interaction
with the tool. So what can tool developers do to signal their
tool can be trusted? Before engineers adopt and begin using
a tool, findings from our study suggest that factors from the
System and Personal categories in the PICSE framework can
affect their initial trust in a tool.Our findings reflect that,
Community and Source Reputation are Personal factors that
influence trust before adoption and Ease of Installation and

Use, Polished Presentation, and Safe and Secure Practices
are System factors that impact trust before use.

Let us imagine that Aisha’s team is developing a new tool
separate from the existing tool suite her team maintains. Aisha
has been made aware of the PICSE framework and wants to
be intentional about building a trustworthy tool, but where can
she start?

Building trust through source reputation would involve
introducing the tool via a trusted individual, organization, or
platform. Unless Aisha or her team knows each of the tool’s
potential users, it is difficult to directly have much impact
on this factor. However, it is feasible to aim for building
accessible community around the tool. In fact, our findings
suggest it is possible to aim for community and gain benefits of
source reputation as well when using platforms like GitHub.
GitHub is a platform for building community around soft-
ware development and is a recognizable and reputable brand.
Because of this, having a tool on GitHub can help reduce
some of the concerns engineers may have when considering a
tool to adopt. In general, it is expected that the factors in the
PICSE framework can, and likely must, overlap to build trust
in practice.

System factors give tool creators more tangible ways to im-
pact user trust. When Aisha’s team is designing and developing
their new tool, our findings suggest they can have a positive
impact on potential user trust by following safe and secure
practices and making those practices visible. This includes
things like privacy considerations, especially when developing
AI-assisted tools.

Another aspect of the PICSE framework Aisha’s team
can explicitly consider is the ease of installation and use.
According to engineers in our study, this factor speaks to the
complexity and steps involved in setting up the tool for initial
use. More complexity means higher cost, which we already
know can affect adoption and use [2].

In some cases, factors can overlap across categories of the
framework to impact user trust. As it pertains to ease of
installation, our findings suggests that one place engineers
may look to determine ease of installation and use is the
community of users around the tool. So while working
towards ease of installation and use is beneficial, it further
helps to have a community of users that potential users can
look to for these insights.

Our findings suggest that another way Aisha’s team can
work to further build initial trust is by working towards a
polished presentation for the tool. This would start with
the design of the tool, making considerations such as the
aesthetics, flow, and usability of the tool. Also important, of
course, is that the implementation reflects careful thought and
consideration in the design phase of the tool.

While not mentioned explicitly by engineers in our study,
some of the other factors in the PICSE framework that tool
creators can consider for increasing the trustworthiness of
their tools include contribution validation support, feedback
loops, correctness, consistency, performance, and transpar-
ent data practices (which relates closely to safe and secure

8

practices, but specifically in the context of AI-assisted tool
development).

As implied by the diversity and volume of factors in the
PICSE framework, trust is built, broken, and re-built beyond
initial adoption and use. The factors discussed regarding pre-
adoption trust building would apply beyond adoption, but there
are additional factors that can only be assessed upon use. Less
obvious are some of the possible distinctions between factors
as they pertain to trust between different entities, which we
discuss next.

VI. DIFFERENCES IN TRUST

The focus of our study was on engineers’ trust in their
software tools. While the PICSE framework is meant to
be applicable to any kind of tool, our findings suggest the
potential for differences in to what extent certain factors weigh
in on the process of trust building.

A. Traditional vs. AI-assisted Tools

One goal of this work is to better understand differences
that may exist between trust in and use of traditional soft-
ware development tools versus AI-assisted tools. Our findings
suggest that there are in fact nuances to how engineers think
about trust in AI-assisted tools, some of which are motivated
by unique challenges to developing AI-assisted software tools.

According to engineers in our study, it might be more diffi-
cult to develop a trustworthy AI-assisted tool in comparison to
traditional software tools. One reason for this is that engineers
view AI as “fundamentally closed source,” or less compatible
with open source than traditional tools. While it is possible
for the implementation of an AI-assisted tool to be made open
source, the underlying model is much more difficult to make
open source.

AI-assisted and traditional tools are both affected by the
factors outlined in the PICSE framework. However, our
findings suggest that some factors may be more important
with respect to AI-assisted tools than they are when it comes
to trust in traditional software tools, such as safe and secure
practices and contribution validation support. Furthermore,
while expectations may be initially low for any tool, engineers’
expectations are higher for the growth and evolution of AI-
assisted tools. They expect AI-assisted tools to be smarter and
therefore improve with time in comparison to traditional tools.

Our findings also suggest that developers may trust AI-
assisted tools more than they trust traditional tools when it
comes to certain tasks. One common comparison was between
the AI-assisted tool Copilot and the traditional tool Intel-
liSense. Because Copilot is not aware of the user’s codebase
but Intellisense is, engineers may be more likely to trust tools
like Copilot for “boilerplate things” that are not necessarily
specific to the current project or domain and use IntelliSense
for more project-specific tasks.

Related to this is the fact that some tools may be especially
ill-suited to AI-assistance in the eyes of engineers. In particu-
lar, our findings suggest debugging tools may be more difficult
to make useful, and thereby trustworthy, for engineers. This

is where factors such as goal matching and control become
especially important.

B. Tools vs. Collaborators

One connection that has been made and discussed with the
increase in availability and use of AI-assisted tools is whether
these tools are comparable to human collaborators [17]. In-
spired by this line of work, our study included questions about
trust in collaborators. In collecting this data, we gathered some
interesting insights on similarities and differences between
how engineers think about trust in collaborators and trust in
tools.

For most of our interviewees, trust in collaborators and trust
in their software tools required similar interactions. Though
we never explicitly asked in our interviews, a handful of our
interviewees explicitly compared and contrasted collaborators
and tools when it comes to trust building in software develop-
ment. More specifically, interviewees often made comparisons
(or contrasts) between humans and tooling backed by AI.

Most of our interviewees felt that contributions made by AI-
assisted tools are quite comparable to human contributions. As
with their collaborators, engineers expect AI-assisted tools to
get better with time. They make similar considerations when
evaluating the contributions made by both humans and AI-
assisted tools, such as consistency and educational value.

But for a handful of other interviewees, given the nature
of AI, there is at least one important distinction between
human collaborators and AI-assisted tools. That is the fact that
additional vigilance is required when reviewing and integrating
contributions made by AI-assisted tools.

VII. RELATED WORK

While ours is one of the first studies focusing on trust in the
context of software engineering tools, research has been done
that examines trust in the context of AI systems, professional
teams, and software development. While none of these studies
examine trust in the context of software engineering tools, they
all explore trust in one way or another and most have findings
that support one or more factors in the PICSE framework.

A. Trust and AI

More than 20 years ago, Fogg and Tseng proposed that
“computer credibility” would become increasingly important
and offered perspectives in an effort to promote further re-
search. They posit that credibility comprises two key compo-
nents: trustworthiness and expertise. Their findings of types of
credibility map clearly to factors we uncovered in interviews.
For example, “reputed credibility” describes how much the
perceiver believes something because of what third parties
have reported, similar to source reputation, while “surface
credibility” refers to the perceiver’s view of the system based
on a simple inspection, similar to ease of installation & use
and polished presentation.

Omrani [18] recently explored trust in AI based systems
in general and found that the sector where AI technology
is applied can influence the level of trust in AI and that

9

“there are certain sectors that are more likely than others to
induce trustworthiness in AI.” This finding supports the value
of investigation into AI tools specific to software engineering.

Kocielnik et al. [4] examined the role of expectation man-
agement in success of AI tools. They find that expectation
setting is critical for adoption of such tools and show how
different tool designs such as communicating AI accuracy
and providing explanation can increase the trust of users even
when actual AI performance is unchanged. Findings from our
own interviews confirm that setting and meeting expectations
around tools is an important part of trust formation in the
software engineering domain.

Gille et al. [19], examined trust in AI tools in the context
of healthcare and makes an explicit call that “we need to
develop and validate measure that aid he buildup of trust in
AI. Such measures may [include] guidance for AI designers
[...] including development approval, implementation, use and
evaluation.” The PICSE framework represents provides first
steps in this direction for the context of software tools.

Wang and Siau [20] found that AI models based on neural
models may suffer more from trust because of their “black
box” nature in which only the input (features) and outputs
(predictions) are visible to the user and there is little trans-
parency into the inner workings. This may hinder trust from
users of tools based on these models.

B. Trust in Professional Teams

Casey [21] examined trust in geographically distributed
teams across four independent studies and identified how
bespoke software engineering tools were able to develop
and in some cases re-establish trust between remote teams,
facilitating processes such as configuration management and
document exchange and approval.

We refer the interested reader to the work of Rousseau
et al. [22] who provide an in-depth survey of trust in the
context of firms and professional teams from the organizational
literature. Similar to our findings in the SE domain, they find
that trust is not static and has multiple phases. They also
describe multiple definitions and forms of trust, for example
characterizing trust as a level of control in some contexts and
about positive expectations in others (both aspects of trust in
the PICSE model).

C. Trust in Software Development

Smith et al. [23] explored in-house software tool building
and found that successful tools often take into account factors
in the PICSE model including integration into existing pro-
cesses, reputation of the tool builder and recommender, and
existence of a supportive community.

Vaithilingam et al. [3] conducted a user study of Copilot
where interviewees in their study clarified their mistrust of
“opaque suggestions from Copilot” and would only trust it
for simple tasks due to difficulty understanding the code, fear
of unknown bugs, and failure to match coding style. While
trust was not the primary aim of this study, many of these
reasons appear in the PICSE model.

Widder et al. studied trust in autonomous software tools
via an ethnographic study at Nasa and found that trust was
influenced by transparency, usability, social context, and the
organizations processes [24].

Murphy-Hill et al. found that developers are more likely to
use refactoring tools that they trust, but they did not investigate
trust formation or what factors increase or erode trust [10].
Later, Murphy-Hill et al. explored how developers find and
adopt new tools in software development and found that trust
in the recommender of the tool plays a critical role, whether
the recommendation comes from a teacher/mentor, discussion
forums, tutorials, or even twitter [25].

VIII. CONCLUSIONS & FUTURE WORK

This paper introduced the PICSE framework for trust in
software tools, a collection of factors that speak to considera-
tions engineers make when forming and building trust in their
tools. The PICSE framework emerged from 18 interviews
conducted with engineers both internal and external to the
Microsoft organization on their trust in traditional and AI-
assisted software tools. Our findings have implications for how
we can work to intentionally develop trustworthy tools in prac-
tice and effectively harness the power of artificial intelligence
to build AI-assisted tools engineers seek as collaborators. As
we continue to strive for this goal, our future work will gain
additional insights at a larger scale to validate and expand on
this framework such that it can provide useful guidance and
metrics for evaluating and improving tool trustworthiness.

ACKNOWLEDGEMENTS

We thank the engineers who participated our interviews and
shared their experiences. We thank Ruijia Cheng, Ruotong
Wang, and Eirini Kalliamvakou for the great and insightful
discussions about this project. Brittany Johnson conducted
this work as a visiting researcher in Microsoft Research’s
Software Analysis and Intelligence in Engineering Systems
Group (http://aka.ms/saintes).

REFERENCES

[1] J.-M. Favre, J. Estublier, and A. Sanlaville, “Tool adoption issues in a
very large software company,” in Proceedings of 3rd International Work-
shop on Adoption-Centric Software Engineering (ACSE’03), Portland,
Oregon, USA, 2003, pp. 81–89.

[2] B. Johnson, Y. Song, E. Murphy-Hill, and R. Bowdidge, “Why don’t
software developers use static analysis tools to find bugs?” in Proceed-
ings of the 2013 International Conference on Software Engineering, San
Fransisco, CA, USA, May 2013, pp. 672–681.

[3] P. Vaithilingam, T. Zhang, and E. L. Glassman, “Expectation vs. experi-
ence: Evaluating the usability of code generation tools powered by large
language models,” in CHI Conference on Human Factors in Computing
Systems Extended Abstracts, 2022, pp. 1–7.

[4] R. Kocielnik, S. Amershi, and P. N. Bennett, “Will you accept an
imperfect ai? exploring designs for adjusting end-user expectations
of ai systems,” in Proceedings of the 2019 CHI Conference on
Human Factors in Computing Systems, ser. CHI ’19. New York, NY,
USA: Association for Computing Machinery, 2019, p. 1–14. [Online].
Available: https://doi.org/10.1145/3290605.3300641

[5] “Github copilot,” https://github.com/features/copilot, 2022.
[6] P. Anderson, “The use and limitations of static-analysis tools to im-

prove software quality,” CrossTalk: The Journal of Defense Software
Engineering, vol. 21, no. 6, pp. 18–21, 2008.

10

[7] W. F. Tichy and S. J. Koerner, “Text to software: developing tools to
close the gaps in software engineering,” in proceedings of the FSE/SDP
workshop on Future of software engineering research, 2010, pp. 379–
384.

[8] A. Groce, I. Ahmed, J. Feist, G. Grieco, J. Gesi, M. Meidani, and
Q. Chen, “Evaluating and improving static analysis tools via differential
mutation analysis,” in 2021 IEEE 21st International Conference on
Software Quality, Reliability and Security (QRS). IEEE, 2021, pp.
207–218.

[9] D. Sobania, M. Briesch, and F. Rothlauf, “Choose your programming
copilot: a comparison of the program synthesis performance of github
copilot and genetic programming,” in Proceedings of the Genetic and
Evolutionary Computation Conference, 2022, pp. 1019–1027.

[10] E. Murphy-Hill, C. Parnin, and A. P. Black, “How we refactor, and how
we know it,” IEEE Transactions on Software Engineering, vol. 38, no. 1,
pp. 5–18, 2011.

[11] B. Johnson, C. Bird, D. Ford, N. Forsgren, and T. Zimmermann,
“Supplemental material for “Make Your Tools Sparkle with Trust: The
PICSE Framework for Trust in Software Tools”,” Jan. 2023. [Online].
Available: https://doi.org/10.5281/zenodo.7516966

[12] T. Azungah, “Qualitative research: deductive and inductive approaches
to data analysis,” Qualitative research journal, 2018.

[13] “Atlas.ti,” https://atlasti.com/, 2022.
[14] Y. S. Lincoln and E. G. Guba, Naturalistic inquiry. Sage, 1985.
[15] A. Castleberry and A. Nolen, “Thematic analysis of qualitative research

data: Is it as easy as it sounds?” Currents in pharmacy teaching and
learning, vol. 10, no. 6, pp. 807–815, 2018.

[16] N. K. Denzin and Y. S. Lincoln, The Sage handbook of qualitative
research. sage, 2011.

[17] S. Imai, “Is github copilot a substitute for human pair-programming?
an empirical study,” in 2022 IEEE/ACM 44th International Conference
on Software Engineering: Companion Proceedings (ICSE-Companion).
IEEE, 2022, pp. 319–321.

[18] N. Omrani, G. Rivieccio, U. Fiore, F. Schiavone, and S. G. Agreda,
“To trust or not to trust? an assessment of trust in ai-based
systems: Concerns, ethics and contexts,” Technological Forecasting
and Social Change, vol. 181, p. 121763, 2022. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0040162522002888

[19] F. Gille, A. Jobin, and M. Ienca, “What we talk about when we
talk about trust: Theory of trust for ai in healthcare,” Intelligence-
Based Medicine, vol. 1-2, p. 100001, 2020. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S2666521220300016

[20] W. Wang and K. Siau, “Artificial intelligence, machine learning, au-
tomation, robotics, future of work and future of humanity: A review
and research agenda,” Journal of Database Management (JDM), vol. 30,
no. 1, pp. 61–79, 2019.

[21] V. Casey, “Developing trust in virtual software development teams,”
Journal of theoretical and applied electronic commerce research, vol. 5,
no. 2, pp. 41–58, 2010.

[22] D. M. Rousseau, S. B. Sitkin, R. S. Burt, and C. Camerer, “Not
so different after all: A cross-discipline view of trust,” Academy of
management review, vol. 23, no. 3, pp. 393–404, 1998.

[23] E. K. Smith, C. Bird, and T. Zimmermann, “Build it yourself! home-
grown tools in a large software company,” in 2015 IEEE/ACM 37th IEEE
International Conference on Software Engineering, vol. 1. IEEE, 2015,
pp. 369–379.

[24] D. G. Widder, L. Dabbish, J. D. Herbsleb, A. Holloway, and S. Davidoff,
“Trust in collaborative automation in high stakes software engineering
work: A case study at nasa,” in Proceedings of the 2021 CHI Conference
on Human Factors in Computing Systems, 2021, pp. 1–13.

[25] E. Murphy-Hill, D. Y. Lee, G. C. Murphy, and J. McGrenere, “How
do users discover new tools in software development and beyond?”
Computer Supported Cooperative Work (CSCW), vol. 24, no. 5, pp. 389–
422, 2015.

11

