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Abstract

In reinforcement learning (RL), there are two ma-
jors settings for interacting with the environment:
online and offline. Online methods explore the
environment with expensive time cost, and of-
fline methods efficiently obtain reward signals
by sacrificing the exploration capability. We pro-
pose semi-offline RL, a novel paradigm that can
smoothly transit from the offline setting to the
online setting, balances the exploration capability
and training cost, and provides a theoretical foun-
dation for comparing different RL settings. Based
on the semi-offline MDP formulation, we present
the RL setting that is optimal in terms of opti-
mization cost, asymptotic error, and overfitting
error bound. Extensive experiments show that our
semi-offline RL approach is effective in various
text generation tasks and datasets, and yields com-
parable or usually better performance compared
with the state-of-the-art methods.

1. Introduction
Pre-trained language models have achieved great success
in improving the quality of text generation (Devlin et al.,
2019; Liu et al., 2019). Recent research shows that a key for
further improving pre-trained language models is reinforce-
ment learning (RL), which provides a principled solution for
directly optimizing the final objective such as ROUGE (Lin
& Hovy, 2003), factual correctness (Goodrich et al., 2019),
and satisfaction of user needs (Ouyang et al.). Compared
with traditional optimization objectives, such as the maxi-
mum likelihood estimation (MLE), reinforcement learning
solves problems such as exposure bias and the mismatch be-
tween MLE and the final optimization objective, leading to
great success in further refining large pretrained models. Re-
cent large pretrained models that incorporate reinforcement
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learning, e.g., InstructGPT (Ouyang et al.) and ChatGPT1,
have demonstrated superior performance in aligning with
user needs compared to the original GPT-3.

In reinforcement learning, there are two major settings for
interacting with the environment: online and offline.

Online RL (Fig. 1(a)). The language model in this set-
ting generates word token ŷt by sampling from its output
probability distribution, and obtains the reward signal about
the samples to learn how well they fulfill the final objec-
tive. (Paulus et al., 2018; Li et al., 2019; Schulman et al.,
2017; Le et al., 2022) The online setting allows the language
model to fully explore the environment: the model can in-
teract with the environment to see the reward of different
samples and hence obtains a comprehensive understanding
about the final objective, which is crucial for finding the opti-
mal generation. While it is theoretically guaranteed that the
optimal generation can be found when the number of sam-
ples approaches infinity, empirically, it is time-expensive
to obtain even only a few samples from large pretrained
language models. In particular, optimizing with K samples
requires KT forward propagations (FPs) through the lan-
guage models, where T is the maximum number of tokens in
the generated text. This cost is quite large and impractical in
some real-world scenarios (Wang et al., 2021) considering
the complexity of large language models.

Offline RL (Fig. 1(b)). This setting eliminates the need for
generating text during the training process by utilizing a
static dataset for learning. Example static data y1, · · · , yT
includes demonstrations (Pang & He, 2020; Jaques et al.,
2019; Serban et al., 2017) (or ground-truth labels) for an
input x and text pre-generated with beam search (Liu et al.,
2022). By avoiding generating text in an auto-regressive
manner during training, offline methods mitigate the ex-
pensive optimization costs associated with online methods
and reduces the cost from KT forward propagations to K.
However, offline methods cannot explore the environment
to find the optimal generation: language models are only
given the reward signals for specific static data, which pre-
vents them from better understanding the final objective and
converging to a better solution.

The above analysis shows that different RL settings have

1 https://openai.com/blog/chatgpt/
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State

Setting (a) Online (b) Offline (c) Semi-offline

Optimization 
Cost (FP)

Language Model

(c1) Fully Observable (c2) Partially Observable

T 1 Tpm 1 

Exploration √ √ √×

KT K KTpm 1 

Language Model Language ModelLanguage Model

1 sample

K samples

Observation Same as the state Same as the state Same as the state

Figure 1. The comparison of different RL settings: (a) online methods explore the environment with a large optimization cost; (b) offline
methods efficiently obtain reward signals by sacrificing the capability for exploration; (c) our proposed semi-offline setting allows
exploration with minimum optimization cost. Here, Mt = 1 (or Mt = 0) means that the token at time t is sampled based on the language
model (or comes from static data), 0 ≤ pm ≤ 1 is the probability for Mt to be 1, FP denotes the number of forward propagations through
the language model, and T is the maximum number of word tokens in an output.

entirely different exploration capabilities and optimization
costs. A fundamental research question is: can we refine
the RL setting so that effective exploration could be
achieved with minimum optimization cost? In this paper,
we answer this question by making three contributions.

First, we define the design space of different RL settings by
proposing semi-offline RL, which bridges the gap between
online and offline RL and provides a theoretical foundation
to compare different RL settings. As shown in Fig. 1(c),
semi-offline RL composes a sample by mixing tokens gen-
erated by the language model and tokens from the static
dataset with a probability pm ∈ [0, 1]. Different values
of pm correspond to different MDPs and allows a smooth
transition from the offline to online setting. In particular,
at the fully observable scenario in which the model input
(observation) is equal to the environment state (Fig. 1(c1)),
the semi-offline setting becomes offline when pm = 0, and
becomes online when pm = 1. When pm ∈ (0, 1), we
could optimize the reward with an intermediate optimiza-
tion cost KTpm while keeping the capability for exploring
the environment. Compared with the offline setting, semi-
offline methods only utilize the static data as initial points
for exploration, thereby allowing the model to identify better
improvement directions. Compared with the online setting,
semi-offline methods may find the optimal improvement
directions with a fewer number of samples by more quickly
estimating token-wise rewards (Sec. 3.3, Proposition 3).

Second, based on the semi-offline MDP formulation, we
present the RL setting that is optimal in terms of the follow-
ing desirable properties:

DP1. Minimum optimization cost: the policy can be opti-
mized by using only 1 FP per input.

DP2. Minimum asymptotic bias: the estimated error when

the number of instances is unlimited is minimum among
all possible RL settings that satisfy DP1.

DP3. Minimum overfitting error bound: the chosen RL
setting has the lowest bound of error (François-Lavet
et al., 2019) when data is limited, among all settings that
satisfy DP1 and DP2.

We prove that the optimal RL setting in terms of DP1−DP3
could be easily implemented by mixing static data and the
mask token, as shown in Fig. 1(c2). This masked language
model (MLM) setting fits naturally into existing pretrained
language models, can explore K samples with only 1 FP,
and effectively find improvement directions by using static
data points as a starting point.

Third, we validate the effectiveness of our semi-offline RL
approach in various text generation tasks and datasets, and
show that it yields comparable or usually better performance
compared to state-of-the-art methods.

2. Background
2.1. Preliminares about Reinforcement Learning

In text generation, we often use a human-annotated corpus
as ground truth for performing supervised learning. Re-
inforcement learning (RL) provides an additional way of
learning in which the agent can optimize its behavior by
interacting with the environment. An agent-environment
interaction can be described by the following process: 1) the
environment tells the agent the current state, 2) the agent
outputs an action given the state through a function called
policy, and 3) after the agent acts, the environment shifts to
a new state and the environment gives a reward based on the
agent’s action and the updated state. The goal of the agent
is to learn a policy that yields the maximum cumulative



110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

Semi-Offline Reinforcement Learning for Optimized Text Generation

reward. We use a pretrained language model as the policy.

In RL, the environment is typically formulated as a Markov
Decision Process (MDP). An MDP is defined as a tuple
M = {S,A,R, T }, where S and A denote the state space
and action space, respectively. The reward function, R :
S ×A → R, maps a state-action pair to a scalar value, and
the transition function, T : S × A × S → R, describes
the probability of transitioning from one state-action pair
to another. Given an MDP, various methods of RL can be
applied in the search space of the environment to learn a
policy that maximizes the cumulative reward.

2.2. Reinforcement Learning for Text Generation

The MDP for text generation is usually defined as follows:

State st ∈ S consists of the input sequence x and the part
of output text that has already been derived: s0 = x and
st = (x, ys0, · · · , yst−1). Here, yst ∈ V is the token at time t,
and V denotes the vocabulary.

Action at = yst ∈ A is one of the |V| tokens.

Transition: T (st+1|st, at) transits st to st+1 at time step t:
st+1 = st ∪ yst . This deterministic transition appends the
next token to the previous state.

Reward: R(st) = f(x, ys0, · · · , yst−1) quantifies how good
the derived sentence ys0, · · · , yst−1 is according to the final
objective like the BLEU score or user satisfaction. In text
generation, we often consider terminal reward, which means
that the reward is computed after the whole text is generated,
in other words R(st) ̸= 0 only when t = T .

Both online and offline RL methods can be depicted by
using this MDP.

In the online setting, each action is obtained by sampling
from the probability distribution (Fig. 1(a)), i.e., at = yst =
ŷt, where ŷt ∼ p(ŷt|st; θ), where θ is the parameter for
the language model. Accordingly, the reward is computed
by considering state st = (x, ŷ0, · · · , ŷt−1). Online RL
methods have a large search space, allowing them to search
for the optimal solution across the entire space. However,
this can make them difficult to optimize and result in high
variance in reward signals. To address this, methods such
as actor-critic (Konda & Tsitsiklis, 1999; Bahdanau et al.,
2016), self-critic (Zhang et al., 2019; Paulus et al., 2018;
Li et al., 2019), and PPO (Schulman et al., 2017; Ouyang
et al.) have been developed. However, these methods still
explore the environment with a large optimization cost due
to the auto-regressive generation of output text.

In the offline setting, each action is derived by using the to-
ken in the static data (Fig. 1(b)), i.e., at = yst = yt, where yt
is the t-th token in the static data. Accordingly, the reward is
computed by considering state st = (x, y0, · · · , yt−1). Of-

fline methods are widely used in dialogue systems to reduce
the number of interactions with people in real-time Serban
et al. (2017); Jaques et al. (2019). Recently, GOLD (Pang &
He, 2020) posits that acquisition of useful data through ex-
ploration can be challenging. Therefore, it directly employs
the ground-truth. BRIO (Liu et al., 2022), on the other hand,
harnesses a contrastive loss and generates multiple candi-
dates for each instance as the static dataset. While offline
methods efficiently obtain reward signals by leveraging the
static dataset by sacrificing the exploration capability.

3. Semi-Offline MDP
3.1. Formulation of Semi-Offline MDP

In order to lay a theoretical foundation for comparing differ-
ent RL settings, we define the design space of different RL
settings by proposing semi-offline RL, which can smoothly
transit from offline methods to online methods by using
different values of hyperparamter pm. More specifically,
semi-offline RL composes a sample by mixing tokens gen-
erated by the language model and tokens from the static
dataset with a probability pm ∈ [0, 1], as shown in Fig. 1(c).
The formal definition is as follows.

Definition 1 (MDP of semi-offline RL). In semi-offline RL:

State st = (x,M0, y
s
0, · · · ,Mt−1, y

s
t−1,Mt) consists of

the input sequence x, the part of output text that has already
been derived ys0, · · · , yst−1, as well as the binary values
M0, · · · ,Mt, each Mt ∈ {0, 1} denotes whether the next
token yst will be determined according to the agent’s gener-
ation (Mt = 1) or the static dataset (Mt = 0).

Action at is the output token of agent at time t. If Mt = 1,
the agent will output one of the |V| tokens by sampling from
the probability distribution of the language model: at = ŷt.
If Mt = 0, The agent will give a NULL token.

Transition: T (st+1|st, at) transits st to st+1 at time t with

st+1 = st ∪ yst ∪Mt+1, (1)

yst =

{
ŷt, if Mt = 1

yt, if Mt = 0
(2)

M t+1 ∼ Bernoulli(pm) (3)

where ŷt is a token generated by the language model,
yt is a token from the dataset (e.g., the t-th token in the
ground-truth), and Mt+1 is sampled from a Bernoulli
distribution parameterized with pm, which means that
Mt+1 takes the value of 1 with a probability pm takes the
value 0 with a probability 1− pm.

Reward: R(st) = f(x, ys0, · · · , yst−1) quantifies how good
the generated sentence ys0, · · · , yst−1 is according to the
ultimate goal like the BLEU score or user satisfaction.
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Semi-offline RL is most comparable to online and offline
settings in the fully observable scenario shown in Fig. 1(c1).
Fully observable means that the model input (observation)
is equal to the state of the environment, meaning that the
language model is aware of all information in the state when
making a decision, i.e., ŷt ∼ p(ŷt|x, st; θ).

In this fully observable scenario, pm = 0 is equivalent
to the offline setting where the model optimizes its policy
from a completely static dataset. Conversely, when pm =
1, the configuration is in the online mode, allowing for
dynamic exploration of the maximum search space. When
pm ∈ (0, 1) is an intermidiate value, the semi-offline MDP
balances between dynamic exploration of the search space
and knowledge obtained from the static dataset, while also
finding an equilibrium between exploration and time cost.
More specifically, the time cost for semi-offline methods
can be computed with the following proposition.

Proposition 1 (Time cost when fully observable). Consider-
ing the fully observable scenario in which all information in
the states is observed by the language model to get sampled
tokens. Let us denote the minimum number of FPs required
to sample st as Ct and its expectation as E(Ct). We have

Ct =

t−1∑
t′=0

Mt′ , E(Ct) = tpm (4)

The proof is given in Appendix A.1. Proposition 1 shows
that when pm ∈ (0, 1), we could optimize the reward with
an intermediate optimization cost controlled by pm while
keeping the capability for exploring the environment.

In addition to the time cost, the intermediate methods whose
pm ∈ (0, 1) provides an additional view for exploration.
Compared with the offline setting, semi-offline methods
only utilize the static data as initial points for exploration in-
stead of seeing only the reward of static data points, thereby
allowing the model to get a more comprehensive understand-
ing about the final objective and identify better improvement
directions. Compared with the online setting, semi-offline
methods may find the optimal improvement directions with
a fewer number of samples. This sampling efficiency is
achieved by only exploring a vicinity of the static data point.
Thus, the space to be explored for semi-offline methods
(|V|Tpm) is exponentially smaller than that of the online
methods (|V|T ), making it easier for the language model
to understand the reward gain brought by different choices.
Even though the exploration space is limited, it is possible
that the knowledge explored in the vicinity of specific output
text can be generalized to other output text considering the
generalization ability of neural networks. This is verified
by our experiments, which show that semi-offline usually
performs equally good or better with much less time cost
compared with existing online or offline methods (Sec. 4 ).

3.2. RL Setting with Minimum Optimization Cost

Next, we move towards achieving the minimum opti-
mization cost while maintaining the effective exploration
capability of the agent. In particular, we are interested in
finding a semi-offline RL setting that could be optimized
with only 1 FP per instance, so that even large pretrained
language models could be optimized efficiently. Meanwhile,
we hope that the agent could still freely decide the degree
for exploration by choosing different values of pm.

We can see from Propsition 1 that the time cost in the fully
observable scenario cannot always be 1 FP for different
values of pm. In order to further speedup the optimization
method, we must remove the condition of full observation,
i.e. not requiring at to be a decision made after observing all
information in st. This scenario can be formulated by using
Partially Observable Markov Decision Process (POMDP).

Definition 2 (Semi-offline MDP when partially observable).
The MDP of the environment is the same with that in Def. 1.
However, the agent in POMDP takes action at based on
observation ot, which does not contain all information in st:

at = ŷt ∼ p(ŷt|ot; θ), Mt = 1 (5)

ot is a sub-sequence of st = (x,M0, y
s
0,M1 · · · , yst−1,Mt).

Losing information in st may significantly decrease the
probability to achieve optimal results. To derive an optimal
RL setting under the minimum time cost constraint, we
consider two research questions:

RQ1. Which information has to be removed from the obser-
vation in order to meet the minimum time cost constraint?

RQ2. What information needs to be retained in the obser-
vation to maximize the performance?

RQ1 can be answered with the following proposition.

Proposition 2 (Information loss with minimum time cost).
If sT can always be sampled within 1FP for ∀pm ∈ [0, 1],
then ot must not contain any exact information about sam-
pled tokens ŷt′ , ∀t ∈ [1, T ) and ∀t′ ∈ [0, t− 1].

The proof is given in Appendix A.2. This proposition can be
easily understood: if we want to achieve parallel generation
of different tokens, then when one token ŷt is generated, the
information of another token ŷt′ generated at the same time
can not be utilized for generating ŷt.

Proposition 2 allows us to define the maximum set of obser-
vations we can get at time step t when minimum time cost
can be achieved, which is important for answering RQ2.

Definition 3 (Maximum observation with minimum time
cost). If sT can always be sampled within 1FP for ∀pm ∈
[0, 1], the observation with the maximum information in st
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is omax
t = (x,M0, y

o
0, · · · ,Mt=1, y

o
t=1,Mt), where

yot =

{
NULL Mt = 1

yt Mt = 0
(6)

Def. 3 is useful for answering RQ2 as it characterizes the
asymmetric bias of RL methods, i.e., the error of the agent
with unlimited data, according to the following lemma.

Lemma 1 (Criteria for 0 asymmetric bias). According to
Theorem 1 and Definition 2.4 in (François-Lavet et al.,
2019), the additional error introduced by changing omax

t to
ot when the data is unlimited is 0, if for ∀t and ∀s

p(s|ot) = p(s|omax
t ) (7)

Another measure for performance is the overfitting error,
which depicts the additional error introduced due to lim-
ited data. The following lemma the criterion for achieving
minimum overfitting error bound.

Lemma 2 (Criteria for minimum overfitting error bound).
Accordingly to Theorem 3 in (François-Lavet et al., 2019),
the overfitting error bound is minimized when the number of
possible obervations |Ot| is minimized, where each ot ∈ Ot

is an element in set Ot.

Lemmas 1 and 2 provide a theoretical foundation to de-
cide whether a RL setting can achieve optimal performance.
Lemma 1 shows that all information useful for predicting s
should be kept in the observation, and Lemma 2 claims that
the observation should contain as less information as possi-
ble to avoid overfitting. This allows us to rule out methods
such as Scheduled Sampling (Bengio et al., 2015; Mihaylova
& Martins, 2019), which does not contain the information
of Mt and thus cannot satisfy Lemma 1. They also help
exclude observations that include additional information
such as yt when Mt = 1, which fails to satisfy Lemma 2.

According to these lemmas, we define optimal RL setting
under the minimum time cost constraint as follows:

Definition 4 (Optimal RL setting). In the optimal RL set-
ting, its observation o∗t should satisfy

DP1. Minimum time cost: sT can always be sampled
within 1 FP.

DP2. Minimum asymmetric bias: o∗t satisfies the criteria
for 0 asymmetric bias given by Lemma 1.

DP3. Minimum overfitting error bound: o∗t satisfies the
criteria for overfitting error bound given by Lemma 2.

We then prove that the optimal RL setting in Def. 5 could
be easily implemented by mixing static data and the mask
token, as shown in Fig. 1(c2), where [M ] denotes a mask

token. This masked observation setting fits naturally into
existing pretrained language models and can explore K
samples with only 1 FP. Formally, we define the RL setting
with masked observations as follows.
Definition 5 (RL setting with masked observations). The
masked observation is defined as oMt =x, yM0 , yM1 , · · · , yMt−1

where

yMt =

{
[M ] Mt = 1
yt Mt = 0

(8)

We then formally prove the optimality of masked observa-
tion with the following theorem.
Theorem 1 (Optimality of masked observation). oMt in
Def. 5 is o∗t in Def. 4.

The proof of Theorem 1 is given in Appendix A.3.

3.3. Optimization

3.3.1. RL LOSS FOR SOLVING MDP

POMDP defined in Def. 5 can be solved in the same way
as traditional MDPs. Here we use policy gradient because
pre-trained language models provide a natural initialization
of the policy. Specifically, we adopt the REINFORCE with
baseline (Williams, 1992) to reduce the variance among
different trajectories. Accordingly, the policy is optimized
with the following RL loss:

LRL = 1
K

∑K
k=1 −(R(Y k)− b)

∑
t log p(akt |oMt )

b =
∑

k R(Y k)

K
(9)

where K is the number of samples, k denotes the sample
index, Y k = (ak0 , · · · , akT−1) is the k-th sampled sentence,
and b is the baseline computed by averaging the rewards of
sampled sentences to reduce the variance.

Analysis of optimization cost. We can easily see that the
number of FPs needed for computing LRL is always 1,
irregardless of the number of samples. This is because that
different samples are obtained by using the same observation
oMt , thus can be obtained together with 1 FP.

Efficient estimation of token-wise rewards. Decomposing
LRL into token-wise rewards using the following proposi-
tion allows us to see that the RL setting with masked observa-
tions enable more efficient learning of token-wise rewards.
Proposition 3 (Token-level reward assignment). LRL in
Eq. 9 can be decomposed into token-wise reward Li

t:

Li
t = −Ci

t

K
log p(Vi|oMt )(Eo=oMt ,a=Vi

R(Y )−Eo=oMt
R(Y ))

(10)
where Vi is the i-th word token in the vocabulary, and Ci

t

denotes the number of samples that select the i-th word
token Vi at time step t.
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The proof is in Appendix A.4. Proposition 3 shows that esti-
mating how well the i-th token performs at time t requires
an accurate estimation of Eo=ot,a=ViR(Y )− Eo=otR(Y ).
This can be easily achieved in our semi-offline RL setting
with masked observations, since ot is always the same. In
comparison, ot is usually different for different samples in
the online and offline RL setting. Thus, they may require
more samples to accurately understand the contribution of a
single token Vi.

3.3.2. OVERALL OPTIMIZATION LOSS

We follow existing paradigm for RL training. Specifically,
pretrained language models are first fine-tuned with the
ground-truth labels to ensure a good starting point for RL
training. This is achieved by optimizing the MLE loss

LMLE =
∑

t∈|ygt|

log p(ygtt |x, ygt1 , , · · · , ygtt−1) (11)

where ygt is the ground-truth in the dataset.

We then perform RL training by simultaneously consider-
ing both the MLE loss and the RL loss. The MLE loss is
considered here to prevent the policy from drifting away
from the original dataset, which may lead to a reduction in
generation quality. This is achieved by minimizing

L = LMLE + λLRL (12)

where λ > 0 is a hyperparameter. During this phase, we
replace some tokens in ygt1 , , · · · , ygtt−1 with [M ] so that the
model can be better adapt to masks in the inputs.

4. Experiment
4.1. Experimental Setup

4.1.1. DATASETS

We conduct experiments on 1) a summarization dataset
CNN/DM (Hermann et al., 2015), where the goal is to
generate summaries for news articles; 2) a dialogue sum-
marization dataset SAMSum (Gliwa et al., 2019), in which
the focus is summarizing dialogues instead of news articles;
3) a natural question generation dataset NQG (Rajpurkar
et al., 2016), where the task is to generate questions that can
be answered by a specific segment of an article; 4) an ex-
treme summarization dataset XSum (Narayan et al., 2018),
which focus on generating highly abstractive summaries for
news articles from the BBC. More information about these
datasets can be found in Appendix C.

4.1.2. COMPARED METHODS

Base models. We fine-tune (FT) pre-trained language mod-
els such as BART (Lewis et al., 2020) and T5 (Raffel et al.,

2020) for each task. Specifically, for CNN/DM and SAM-
Sum we use BART and for SQuAD and XSum we use T5
and Pegasus (Zhang et al., 2020) respectively.

Additionally, we fine-tune the tasks with masks (M-FT) to
study the influence of involving masks during training. This
method is similar to FT but with the added step of randomly
masking a portion of the tokens in the targets, giving the
model the ability to predict the next token when given the
special token [M] on these downstream tasks.

Online methods. The online methods we compare include
the online generation of single-sample methods Self-Critic
(SC) (Paulus et al., 2018; Li et al., 2019) and Actor-Critic
(AC) (Konda & Tsitsiklis, 1999). Both methods are op-
timized using REINFORCE with baseline (Sutton et al.,
1999), where the baseline for SC is the greedy decoding
result of the agent, and AC uses a quality scoring critic
model to compute the reward. Average baseline (AVG) is
a multiple-sample approach, in which its RL loss using the
average baseline is a variant of the contrastive loss used by
BRIO (Liu et al., 2022)2.

Offline methods. The offline methods we compare are
GOLD (Pang & He, 2020) and BRIO (Liu et al., 2022),
where GOLD uses the original ground truth as the static
dataset in offline training, and BRIO uses the generated
results of the BASE model as the static dataset.

4.1.3. METRICS

Following (Liu et al., 2022; Bengio et al., 2015), We use
ROUGE scores including R-1, R-2, and R-L (Lin & Hovy,
2003) to evaluate the results on the summarization tasks:
CNN/DM, SAMSum, and XSum. For SQuAD, we fol-
low (Ushio et al., 2022) and adopt the BLEU score B-4 (Pa-
pineni et al., 2002), ROUGE scores (Lin & Hovy, 2003),
and METEOR score MTR (Banerjee & Lavie, 2005). We
directly use the corresponding metrics as the reward to be
optimized. For more implementation details, one can refer
to Appendix B.

4.2. Overall Performance

Tab. 1 shows the overall performance of different models
as well as their optimization cost (FP). We have three main
observations by analyzing the table.

First, our performance is significantly higher compared with
other methods with the same FPs (i.e., FP=N ). This is
because that our method is the only one that has the explo-
ration capability when FP is N . Other methods that have
the same optimization cost are either base models or offline
methods that only consider one sample.

Second, methods that only utilize one sample usually per-

2Proof can be found in Appendix D.
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Table 1. Overall performance. FP denotes the number of forward propagations required for optimization, N is number the instances
consumed by the model, K is the number of samples used, and L is the sentence length. ‘∗’ indicates our reproduced results.

GROUPS MODELS FP CNN/DM SAMSUM SQUAD XSUM

R-1 R-2 R-L R-1 R-2 R-L B-4 R-L MTR R-1 R-2 R-L

BASE
FT N 44.16 21.28 40.90 53.32 28.53 49.03 27.21 54.13 27.7 47.46 24.69 39.53
M-FT N 45.10 21.76 41.86 53.11 28.74 48.98 27.43 54.30 27.82 47.65 24.85 39.56

OFFLINE
GOLD N 45.40 22.01 42.25 53.18* 28.90* 49.11* 27.20* 54.43* 27.59* 45.85 22.58 37.65
BRIO NK 47.78 23.55 44.57 53.98* 29.11* 49.56* 27.17* 54.53* 27.64* 49.07 25.59 40.40

ONLINE
SC* NT 45.45 21.85 42.16 53.47 28.54 48.99 27.14 54.36 27.58 47.90 24.95 39.73
AC* NT 45.71 22.07 42.42 53.41 28.29 48.90 27.35 54.48 27.62 47.88 24.92 39.71
AVG* NTK 48.28 24.16 45.00 54.10 29.21 49.58 27.50 54.79 27.77 48.48 25.21 40.23

SEMI OURS N 48.56 24.26 45.41 54.14 29.28 50.33 27.78 54.93 28.37 48.61 25.56 40.51

Table 2. The results of combining the loss of BRIO and OURS.

MODELS
XSUM

R-1 R-2 R-L

BRIO 49.07 25.59 40.40
OURS 48.61 25.56 40.51
BRIO+OURS 49.23 25.98 41.01

Table 3. Optimization efficiency on SQuAD and SAMSum. Time
is measured in minutes.

MODELS #DATA
SQUAD SAMSUM

B-4 R-L TIME R-L TIME

OURS
8K 27.66 54.80 14.7 49.75 8.9

16K 27.64 54.75 29.3 49.96 18.0

BRIO 8K 27.42 54.36 18.8 49.39 9.3
16K 27.50 54.46 37.5 49.35 19.0

AVG
8K 27.62 54.70 121.0 49.09 135.8

16K 27.58 54.72 243.0 49.49 271.0

forms worse than multi-sample methods, even when they are
time-expensive online methods such as SC and AC). This
demonstrates the necessity to obtain more reward signals by
exploring the environment. Our method is the only one that
can increase the number of samples without increasing the
number of FPs required for optimization.

Third. our method performs better or equally good than
state-of-the-art methods that are much more expensive than
ours (e.g., BRIO and AVG). We achieve the best result on
three datasets, demonstrating the superiority of our semi-
offline setting in addition to the significantly reduced opti-
mization cost. Although our result in XSUM is only similar
with BRIO, we show that our method still brings additional
benefits. More specifically, Tab. 2 shows that combining our
method with BRIO results in improved performance.

4.3. Optimization Efficiency

To fully evaluate the performance of our method, it is im-
portant to consider not only the number of FPs, but also the
real time cost during optimization. To this end, we fix the
number of instances and compared the optimization speed
as well as model performance in Tab. 3. The experiments
were run on a machine with an Nvidia A40 GPU (memory:
48 GB) using a learning rate of 1e-6 and a batch size of 8
for all compared methods. The results show that our method
not only has the lowest training time consumption, but also
the best optimization speed on both the SQuAD and SAM-
Sum datasets. It is also worth noting that BRIO and AVG
use multiple target texts for the same source text for one
instance, which leads to increased memory usage on GPUs.
In contrast, our method is more memory efficient as it only
uses one target for each instance.

4.4. Ablation Study

We conduct an ablation study to investigate 1) the impact
of using an MDP that does not satisfy Lemma 1, and 2) the
effect of using different offline datasets for training.

4.4.1. DESIGN OF MDP

As mentioned in Sec.3, failing to satisfy Lemma 1 will result
in suboptimal results. We evaluate the correctness of this
statement by devising the following variants:

1. -MASK: remove the mask information, and the pm of the
environment is consistent with the main experiment (0.4);

2. -MASK, pm=1: also remove the mask information and
pm of the environment is set to 1;

3. +NOISY MASK: with mask information included, the
model receives part of the wrong mask information, i.e. the
environment tells the model that Mt = 0 when in fact the
environment’s Mt = 1;

As shown in Tab. 4, settings that completely remove the
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Table 4. Ablation study on variants that do not satisfy Lemma 1.

MODELS
CNN/DM SAMSUM SQUAD XSUM

R-1 R-2 R-L R-1 R-2 R-L B-4 R-L MTR R-1 R-2 R-L

OURS 48.56 24.26 45.41 54.14 29.28 50.33 27.78 54.93 28.37 48.61 25.56 40.51

MASK 47.66 23.42 44.32 53.33 28.68 49.38 27.13 54.53 28.14 48.31 25.20 40.11
MASK, pm=1 47.76 23.34 44.46 53.43 28.53 49.31 27.38 54.68 28.02 48.24 24.96 40.07
NOISY MASK 47.87 23.40 44.98 53.77 28.70 50.13 27.69 54.98 28.20 48.20 25.08 40.25

Table 5. Performance of using different static datasets.

MODELS
CNN/DM SAMSUM SQUAD XSUM

R-1 R-2 R-L R-1 R-2 R-L B-4 R-L MTR R-1 R-2 R-L

OURS (DATA+) 47.18 23.51 43.78 53.49 28.60 49.79 27.80 54.86 28.14 48.29 25.28 40.27
OURS (DATA-) 48.56 24.26 45.41 54.14 29.28 50.33 27.78 54.93 28.37 48.61 25.56 40.51

Table 6. Sensitivity of # sample on CNN/DM.

MODELS
CNN/DM

# SAMPLE FP R-1 R-2 R-L

BRIO
2 2X 46.02 22.21 42.71
4 4X 46.1 22.31 42.85

16 16X 47.78 23.55 44.57

OURS

2 1X 46.09 22.59 43.03
4 1X 47.05 23.33 43.87

16 1X 48.31 23.91 45.15
64 1X 48.56 24.26 45.41

mask information (-MASK and -MASK, pm=1) result in the
worst performance. This is because without mask informa-
tion, the model is unable to account for how the environment
mixes the dataset and model predictions, leading to inaccu-
rate estimation of the reward for current actions, resulting
in large variance of the reward signal and poor optimization
results. Partially removing the mask information (+NOISY
MASK), as opposed to completely removing it, is better in
terms of estimating the reward, as it allows for a portion of
signals to be received correctly.

4.4.2. DIFFERENT OPTIONS OF OFFLINE DATASET

In this part, we investigate the effect of using different static
datasets for model optimization. Consider K candidate tar-
gets obtained using diverse beam search or top-p sampling,
etc. We sort them by metrics such as ROUGE and collect
all sentences with the lowest metric among the K candidates
as DATA- and the highest metric as DATA+.

As shown in Tab. 5, using DATA- as the dataset gives better
results than DATA+. From an optimization perspective, we
believe that DATA- is easier to sample useful signals, because
the probability that it learns about how to further improve
the sentence is higher.

4.5. Sensitivity Analysis

Tab 6 shows how different number of samples impact the
model performance. We observe that when the same num-
ber of samples is used, we usually have with better results
compared with BRIO. This is probably due to the fact that
we can more efficiently estimate the reward of each token,
according to Proposition 3. Furthermore, in contrast to
BRIO, which requires more memory and FP cost to increase
the number of samples, our sampling does not introduce
additional memory and FP cost. So our method allows for a
larger number of samples, e.g. 64, which results in further
improved performance. No clear benefit can be seen by
continuing to increase the number of samples, e.g., 128.

5. Conclusion
We propose semi-offline reinforcement learning, a novel
paradigm that bridges the gap between online and offline
RL, and provides a theoretical foundation for comparing dif-
ferent RL settings. Our semi-offline RL approach achieves
a balance between effective exploration and minimum opti-
mization cost. Extensive experiments show that our semi-
offline RL approach is effective in various text generation
tasks and datasets, and yields comparable or usually better
performance compared to the state-of-the-art methods.
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A. Proofs
A.1. Proof of Proposition 1

Proposition 1 (FP cost,full observation)

Considering the fully observable scenario in which all in-
formation in the states is observed by the language model
to get sampled tokens. Let us denote the minimum number
of FPs required to sample st as Ct and its expectation as
E(Ct). We have

Ct =

t−1∑
t′=0

Mt′ , E(Ct) = tpm (13)

Proof. 1. First we prove Ct ≥
∑t−1

t′=0 Mt′ by using mathe-
matical induction.

When t = 0, C0 = 0, as s0 only contains the source X, no
FPs are needed.

When t = 1, C1 = M0 ≥
∑0

t′=0 Mt′

for t > 1, Assume that Ct−1 ≥
∑t−2

t′=0 Mt′ .

If Mt−1 = 1, the computing of at−1 ∼ p(at−1|st−1; θ)
needs 1 FP .

Ct = Ct−1 + 1 = Ct−1 +Mt−1 ≥
∑t−1

t′=0 Mt′ ,

if Mt−1 = 0,

Ct can not be less than Ct−1, Ct ≥ Ct−1 = Ct−1 +
Mt−1 ≥

∑t−1
t′=0 Mt′

2. Second we prove Ct ≤
∑t−1

t′=0 Mt′

we can get all Mt with 0 FP , the tokens {yst′ : yst′ =
yt,Mt′ = 0} are from the dataset and can be also gotten
with 0 FPs.

The left is {yst′ : yst′ = ŷt′ ,Mt′ = 1}, the size of it is∑t−1
t′=0 Mt′ , we can get it with at most

∑t−1
t′=0 Mt′FPs.

3. combing 1 and 2, we have ct =
∑t−1

t′=0 Mt′ .

E(Ct) =
∑t−1

t′=0 E(Mt′) =
∑t−1

t′=0 pm = tpm

A.2. Proof of Proposition 2

Proposition 2 (Information loss with minimum time cost)

If sT can always be sampled within 1FP for ∀pm ∈ [0, 1],
then ot must not contain any exact information about sam-
pled tokens ŷt′ ,

Proof. For t ∈ [1, T ), suppose that ot contains the exact
information of some ŷt′ . Then, there’s a time cost of at least
1FP in Ot.

Then at t, with probability pm > 0 one needs to compute
at = ŷt given ot.

Then getting st+1 requires at least 2FP=1FP (computing
ŷt′ )+1FP (computing at),

st+1 is a subsequence of sT , so sT also requires at least
2FP

A.3. Proof of Theorem 1

Theorem 1 (optimality of masked observation)

oMt in Def. 5 is o∗t in Def. 4

Proof. 1. Proving we can computing: at=ŷt within 1FP

at=ŷt ∼ p(ŷt|x, ym0 , · · · , ymt−1; θ) = p(ŷt|oMt ; θ)

The computation of p(ŷt|oMt ; θ) doesn’t need the exact
ŷt′ , t

′ < t. It does not violate Proposition. 2.

2. proving bias=0:

p(s|oMt ) =
∏

t′ p(y
s
t′ |omt )

p(yst′ |omt ) =

 p(yst′ |omt′−1) = p(yst′ |x, y<t′\m) ymt′ = [M]
ymt′ = yt ymt′ ̸= [M]

0 otherwise,
(14)

p(s|omax
t ) =

∏
t′ p(y

s
t′ |omax

t )

p(yst′ |omax
t ) =

 p(yst′ |omax
t′−1) = p(yst′ |x, y<t′\m) Mt = 1

ymt′ = yt Mt = 0
0 otherwise,

(15)

p(yst′ |omt ) = p(yst′ |omax
t ) and p(s|omax

t ) = p(s|oMt )

3. proving |OM
t | is minimum for all ϕ(omax

t ) satisfying 1
and 2.

First, we have |OM
t | = (|V|+ 1)t

Taking t=1 for an instance,

1. removing yM0 , ϕ′(omax
t ) = (x,M0,M1)

p(yst′ |ϕ′(omax
t )) =

{
p(yst′ |x,M0,M1) ymt′ = [M]

1
|V| ymt′ ̸= [M]

(16)

p(yst′ |ϕ′(omax
t )) ̸= p(yst′ |omax

t )

2. removing M0, ϕ
′′
(ot) = (x, yM0 ,M1)

p(yst′ |ϕ
′′
(ot)) =

{
pmp(yst′ |x, ỹ<t) + (1− pm) ymt′ = yst′

pmp(yst′ |x, ỹ<t) ymt′ ̸= yst′
(17)

p(yst′ |ϕ′′(omax
t )) ̸= p(yst′ |omax

t )
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A.4. Proof of Proposition 3

Proposition 4 (Token-level expected reward assignment)
Using Eq. 9 as our loss function, we can assign the ex-
pected reward to the specific token for each action Vi and
observation ot:

Li
t = −Ci

t

K
log p(Vi|oMt )(Eo=oMt ,a=Vi

R(Y )−Eo=oMt
R(Y ))

Proof. We first write down Eq. 9:

LRL = 1
K

∑K
k=1 −(R(Y k)− b)

∑
t log p(akt |oMt )

= 1
K

∑K
k=1

∑
t −(R(Y k)− b)log p(akt |oMt )

= 1
K

∑
t

∑K
k=1 −(R(Y k)− b)log p(akt |oMt )

(18)
After swapping the enumeration order of t and k, we then
remove the enumeration of t and consider the loss Lt for
some specific t:

Lt =
1
K

∑K
k=1 −(R(Y k)− b)log p(akt |oMt )

Then we add the enumeration of the actions, and Vi denotes
the i-th action. When sampling Y , for time step t, one Vi

may appear in multiple Y .

Lt =
1
K

∑K
k=1

∑|V|
i=1,Vi=ak

t
−(R(Y k)− b)log p(akt |oMt )

= 1
K

∑|V|
i=1

∑K
k=1,Vi=ak

t
−(R(Y k)− b)log p(akt |oMt )

We swapped the enumeration again and fix both i and t to
derive the Li

t

Li
t =

1
K

∑K
k=1,Vi=ak

t
−(R(Y k)− b)log p(akt |oMt )

= 1
K

∑K
k=1,Vi=ak

t
−(R(Y k)− b)log p(Vi|oMt )

As one Vi may appear in multiple Y . We can assume in
these samples, what we do is to fix Vi at time step t, and do
sampling at other positions. We regard the sample results
as different contexts for Vi at time step t. Then we can
compute the expected reward of Vi using these samples.

Li
t =

1
K − log p(Vi|oMt )

∑K
k=1,Vi=ak

t
(R(Y k)− b)

Let Ci
t =

∑
k=1 I(Vi = akt )

Li
t = −Ci

t

K log p(Vi|oMt )(

∑K

k=1,Vi=ak
t
R(Y k)

Ci
t

− b)

If Ci
t → ∞, we have

Li
t = −Ci

t

K log p(Vi|oMt )(Eo=ot,a=Vi
R(Y )− b)

From Eq. 9, we have

b =

∑
k R(Y k)

K

As K ≥ Ci
t , so K → ∞

b = Eo=otR(Y )

It is the expected reward without any position fixed for ot

Li
t = −Ci

t

K log p(Vi|oMt )(Eo=ot,a=Vi
R(Y )− Eo=otR(Y ))

B. Implementation details

Table 7. Implementation details. For CMM/DM,SAMSum,and
Xsum the ROUGE score is the average of ROUGE-1, ROUGE-2
and ROUGE-L. For Squad. the Reward is the average of BLEU-4
and ROUGE-L.

- CNN/DM SAMSUM SQUAD XSUM

BATCH SIZE 16 16 16 16
LEARNING RATE 3E-6 1E-6 3E-6 2E-6
λ(WEIGHT OF LRL) 20 3 4 1
# SAMPLE 64 64 64 64
pm(MASK RATE) 0.4 0.4 0.4 0.4
REWARD ROUGE ROUGE BLEU-4 + ROUGE ROUGE

C. Datasets Statistics

Table 8. Statistical information on the datasets.

- CNN/DM SAMSUM SQUAD XSUM

# TRAIN 287,113 14732 75,722 204,045
# DEV 13,368 818 10,570 11,332
# TEST 11,490 819 11,877 11,334
|Source| 822.3 120.8 149.4 429
|Target| 57.9 23.4 11.5 23.3

D. Deriving AVG. from BRIO
We introduce how to get the RL loss of AVG. from the
contrastive loss of BRIO (Liu et al., 2022). We first give
the original loss function in BRIO.

Lctr =
∑

i

∑
j>i max(0, f(Sj)− f(Si) + λij)

f(S) =
∑l

t=1 log pgθ
(st|D,S<t;θ)

|s|α

there are N samples, Si is the i-th sample, f(S) is the normal-
ized sum of the loglikelihood of tokens in S, —S— denote
the length of S, α and λ are two hyperparameters. the sen-
tences are sorted by some quality metric M, and Mi > Mj

Let’s consider the loss for each pair of sentences (i,j). The
function max(0, .), together with the sorted results, gives
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a condition of f(sj) − f(si) + λij > 0 and Mi < Mj . It
means when the order of the sum of loglikelihood disobeys
the order of quality, we should rerank SiandSj Then we
have:

Lij = I(Mi > Mj&fi < fj + λij)(
logPj

|sj |α − logPi

|si|α )

We can relax this condition, so we can derive the formulation
policy gradient.

1. To remove this condition, when the ordering is correct, if
the model has a random policy, we should keep optimizing
the probability of the best action to get a better return.

2. I(Mi > Mj) gives a discrete signal, which we can
replace with a continuous Mi −Mj

Then,

I(Mi > Mj&fi < fj + λij) ≈ Mi −Mj

We can calculate the loss with the new condition,

L =
∑

i,j(Mi −Mj)(
logPj

|sj |α − logPi

|si|α )

=
∑

i,j(
logPj

|sj |α )(Mi −Mj) +
∑

i,j −( logPi

|si|α )(Mi −Mj)

=
∑

i,j −(
logPj

|sj |α )(Mj −Mi) +
∑

i,j −( logPi

|si|α )(Mi −Mj)

= 2
∑

ij −
logPj

|sj |α (Mj −Mi)

= 2
∑

i

∑
j −

logPj

|sj |α (Mj −Mi)

= 2
∑

j −
logPj

|sj |α (
∑

i Mj −
∑

i Mi)

= 2
∑

j −
logPj

|sj |α (NMj −
∑

i Mi)

= 2N
∑

j −
logPj

|sj |α (Mj −
∑

i Mi

N )

For the j-th sample, Lj = − 2N
|sj |α logPj(Mj −

∑
i Mi

N )∑
i Mi

N can be regarded as the baseline averaging the reward
of N samples. It is in a formulation of REINFORCE with
baseline and is the same as the loss we use in Eq. 9 if we
ignore the coefficients.

For our compared method AVG. in Sec. 4, we use this
training loss for optimization.

E. Ablation on the using of different datasets

Table 9. Data Condition. Win rate of sampled results compared to
the greedy results.

MODELS CNN/DM SAMSUM SQUAD XSUM

OURS (DATA+) 27 % 15% 13% 11%
OURS (DATA-) 32 % 19% 18% 16%

To provide a numerical analysis, we calculate the propor-
tion of sampled sentences that are better than the greedy

decoding result (i.e. better than the current policy) in Tab. 9.
We found that DATA- is more likely to sample better sen-
tences for improving the current strategy. Even though we
fix the data as input, the optimization is not only for these
sentences. The mask information given by our environment
each time is random and does not allow the model to see
a complete and fixed sentence, which may represent more
abstract semantics and prevent overfitting, as per Lemma 2.
Additionally, even though we only perform exploration on
this data, the generalization ability of the neural model also
facilitates the results on the test set.

F. Discussion of Limitations
Parallel prediction of future tokens: One potential limita-
tion of our method is that the parallel prediction of future
tokens may result in a lack of fluency in the sentences upon
sampling, i.e., the two tokens predicted simultaneously may
lack correlation. However, we believe that using a multi-
layer transformer model as the base model can address this
issue. Our generative model is a stack of two already trained
K-layer transformer models, resulting in a 2K-layer model.
The first K-layers of the model make their own predictions
for generation, while the last K-layers take into account
predictions from the previous time step, leading to more
informed predictions. By only estimating the action distri-
bution information from the previous time step, the model
effectively models the unknown state through estimation in
the intermediate layers of the transformer, similar to a belief
function.

In terms of FP, assume the unit changes from the whole
model to one layer for a K-layer transformer model. There-
fore, 1 model-level FP is equivalent to K layer-level FPs.
While according to Theorem 1, the model cannot access
the sequential self-generated information under the 1-FP
setting, at the layer level, the higher layer can access some
of the sequential information from the lower layer during
the K FPs.

Relevance of tokens from dataset and model prediction:
Another possible disadvantage of our approach is that if data
replacement is performed after a period of model generation,
the current data may not be relevant to the previous model
generation. In light of this mismatch, our approach can be
seen as optimizing each fragment of the target. However,
as each fragment is predicted by the token from the same
data, the correlation between each fragment is partially pre-
served. We have currently experimented with the general
case, where pm randomly determines the sequence of masks,
and have achieved good results in the current experimental
settings.

We suggest further experimentation with mask replacement,
such as masking only the end of sentences or specific parts



715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769

Semi-Offline Reinforcement Learning for Optimized Text Generation

in advertisements for better results, considering that inter-
sentence associations are weaker than intra-sentence asso-
ciations. For practical applications, such as advertisements
generation, the adjective or numerical parts of the sentences
could be masked and optimized to generate more attractive
or factual descriptions. Meanwhile, the generative models
considered in our experiments are not bidirectional, and the
optimization method does not affect the model structure. In
this sense, the use of bidirectional models could be consid-
ered, but would require changes to the model structure and
inference method. In our experiments, the generative mod-
els we consider are not bidirectional, and the optimization
method does not affect the model structure.


