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Abstract

Embedding models have shown great power
in knowledge graph completion (KGC) task.
By learning structural constraints for each train-
ing triple, these methods implicitly memorize
intrinsic relation rules to infer missing links.
However, this paper points out that the multi-
hop relation rules are hard to be reliably mem-
orized due to the inherent deficiencies of such
implicit memorization strategy, making em-
bedding models underperform in predicting
links between distant entity pairs. To allevi-
ate this problem, we present Vertical Learn-
ing Paradigm (VLP), which extends embed-
ding models by allowing to explicitly copy tar-
get information from related factual triples for
more accurate prediction. Rather than solely
relying on the implicit memory, VLP directly
provides additional cues to improve the gen-
eralization ability of embedding models, espe-
cially making the distant link prediction sig-
nificantly easier. Moreover, we also propose
a novel relative distance based negative sam-
pling technique (ReD) for more effective op-
timization. Experiments demonstrate the va-
lidity and generality of our proposals on two
standard benchmarks. Our code is available at
https://github.com/rui9812/VLP.

1 Introduction

Knowledge graphs (KGs) structurally represent hu-
man knowledge as a collection of factual triples.
Each triple (h, r, t) represents that there is a rela-
tion r between head entity h and tail entity t. With
the massive human knowledge, KGs facilitate a
myriad of downstream applications (Xiong et al.,
2017). However, real-world KGs such as Freebase
(Bollacker et al., 2008) are far from complete (Bor-
des et al., 2013). This motivates substantial re-
search on the knowledge graph completion (KGC)
task, i.e., automatically inferring missing triples.
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Figure 1: Learning paradigm of embedding models.

As an effective solution for KGC, embedding
model learns representations of entities and rela-
tions with pre-designed relation operations. For
example, TransE (Bordes et al., 2013) represents
relations as translations between head and tail en-
tities. RESCAL (Nickel et al., 2011), DistMult
(Yang et al., 2015) and ComplEx (Trouillon et al.,
2016) model the three-way interactions in each
triple. RotatE (Sun et al., 2019), QuatE (Zhang
et al., 2019) and DualE (Cao et al., 2021) repre-
sent relations as rotations in different dimensions.
Rot-Pro (Song et al., 2021) further introduces the
orthogonal projection for each relation.

Essentially, embedding models learn structural
constraints for every factual triple during the train-
ing period. For example, for each training triple
(h, r, t), TransE constrains that the head embed-
ding h plus the relation embedding r equals the
tail embedding t. Such single-triple constraints
empower embedding models to implicitly perceive
(i.e., memorize) the high-order entity connections
and intrinsic relation rules (Sun et al., 2019). As
shown in Figure 1, by imposing the structural con-
straints (e.g., h + r = t in TransE) on the five
training triples, embedding models can memorize
the entity connection (x, r1 ∧ r2, z) and the rela-
tion rule r1 ∧ r2 → r. In this way, the missing link
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Model Score Function
g(Wr,1h+ br,Wr,2t)

Space
Wr,1 br Wr,2 g(q,k)

RESCAL (Nickel et al., 2011) h⊤Wrt I 0 Wr q⊤k R
TransE (Bordes et al., 2013) −∥h+ r− t∥ I r I −∥q− k∥ R
TransR (Lin et al., 2015) −∥Wrh+ r−Wrt∥ Wr r Wr −∥q− k∥ R
DistMult (Yang et al., 2015) h⊤diag(r)t diag(r) 0 I q⊤k R
ComplEx (Trouillon et al., 2016) Re(h⊤diag(r)t) diag(r) 0 I Re(q⊤k) C
RotatE (Sun et al., 2019) −∥h ◦ r− t∥ diag(r) 0 I −∥q− k∥ C

Table 1: The score functions and GSF settings of several models, where ◦ denotes the Hadamard product.

(x, r, z) can be inferred at test time without any ex-
plicit prompt. We refer to this single-triple learning
paradigm as Horizontal Learning Paradigm (HLP),
since the relation rules are implicitly induced by
the horizontal paths between head and tail entities.

However, this paper shows that the HLP-based
embedding models are hard to reliably memorize
the multi-hop relation rules, which is attributed to
inevitable single-triple bias and high-demanding
memory capacity. The unreliable multi-hop rela-
tion rules in the implicit memory cannot serve as
rational basis for prediction, leading to the inferior
performance of embedding models in predicting
links between distant entity pairs. This brings us a
question: is there a general paradigm for embed-
ding models to alleviate this problem of HLP and
achieve superior performance?

We give an affirmative answer by presenting Ver-
tical Learning Paradigm (VLP), which endows em-
bedding models with the ability to explicitly con-
sult related factual triples (i.e., vertical references)
for more accurate prediction. Specifically, to an-
swer (h, r, ?), VLP first selects N relevant refer-
ence queries in the training graph, and then treats
their ground-truth entities as the reference answers
for embedding models to jointly predict the target t.
This learning process can be viewed as an explicit
copy strategy, which is different from the implicit
memorization strategy of HLP, making it signifi-
cantly easier to predict distant links. Moreover, to
effectively optimize the models, we further propose
a novel Relative Distance based negative sampling
technique (ReD), which can generate more infor-
mative negative samples and reduce the toxicity of
false negative samples. Note that VLP and ReD are
both general techniques and can be widely applied
to various embedding models. Our contributions
are summarized as follows:

• We show that existing embedding models un-
derperform in predicting links between dis-
tant entity pairs, since they are hard to reliably
memorize the multi-hop relation rules.

• We present a novel learning paradigm named
VLP, which can empower embedding mod-
els to leverage explicit references as cues for
more accurate prediction.

• We further propose a new relative distance
based negative sampling technique named
ReD for more effective optimization.

• We conduct in-depth experiments on two stan-
dard benchmarks, demonstrating the validity
and generality of the proposed techniques.

2 Preliminaries

To elicit our proposal from a general paradigm per-
spective, we give a bird’s eye view of existing em-
bedding models in this section. We first review the
problem setup of KGC task. Afterwards, we sum-
marize a generalized score function of embedding
models and describe how the models learn to pre-
dict new links (i.e., horizontal learning paradigm).

2.1 Problem Setup

Given the entity set E and relation set R, a knowl-
edge graph can be formally defined as a collec-
tion of factual triples D = {(h, r, t)}, in which
head/tail entities h, t ∈ E and relation r ∈ R. KGC
task aims to infer new links by answering a query
(h, r, ?) or (?, r, t). As an effective tool for this
task, embedding model learns representations of
entities and relations to measure each candidate’s
plausibility with a pre-designed score function.

2.2 Generalized Score Function

Based on a series of previous works (Nickel et al.,
2011; Bordes et al., 2013; Wang et al., 2014; Lin
et al., 2015; Yang et al., 2015; Trouillon et al., 2016;
Sun et al., 2019; Gao et al., 2020; Song et al., 2021),
we summarize a generalized score function (GSF)
of embedding models. To facilitate presentation,
we only describe the query case of (h, r, ?), while
(?, r, t) can be similarly conduced.



Given a query (h, r, ?) and a candidate answer t,
GSF first maps the head embedding h ∈ Xde to the
query embedding q ∈ Xdr with a relation-specific
linear transformation:

q = Wr,1h+ br, (1)

where X ∈ {R,C} is the embedding space, de and
dr are the embedding dimensions of entities and
relations, Wr,1 ∈ Xdr×de and br ∈ Xdr denote the
relation-specific projection matrix and bias vector.

Then, GSF uses another linear function to gen-
erate the answer embedding k ∈ Xde from the tail
embedding t ∈ Xde :

k = Wr,2t, (2)

where Wr,2 ∈ Xdr×de denotes the relation trans-
formation matrix for tail projections.

Finally, the plausibility score of the triple (h, r, t)
is calculated by a similarity function g:

score = g(q,k). (3)

By combining the above three steps, we formally
define the generalized score function fg as follows:

fg(h, r, t) = g(Wr,1h+ br,Wr,2t). (4)

With different choices of Wr,1, br, Wr,2 and g,
GSF can be instantiated as specific score functions
of existing models. Table 1 exhibits several popular
methods and their corresponding GSF settings.

2.3 Horizontal Learning Paradigm
With the pre-defined score functions, embedding
models commonly follow the horizontal learning
paradigm, which constructs the single-edge con-
straints to implicitly memorize high-order entity
connections and intrinsic relation rules.

Take RotatE to process the triples in Figure 1 as
an example. By imposing the rotation constraints
on three triples (a, r1, b), (b, r2, c) and (a, r, c), Ro-
tatE is able to perceive a two-hop entity connection
and further induce a two-hop relation rule:

b = a ◦ r1
c = b ◦ r2
c = a ◦ r

⇒ r = r1 ◦ r2. (5)

Similarly, the high-order connection can also be
captured by constraining (x, r1, y) and (y, r2, z):{

y = x ◦ r1
z = y ◦ r2

⇒ z = x ◦ r1 ◦ r2. (6)

Finally, by combining Equation (5) and (6), RotatE
is capable of inferring the missing link (x, r, z).

3 Motivation

The motive of our work originates from an obser-
vation that embedding models underperform in pre-
dicting links between distant entity pairs (refer to
Appendix A for more details). Since the effective-
ness of embedding models is largely determined
by the ability to learn intrinsic relation rules (Sun
et al., 2019; Song et al., 2021; Li et al., 2022), such
inferior performance reveals that the models are
hard to memorize the multi-hop relation rules. We
attribute this deficiency to the multi-hop bias accu-
mulation and high-demanding memory capacity in
the implicit memorization strategy of HLP.

Multi-hop Bias Accumulation The HLP-based
embedding models implicitly perceive the multi-
hop relation rules by constraining each training
edge as shown in Section 2.3. Nevertheless, the
single-edge constraints inevitably have biases dur-
ing the optimization, which will accumulate with
the increase of relation hops. This bias accumula-
tion makes the memorized relation rules unreliable,
leading to the deficient generalization ability for
link prediction between distant entities. Concretely,
considering the single-edge biases, the rule learn-
ing process in Equation (5) can be rewritten as:

b = a ◦ r1 ◦ ϵ1
c = b ◦ r2 ◦ ϵ2
c = a ◦ r ◦ ϵ0

⇒ r = r1 ◦ r2 ◦ ϵabc, (7)

where ϵabc = ϵ−1
0 ◦ ϵ1 ◦ ϵ2 is the cumulative bias.

Note that ϵabc is triple-dependent, which makes it
intractable for other queries, e.g., (x, r, ?) in Figure
1, to rely on this rule for prediction.

High-demanding Memory Capacity The HLP-
based models essentially learn the general rules
from the relation paths between head and tail en-
tities. With the increase of path length, the quan-
tity of different paths (or rules) expands exponen-
tially (Wang et al., 2021). This requires intensive
memory to memorize the whole crucial relation
rules. However, the modeling capacity of embed-
ding models is insufficient to meet this requirement.
Since these models constrain basic edges to form
long-range paths following the bottom-up design
of HLP, they are more inclined to memorize the
low-order rules and forget the high-order rules.

Design Goal We seek to develop a general tech-
nique to alleviate the "Hard to Memorize" problem
of existing embedding models.
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Figure 2: Vertical learning paradigm consisting of refer-
ence query selection, reference graph construction and
reference answer aggregation.

A straight-forward strategy is to directly extract
and process the enclosing subgraph between head
and tail entities (Teru et al., 2020), which can avoid
the multi-hop bias accumulation. However, such a
sophisticated procedure needs to be executed once
for each candidate triple, which brings enormous
training and test time costs. For example, GraIL
(Teru et al., 2020) takes about 1 month to infer
on the full FB15k-237 test set (Zhu et al., 2021).
Moreover, the enclosing subgraph extraction is also
constrained by the path length, severely harming
the performance of link prediction.

Therefore, this paper aims to propose a general
framework which can: (1) alleviate the deficiency
of HLP; (2) enjoy the merits of validity and gener-
ality with tractable computational costs.

4 Methodology

4.1 Vertical Learning Paradigm

Inspired by the notion that “to copy is easier than to
memorize” (Khandelwal et al., 2020), we propose a
vertical learning paradigm for KGC task. Different
from the implicit memorization strategy of HLP,
VLP provides embedding models with the ability
to reference related triples as cues for prediction,
which can be viewed as an explicit copy strategy.

More concretely, we present the overall pipeline
of VLP in Figure 2. Given a query (h, r, ?), the
procedure of predicting tail t can be divided into
reference query selection, reference graph construc-
tion and reference answer aggregation.

Reference Query Selection For the input query
q = (h, r, ?), the VLP-based models first select N
entity-relation pairs (hi, r) in the training graph as
the reference queries {qi}Ni=1, which can provide

relevant semantics for prediction. For example,
to answer (Jill Biden, lives_in, ?), we can refer-
ence the answer-known query (Joe Biden, lives_in,
?) for target information, since Joe Biden and Jill
Biden are highly related. One intuitive way for the
reference selection is to choose the top-k entities in
terms of the cosine similarity between h and all en-
tities involved in relation r during the optimization.
Nevertheless, this approach incurs high computa-
tional costs and is intractable. Numerically, the
time complexity of such similarity calculation is
O(nrde), where nr is the number of r-involved
entities and nr ≈ |E| ≫ de in the worst case.

In this work, inspired by the small world princi-
ple (Newman, 2001; Liben-Nowell and Kleinberg,
2007), in which related individuals are connected
by short chains (e.g., Joe Biden and Jill Biden are
directly connected by the marriage relationship),
we introduce the graph distance based approach
for efficient reference query selection. Specifically,
we select N r-involved entities {h}Ni=1 closest to
h in terms of their relative graph distance (i.e., the
shortest path length on the training graph). The cor-
responding ground-truth targets ti of the reference
queries qi = (hi, r, ?) are referred as reference
answers. In this way, VLP-based models can pre-
retrieve N related references for every input query,
thus incurring no additional computational cost for
training and inference.

Reference Graph Construction After the ef-
ficient reference retrieval, we construct an edge-
attributed reference graph to integrate the selected
N reference queries and their corresponding an-
swers with the input query. As shown in Figure 2,
the input query q is regarded as the central node,
and the reference answers ti are treated as the N
neighbors. VLP-based models aims to leverage the
explicit reference answers for prediction. However,
since there is no guarantee that ti is the same as the
target tail t, it is unreasonable to directly copy ti
without any modification. For example, to answer
(England, capital_is, ?), we cannot directly copy
the answer of (France, capital_is, ?).

Therefore, we introduce the query similarity
sq,qi as the edge attribute between q and ti. By con-
sidering the query differences, VLP-based models
are able to adaptively copy the reference answers.
For example, to answer the input (England, capi-
tal_is, ?), we can adjust the target information from
Paris in terms of the difference between (France,
capital_is, ?) and the input query.



Reference Answer Aggregation With the con-
structed reference graph, VLP-based models learn
to explicitly gather target information from neigh-
bor answers for prediction. Specifically, based on
the generalized functions summarized in Section
2.2, the central node embedding q and neighbor
node embedding ki can be defined as:

q = Wr,1h+ br,

ki = Wr,2ti.
(8)

The edge embedding sq,qi (i.e., query similarity
embedding) can be further defined as:

sq,qi = q− qi

= Wr,1(h− hi).
(9)

Then, combining the neighbor nodes and edge at-
tributes, VLP-based models aggregate the reference
answers to generate the final embedding t′:

t′ = σ(Wagg[tN ,q]),

tN =
1

N

N∑
i=1

(Wnodeki +Wedgesq,qi),
(10)

where σ(·) is a nonlinear activation function (e.g.,
tanh), [·, ·] is the concatenate operation, Wagg,
Wnode and Wedge are shared projection matrices.
The output t′ should be close to the target tail em-
bedding t in the latent space, whose score can be
revealed by the cosine similarity:

fc(h, r, t) =
t⊤t′

∥t∥∥t′∥
(11)

We highlight that the VLP’s aggregating strategy
in Equation (10) differs from GNN-based methods
(Vashishth et al., 2020; Bansal et al., 2019; Shang
et al., 2019; Schlichtkrull et al., 2018). For each
query (h, r, ?), regardless of whether the reference
query is a neighbor of h in the training graph, VLP-
based models can directly attend to the reference
answer throughout the entire training set.

Score Function For each triple (h, r, t) in the test
sets, to alleviate the deficiency of HLP and predict
more accurately, we integrate the vertical score fc
with the horizontal score fg to form the final score
function f with a weight hyper-parameter λ:

f(h, r, t) = fc(h, r, t) + λfg(h, r, t). (12)

Note that VLP can be widely applied to various
embedding models, since the reference aggregation
is designed on the generalized score function.

Complexity Analysis Compared with the vanilla
embedding models, the VLP-based models only
bring a few additional parameters, i.e., the shared
aggregation matrices in Equation (10). Therefore,
the VLP-based models have the same space com-
plexity as the HLP-based models, i.e., O(|E| de). In
the aspect of time cost for processing single triple,
the time complexity of vanilla embedding mod-
els is O(drde), derived from the generalized score
function in Equation (4). The VLP-based models
require the same computation for each reference,
which produces the time complexity of O(Ndrde).
Such computation is tractable since a small N (no
more than 8) is enough for VLP-based models to
achieve high performance in the experiments.

4.2 Optimization

During training, we jointly optimize fc and fg by a
two-component loss function with coefficient α:

L = L1 + αL2. (13)
.

For the former one, we use the cross-entropy
between predictions and labels as training loss:

L1 = −
|E|∑
i=1

yi log pi, (14)

where pi and yi are the i-th components of p and y,
respectively; p ∈ R|E| is calculated by applying the
softmax function to the "1-to-All" (Lacroix et al.,
2018a) results of fc; y ∈ R|E| is the one-hop vector
that indicates the position of true label.

For the later one, negative sampling has been
proved quite effective in extensive works (Song
et al., 2021; Sun et al., 2019). Formally, for a posi-
tive triple (h, r, t), we first sample a set of entities
{t′i}li=1 (or {h′i}li=1) based on the pre-sampling
weights p0 to construct negative triples (h, r, t′i) (or
(h′i, r, t)). With these samples, a negative sampling
loss is designed to optimize embedding models:

L2 =−
l∑

i=1

p1(h
′
i, r, t

′
i) log σ(−f(h′i, r, t

′
i)− γ)

− log σ(γ + f(h, r, t)), (15)

where γ is a pre-defined margin, σ is the sigmoid
function, l denotes the number of negative samples,
(h′i, r, t

′
i) is a negative sample against (h, r, t). Im-

portantly, p1(h′i, r, t
′
i) is the post-sampling weight,

which determines the proportion of (h′i, r, t
′
i) in the

current optimization.



Figure 3: Comparison between ReD and Self-Adv.

As shown in Figure 3, recent works (Song et al.,
2021; Chao et al., 2021; Gao et al., 2020; Sun et al.,
2019) utilize the self-adversarial technique (Self-
Adv), in which the pre-sampling weights follow a
uniform distribution and the post-sampling weights
increase with the negative scores. Differently, in
this work, we propose a new approach named ReD
based on the relative distance, which can draw
more informative negative samples and reduce the
toxicity of false negative samples.

For the pre-sampling weights, considering the
deficiency of embedding models as described in
Section 3, the distant entities are usually hard to
be predicted as the target answer. It reveals a ra-
tional priori, i.e., distant entities are more likely
to form easy (meaningless) negative triples. This
inspires us to sample more hard (informative) neg-
ative triples based on the relative graph distance
dg. As shown in Figure 3, the pre-sampling weight
in ReD decreases with the increase of graph dis-
tance between head and tail entities. Formally, for a
training query (h, r, ?), we pre-sample entities t′ to
construct negatives from the following distribution:

p0(h, r, t
′) =

exp−α0dg(h, t
′)∑|E|

i=1 exp−α0dg(h, t′i)
, (16)

where α0 is the pre-sampling temperature, dg(·, ·)
outputs the relative graph distance between two
entities. Note that the calculation of dg(·, ·) is a
one-time preprocessing step, which will not bring
additional training overhead.

For the post-sampling weights, Self-Adv assigns
greater weights to high scoring negative triples in
Equation (15), which makes the optimization focus
more on hard negatives. However, this monotoni-
cally increasing strategy ignores the issue of false
negatives, since triples with higher scores are more
likely to be correct. A more rational posteriori
is that the easy negatives are underscored and the

false negatives are overscored. In this work, we
use the relative latent distance between the posi-
tive and negative samples to determine whether the
negative score is too low or too high. Specifically,
ReD defines the post-sampling weights as a distri-
bution that first rises and then falls as the negative
score increases. As shown in Figure 3, if the nega-
tive score is significantly greater than (or less than)
the positive score, this negative sample is more
likely to be false (or easy), and thus be assigned a
small weight in the Equation 15. Formally, based
on the positive score c = fg(h, r, t) and negative
score ni = fg(h

′
i, r, t

′
i), the post-sampling weight

in ReD is defined as:

p1(h
′
i, r, t

′
i) =

expw(h′i, r, t
′
i)∑

j expw(h
′
j , r, t

′
j)
,

w(h′i, r, t
′
i) =

{
α1ni, ni ≤ c+ τ

α1c− α2mi, ni > c+ τ
,

mi = ni − c− τ, (17)

where α1 and α2 are the post-sampling tempera-
tures. By combining the sampling weights in Equa-
tion (16) and (17), ReD is able to generate and
process higher quality negatives for optimization.

5 Experiment

5.1 Experimental Setup
Datasets We evaluate our proposal on two
widely-used benchmarks: WN18RR (Dettmers
et al., 2018) and FB15k-237 (Toutanova and Chen,
2015). More details can be found in Appendix B.

Baselines To verify the effectiveness and general-
ity of our proposal, we combine the proposed tech-
niques with three representative embedding models
DistMult (Yang et al., 2015), ComplEx (Trouillon
et al., 2016) and RotatE (Sun et al., 2019). For
performance comparison, we select a series of em-
bedding models as baselines in Table 2.

Implementation Details We fine-tune the hyper-
parameters with the grid search on the validation
sets. Please see Appendix C for more details.

5.2 Main Results
The experimental results are reported in Table 2.
Compared to DistMult, ComplEx and RotatE, all
three VLP-based versions achieve consistent and
significant improvements on both datasets. For
example, on WN18RR and FB15k-237 datasets,
RotatE-VLP outperforms RotatE with 2.2% and



WN18RR FB15k-237

Model MRR H@1 H@3 H@10 MRR H@1 H@3 H@10

TransE (Bordes et al., 2013)† .226 - - .501 .294 - - .465
ConvE (Dettmers et al., 2018) .43 .40 .44 .52 .325 .237 .356 .501
A2N (Bansal et al., 2019) .45 .42 .46 .51 .317 .232 .348 .486
QuatE (Zhang et al., 2019) .481 .436 .500 .564 .311 .221 .342 .495
CompGCN (Vashishth et al., 2020) .479 .443 .494 .546 .355 .264 .390 .535
PairRE (Chao et al., 2021) .455 .413 .469 .539 .348 .254 .384 .539
DualE (Cao et al., 2021) .482 .440 .500 .561 .330 .237 .363 .518
Rot-Pro (Song et al., 2021) .457 .397 .482 .577 .344 .246 .383 .540
CAKE (Niu et al., 2022) - - - - .321 .226 .355 .515
REP (Wang et al., 2022) .488 .439 .505 .588 .354 .262 .388 .540
ReflectE (Zhang et al., 2022) .488 .450 .501 .559 .358 .263 .396 .546

DistMult (Yang et al., 2015)⋄ .439 .392 .453 .534 .308 .220 .337 .485
DistMult-VLP .462 .421 .474 .545 .347 .256 .379 .528

ComplEx (Trouillon et al., 2016)⋄ .466 .423 .484 .552 .328 .235 .354 .511
ComplEx-VLP .494 .450 .508 .580 .354 .258 .396 .536

RotatE (Sun et al., 2019) .476 .428 .492 .571 .338 .241 .375 .533
RotatE-VLP .498 .455 .514 .582 .362 .271 .397 .542

Table 2: Link prediction results on WN18RR and FB15k-237. Best results are in bold and second best results are
underlined. [†]: Results are taken from (Nguyen et al., 2018). [⋄]: we re-evaluate DistMult and ComplEx based on
the open source codes from (Sun et al., 2019), achieving better results than those reported in the original papers.

Distance dht
1

(47.7%)
2

(12.7%)
3

(29.3%)
4

(10.3%)

DistMult 0.971 0.331 0.293 0.039
DistMult-VLP 0.989 0.345 0.328 0.053
Relative Imp. +1.9% +4.2% +11.9% +35.9%

ComplEx 0.979 0.367 0.396 0.058
ComplEx-VLP 0.985 0.400 0.449 0.102
Relative Imp. +0.6% +9.0% +13.4% +75.9%

RotatE 0.986 0.375 0.378 0.091
RotatE-VLP 0.991 0.391 0.456 0.111
Relative Imp. +0.5% +4.3% +20.6% +22.0%

Table 3: MRR on each distance split of WN18RR.

2.4% absolute improvements in MRR, respectively.
Such obvious gains reveal that the vertical contexts
generally inject valuable information into the em-
bedding models for more accurate prediction.

Moreover, one can further see that ComplEx-
VLP and RotatE-VLP perform competitively with
the SOTA baselines. Specifically, RotatE-VLP sur-
passes all the baselines in terms of most metrics
over both datasets; ComplEx-VLP also achieves
promising performance on FB15k-237 compared
with the baselines. The superior performance fur-
ther confirms the effectiveness of our proposal.

5.3 Fine-grained Performance Analysis

Performance on Distance Splits Table 3 reports
the performance of three VLP-based models on the
distance splits defined in Appendix A. One can ob-
serve that: (1) the VLP-based embedding models
outperform the vanilla models across all the dis-
tance splits; (2) the VLP models achieve greater
relative improvement on the split with larger dht.
For example, as dht increases from 1 to 4, RotatE-

Relation Name RotatE QuatE RotatE-VLP

hypernym 0.154 0.172 0.191
instance_hypernym 0.324 0.362 0.376
member_meronym 0.255 0.236 0.269
synset_domain_topic_of 0.334 0.395 0.411
has_part 0.205 0.210 0.220
member_of_domain_usage 0.277 0.372 0.375
member_of_domain_region 0.243 0.140 0.391
derivationally_related_form 0.957 0.952 0.958
also_see 0.627 0.607 0.635
verb_group 0.968 0.930 0.968
similar_to 1.000 1.000 1.000

Table 4: MRR on each relation of WN18RR.

VLP achieves 0.5%, 4.3%, 20.6% and 22.0% rela-
tive improvements over RotatE on the MRR metric,
respectively. This reveals that the explicit vertical
contexts can significantly alleviate the limitations
of memory strategy in the embedding models.

Performance on Each Relation To verify the
modeling capacity of our proposal from a fine-
grained perspective, we explore the performance of
VLP-based models on each relation of WN18RR
following (Zhang et al., 2019). As shown in Ta-
ble 4, compared to RotatE and QuatE, RotatE-VLP
surpasses them on all the 11 relation types, confirm-
ing that the explicit reference aggregation brings
superior modeling capacity.

Performance on Mapping Properties Table 5
exhibits the performance of our proposal on differ-
ent relation mapping properties (Sun et al., 2019)
in FB15k-237. We observe that RotatE-VLP con-
sistently outperforms RotatE across all RMP types.
Such advanced performance owes to the powerful
modeling capability of the explicit copy strategy.



Task RMPs RotatE RotatE-VLP

Predicting
Head

(MRR)

1-to-1 0.498 0.504
1-to-N 0.475 0.478
N-to-1 0.088 0.126
N-to-N 0.260 0.286

Predicting
Tail

(MRR)

1-to-1 0.490 0.499
1-to-N 0.071 0.093
N-to-1 0.747 0.770
N-to-N 0.367 0.388

Table 5: MRR on mapping properties in FB15k-237.

5.4 Impact of Reference Quantity
VLP aggregates target information from N refer-
ences pre-selected before training. We investigate
the impact of N on the performance (MRR) of
VLP-based models. Figure 4 shows the results
on WN18RR dataset. As expected, all three VLP-
based models with more vertical references achieve
better performance than the ones with fewer refer-
ences, since the aggregation of sufficient references
brings the superior modeling capacity. Moreover,
we can observe that the models can achieve high
performance with N less than 10, making the com-
putation tractable as discussed in Section 4.1.
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Figure 4: Impact of reference quantity on WN18RR.

5.5 Ablation Study of ReD
To explore the effectiveness of the proposed ReD,
we conduct ablation studies on the pre-sampling
and post-sampling parts of the three VLP-based
models. Table 6 shows the detailed results. We can
observe that the removal of any part reduces the
performance, which demonstrates that ReD makes
the model focus more on meaningful negative sam-
ples for more effective optimization. Moreover, we
also integrate ReD with original embedding models
to verify the generality of this technique. Please
refer to Appendix D for more results.

6 Related Work

Embedding models can be roughly categorized into
distance based models and semantic matching mod-
els (Chao et al., 2021).

WN18RR FB15k-237

Model MRR H@10 MRR H@10

DistMult-VLP 0.462 0.545 0.347 0.528
w/o pre. 0.456 0.537 0.338 0.518
w/o post. 0.458 0.542 0.344 0.525

ComplEx-VLP 0.494 0.580 0.354 0.536
w/o pre. 0.491 0.579 0.344 0.529
w/o post. 0.493 0.580 0.345 0.531

RotatE-VLP 0.498 0.582 0.362 0.542
w/o pre. 0.493 0.578 0.355 0.540
w/o post. 0.496 0.580 0.359 0.539

Table 6: Ablation study of ReD.

Distance based models use the Euclidean dis-
tance to measure the plausibility of each triple. A
series of work is conducted along this line, such as
TransE (Bordes et al., 2013) TransH (Wang et al.,
2014), TransR (Lin et al., 2015), RotatE (Sun et al.,
2019), PairRE (Chao et al., 2021), Rot-Pro (Song
et al., 2021), ReflectE (Zhang et al., 2022) and so
on. TransE and RotatE are the most representative
distance-based models, which represent relations as
translations and rotations, respectively. Semantic
matching models utilize multiplicative functions
to score each triple, including RESCAL (Nickel
et al., 2011), DistMult (Yang et al., 2015), Com-
plEx (Trouillon et al., 2016), QuatE (Zhang et al.,
2019), DualE (Cao et al., 2021) and so on. Typi-
cally, RESCAL (Nickel et al., 2011) defines each
relation as the tensor decomposition matrix. Dist-
Mult (Yang et al., 2015) simplifies the relation
matrices to be diagonal for preventing overfitting.
However, existing embedding models essentially
follow the horizontal learning paradigm, underper-
forming in predicting links between distant entities.

Moreover, some advanced techniques are pro-
posed to improve embedding models, such as graph
encoders (Schlichtkrull et al., 2018; Shang et al.,
2019; Vashishth et al., 2020; Wang et al., 2022) and
regularizers (Lacroix et al., 2018b). Note that our
proposals are orthogonal to these techniques, and
one can integrate them for better performance.

7 Conclusion

In this paper, we present a novel learning paradigm
named VLP for KGC task. VLP can be viewed as
an explicit copy strategy, which allows embedding
models to consult related triples for explicit refer-
ences, making it much easier to predict distant links.
Moreover, we also propose ReD, a new negative
sampling technique for more effective optimization.
The in-depth experiments on two datasets demon-
strate the validity and generality of our proposals.



Limitations

Although our proposal enjoys the advantages of
validity and generality, there are still two major
limitations. First, VLP cannot directly generalize
to the inductive setting, since VLP is defined based
on the score functions of transductive embedding
models. One potential direction is to design an
inductive reference selector for emerging entities.
Second, how to efficiently select more helpful refer-
ences for prediction is still an open challenge. We
expect future studies to mitigate these issues.
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relative graph distance dht between head and tail
entities of each test triple, we divide the test sets of
WN18RR and FB15k-237 into four splits. Three
representative embedding models (DistMult, Com-
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and split ratios on the two datasets. We can observe
that all three embedding models achieve promising
results in link prediction between close entities,
while the performance drops significantly in the
prediction between distant entities. For example,
on the split where dht = 1 in WN18RR, RotatE
achieves excellent performance (MRR of 0.986),
while on the split where dht = 2, the performance
of RotatE decreases by about 62% (MRR of 0.375).
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Figure 5: The MRR results of three popular embedding models (DistMult, ComplEx and RotatE) tested on each
distance split in WN18RR and FB15k-237 datasets. The blue diamond marks denote the ratio of each test split.

Dataset WN18RR FB15k-237

#entity 40,943 14,541
#relation 11 237
#training 86,835 272,115
#validation 3,034 17,535
#test 3,134 20,466

Table 7: Statistics of five standard benchmarks.

Hyperparameter Search Space

b {256, 512, 1024}
d {500, 1000}

α0, α1, α2 {0.1, 0.5, 1.0, 1.5}
λ {0.1, 0.3, 0.5, 0.7, 0.9}
γ {4, 6, 8, 11, 15}

Table 8: Hyperparameter search space.

2018) and FB15k-237 (Toutanova and Chen, 2015)
datasets are subsets of WN18 (Bordes et al., 2013)
and FB15k (Bordes et al., 2013) respectively with
inverse relations removed. WN18 is extracted from
WordNet (Miller, 1995), a database featuring lex-
ical relations between words. FB15k is extracted
from Freebase (Bollacker et al., 2008), a large-scale
KG containing general knowledge facts.

C Implementation Details

We use Adam (Kingma and Ba, 2015) as the op-
timizer and fine-tune the hyperparameters on the
validation dataset. The hyperparameters are tuned
by the grid search, including batch size b, embed-
ding dimension d, negative sampling temperatures
{αi}2i=0, loss weight λ and fixed margin γ. The
hyper-parameter search space is shown in Table 8.

D Embedding Models with ReD

To verify the generality of the proposed negative
sampling technique ReD, we integrate ReD with

WN18RR FB15k-237

Model MRR H@10 MRR H@10

DistMult-Adv 0.439 0.534 0.308 0.485
DistMult-ReD 0.445 0.539 0.315 0.491

ComplEx-Adv 0.466 0.552 0.328 0.511
ComplEx-ReD 0.470 0.554 0.335 0.516

RotatE-Adv 0.476 0.571 0.338 0.533
RotatE-ReD 0.478 0.572 0.344 0.536

Table 9: Results of DistMult, ComplEx and RotatE with
different negative sampling techniques. X-Adv denotes
the embedding model X combined with Self-Adv.

three representative embedding models (i.e., Dist-
Mult, ComplEx and RotatE) for KGC task. As
shown in Table 9, compared to Self-Adv, the em-
bedding models combined with ReD achieve better
performance on both datasets, since ReD guaran-
tees more informative negative samples from both
pre-sampling and post-sampling stages.


