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Predicate pushdown is a widely adopted query optimization. Existing systems and prior work mostly use
pattern-matching rules to decide when a predicate can be pushed through certain operators like join or groupby.
However, challenges arise in optimizing for data science pipelines due to the widely used non-relational
operators and user-defined functions (UDF) that existing rules would fail to cover. In this paper, we present
MagicPush, which decides predicate pushdown using a search-verification approach.MagicPush searches for
candidate predicates on pipeline input, which is often not the same as the predicate to be pushed down, and
verifies that the pushdown does not change pipeline output with full correctness guarantees. Our evaluation
on TPC-H queries and 200 real-world pipelines sampled from GitHub Notebooks shows that MagicPush
substantially outperforms a strong baseline that uses a union of rules from prior work – it is able to discover
new pushdown opportunities and better optimize 42 real-world pipelines with up to 99% reduction in running
time, while discovering all pushdown opportunities found by the existing baseline on remaining cases.
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1 INTRODUCTION

Pipelines such as data science pipelines and ETL pipelines are more and more prevalent nowadays
due to emerging applications of machine learning and data-driven business intelligence. These
pipelines are processing a growing amount of data, and efficiency becomes crucial while challenging.
It is tempting to apply well-studied optimizations in relational data processing to data science
pipelines, yet challenges arise due to twomajor differences. First, data science pipelines often contain
non-relational operators, including spread-sheet operators like pivot and unpivot, and schema-
changing operators like drop-column and change-column-type. Second, user-defined functions
(UDF) are widely used, particularly in systems where pipelines are developed in languages like
Python or R with rich syntax and abundant libraries. Simply applying SQL query optimizations to
data science pipelines would not be optimal as these non-relational operators and UDFs will be
skipped while very often they can be optimized together with relational operators.
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In this paper, we focus on one well-known optimization, predicate pushdown, and explore how
to achieve it in data science pipelines with non-relational operators and UDFs. Predicate pushdown
moves predicates to where the data lives in order to filter out data earlier rather than later. It
can optimize a query by filtering data before it is transferred over the network, skipping reading
entire files or chunks of files, or filtering data before loading into memory. Furthermore, query
processing can also be potentially accelerated with less data to be processed. Prior research and
existing databases widely apply this optimization, achieving query speedup as much as 65× [32].

When a predicate can be pushed down is often decided by pattern-matching rules in relational
databases. For instance, predicates involving columns from one table can be pushed through inner
join, and predicates on grouping columns can be pushed down through group-by, etc. However,
these rules are pattern-matching operators with predicates, far from sufficient for data science
pipelines due to non-relational operators and UDFs: very often a predicate can be pushed through
an operator/UDF, but such optimization opportunity is missed as existing rules do not cover this
particular pattern. Furthermore, an explosion of new rules would be required to handle the variety
of non-relational operators and the rich syntax of predicates/UDFs in data science pipelines, making
the rule-based approach hard to scale and manage.
In this work, we propose using a search-and-verification method instead of designing more

pattern-matching rules. The main idea is to enumerate predicates on the input table and then use
symbolic execution [60] to verify whether a pushdown is correct. Symbolic execution runs queries
on tables whose cell values are symbols instead of concrete values, then verifies the equivalence of
query results before and after predicate pushdown. It can handle arbitrary predicates, operators, and
UDFs as it essentially runs two programs and compares their output. This technique has been widely
used in prior work, like showing the inequivalence of SQL queries with counter examples [27],
checking the correctness of new non-relational query plans [66] or optimized Spark queries [56],
etc.
However, the major limitation of this approach is that the verification is bounded: symbolic

tables only replace concrete field values with symbols, so the number of rows in the table is often
fixed. Verifying correctness on a symbolic table of 2 rows alone only guarantees the correctness on
any table with 2 rows but insufficient for table of other sizes, and it would be impossible to verify
on all sizes up to infinity. Prior work overcomes this by either limiting the scope of query verified
to only SPJ (selection, projection and join) queries which bounded verification can be proved to be
sufficient for full verification [65, 75], or proposing specific verification mechanism to optimize
one type of operator like FGH-rules that optimizes recursive datalog queries [64] or SparkLite that
optimizes aggregation operator [37]). However, the scope of queries is either a subset of or different
from the data science operators, and their techniques cannot be applied for predicate pushdown
optimization.
We propose a more general method to tackle this limitation for predicate pushdown on a set

of operators. Specifically, we introduce pre-conditions for small model property (SMP) [54],
which are sufficient to extend a bounded verification to a full verification on table of all sizes.
They essentially enables an inductive proof in which as long as the correctness holds on a table of
≤ 𝑁 rows, it holds on a table of 𝑁 + 1 rows. The pre-conditions satisfy SMP itself, as a result, we

only need to verify the precondition and the pushdown correctness on the base case, e.g.,

symbolic table with ≤ 2 rows, and naturally obtain a full correctness guarantee on a table

of arbitrary rows.

With this novel verification mechanism, we propose MagicPush, a search-verification predicate
pushdown optimizer: given an operator with embedded UDF and a predicate on its output, Magic-
Push enumerates candidate predicates on the operator’s input (which may not necessarily be the
same as the predicate on the output), and verifies the correctness of each candidate. The goal of

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 136. Publication date: June 2023.



Predicate Pushdown for Data Science Pipelines 136:3

MagicPush is to find predicates on the input table in order to load as little data into the pipeline as
possible without changing the pipeline output. To achieve this goal, MagicPush includes a search
algorithm to quickly find a selective and correct candidate. It also includes several other techniques
to better optimize more pipelines, like 1) searching for additional predicate on the pipeline input
when no predicate can be pushed down, 2) handling black-box library functions in UDF, 3) handling
NULL values, etc.

In sum, this work makes the following contributions.
• We propose a verification-based method to decide the correctness of predicate pushdown that

is able to achieve great coverage of operators, UDFs, and predicates (predicate can contain UDF as
well). In particular, we propose pre-conditions for the small-model property that enable efficient
correctness checking on bounded-size symbolic tables while providing a full correctness guarantee.
• We explore handling rich library functions by treating them as black-box and leveraging

uninterpretable functions in SMT solver while still ensuring pushdown correctness.
• We design a search algorithm to search for the predicate candidates on the input table. It works

together with the verification to find the most selective pushed-down predicate, which is often not
exactly the same as the predicate to be pushed down.
• We improve the symbolic execution of operators to incorporate the computation of NULL

values widely used in data pipelines.
• We extend the process to also return additional predicates on the pipeline input when no

predicate can be pushed down. These additional predicates, although doing extra work, reduce the
amount of data loaded to the pipeline and often improve performance too.
• We evaluateMagicPush on relational queries (TPC-H) and sampled real-world data science

pipelines fromGitHubNotebooks. Our results show thatMagicPush has high coverage on operators
(92.9%) and UDFs (99.7%). Compared to a rule-based baseline that uses a union of rules from prior
work,MagicPush is able to discover all pushdown opportunities that are discovered by the baseline
in both workloads, and generates more selectively predicates in 42 out of 200 pipelines, reducing
the running time by up to 99%.
The paper is structured as follows. We first motivate the challenge with examples in Section 2,

followed by introducing the syntax of operators and UDFs that MagicPush supports in Section 3.
We present the major technique, how MagicPush pushes predicate through a single operator
in Section 4 and how it pushes through a pipeline in Section 5. Then we discuss MagicPush’s
limitation in Section 6, and finally show the evaluation in Section 7.

2 MOTIVATION

2.1 Limitation of rule-based approach

We use examples abridged from real-world data pipelines to show the challenges of deciding
predicate pushdown for non-relational operators and UDFs and why existing rule-based methods
would not suffice.We formally define the predicate pushdown problem as follow: given an operator

𝑂𝑝 and a predicate 𝐹 on its output, we want to search for predicate 𝐺 on its input such

that 𝐹 (𝑂𝑝 (𝑇 )) = 𝑂𝑝 (𝐺 (𝑇 )) holds on any table 𝑇 . We start with individual operators and will
discuss predicate pushdown in data science pipelines in Section 5.
Case study 1. Figure 1(1) shows a group-by operator implemented with Pandas API [7] with

a max aggregation on the daily revenue. The result of group-by goes through a filter 𝐹 selecting
rows with max_revenue>1000. This predicate can be pushed down given the rule described in [44]
which says that pushdown is correct under max aggregation when predicates on the aggregation
column is in the form of col_aggr>const or col_aggr≥const.
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Fig. 1. Pushdown with group-by on UD-aggregations.

Figure 1(2) shows the exact same group-by with a different syntax, where the max aggregation
is defined as a UDF. This UDF works like a reduce function that takes an accumulative value 𝑣
(initially 0, omitted for simple illustration) and a row, applying accumulatively to each row in the
group. The above rule to pushdown through max aggregation should extend to analyze the UDF
syntax to understand that it is doing a max aggregation.

Figure 1(3) shows a variation of this group-by operator, where it counts the max weekend revenue.
Although the exact predicate can be pushed down, a more selective predicate 𝐺 , weekday in [6,7]

& revenue>1000, is also correct. A new rule is needed to generate this more selective predicate that
checks if condition in UDF.
However, not all if-conditions can be directly added to 𝐺 . Figure 1(4) shows an aggregation

taking price*quantity as revenue when the revenue field is NULL. This branch condition, revenue!=NULL
& revenue>1000, cannot be directly pushed down as in (3). Instead, a correct𝐺 should be (revenue==NULL

& price*quantity>1000) | (revenue!=NULL & revenue>1000), which requires careful rewrite to combine
𝐹 and the predicate extracted from the if-condition.

From this case study, we can see that even though the pushdown for max aggregation has been
proposed before, it is far from enough for various max-like user-defined aggregations.
Case study 2. Figure 2 shows an unpivot computation, expanding each row of multiple years’

revenue (column Y2005 and Y2006) to a set of rows, each containing one year and its corresponding
revenue. Pushdown rules discussed in earlier work [31] pushes a predicate on the store column
down to the unpivot input, as illustrated in Figure 2(1). However, predicate on other columns, like
the revenue column in Figure 2(2) (revenue>2000) have not been discussed before. Such predicate can
be added to reduce the amount of data processed by pivot (keeping 𝐹 instead of simply pushing 𝐹
down), where 𝐺 looks very different from 𝐹 .
Pushdown rules for pivot and unpivot have been studied by prior work, yet not comprehen-

sive enough to cover widely-exist opportunities. Besides, other non-relational operators like
get_dummies [9] and explode [8] have not been studied and no rule is proposed.
Case study 3. Figure 3 shows a UDF embedded in Pandas apply API [5]. This UDF adds a new

column relative_rev to table df computing the relative revenue compared to the same store’s revenue
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Fig. 2. Predicate pushdown with unpivot operator.

of year 2006, which is obtained from another table df_old. To do so, for each row in table df, it
divides the current row’s revenue (i.e., row.quantity*row.price) by the first revenue of the same store
of year 2006 selected from df_old.

Fig. 3. Pushdown with a UDF involving two tables.

Assuming a predicate 𝐹 , year>=2008 & relative_rev!=0, on the UDF’s output. By looking at the
UDF, we know that only rows from df_old of year 2006 are used to compute the relative revenue,
so a predicate extracted from the UDF, year==2006 can be added to df_old. Meanwhile, 𝐹 can only be
pushed to table df, with part of 𝐹 year>=2008 directly pushed down; the other part, relative_rev!=0
involving the newly computed column to remove “dirty” data of 0 relative revenue, can filter earlier
on df, removing rows with 0 quantity or price that computes 0 revenue. No existing rule is able to
handle pushdown for such UDF+predicate and designing new rules is apparently complicated to
cover many UDF patterns.

2.2 Limitation of bounded verification

We use examples to show the limitation of bounded verification and why it may lead to incorrect
pushdown. Briefly, bounded verification computes 𝐹 (𝑂𝑝 (𝑇 )) and𝑂𝑝 (𝐺 (𝑇 )) on a table𝑇 whose cell
values are symbols, obtains expressions containing symbols as output, and uses SMT solver [20] to
check the equivalence of these two expressions under all possible values of symbols. It is bounded
as the number of rows in 𝑇 is fixed. Although we may verify on multiple 𝑇 s with different sizes, it
is only reasonable to try 𝑇 s with a few rows under time budget, and a wrong choice of the bound
would make the verification unsound, as we will show below.
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Row-to-row transform operator. We start with a simple operator that transforms a row into
another row. Because each row is processed individually, verifying on a single-row 𝑇 is enough to
guarantee the correctness of any table.
Groupby-sum operator. For this operator, if we still verify on a single-row 𝑇 , even when the

verification passes on a certain 𝐺 , i.e., 𝐹 (𝑂𝑝 (𝑇 )) = 𝑂𝑝 (𝐺 (𝑇 )) holds on all single-row tables, 𝐺 can
still be incorrect. Consider 𝑂𝑝 , 𝐺 , and 𝐹 as shown in Listing 1, where the equivalence holds on all
single-row tables because the sum of a group is the simply the revenue of that row. However, this
pushdown is apparently incorrect. In fact, it requires verifying on 𝑇 with at least two symbolic
rows to ensure correctness.

Listing 1. Pushdown through Groupby-sum, need ≥2 rows
df = df.filter(revenue > 1000) # G

df = df.groupby(month).agg({ revenue:sum}) # Op

df = df.filter(max_revenue > 1000) # F

Top3 operator. Unfortunately, 2 rows may not be enough for other operators. Consider a Top3

operator with corresponding𝐺 and 𝐹 shown in Listing 2. This𝐺 wouldmake 𝐹 (𝑂𝑝 (𝑇 )) = 𝑂𝑝 (𝐺 (𝑇 ))
hold on any table of 2 rows as Top3 has no effect (hence a non-op) on such table. However, this is an
incorrect pushdown: assuming a table with 4 rows valued (0)(1)(2)(3), 𝐹 (𝑂𝑝 (𝑇 )) returns an empty
table while 𝑂𝑝 (𝐺 (𝑇 )) returns (3). In fact, it requires at least 4 symbolic rows to check whether 𝐺
is correct.

Listing 2. Pushdown through Top3, need ≥4 rows
df = df.filter(v > 2) # G

df = df.sort_by(v, 'asc').top(3) # Op

df = df.filter(v > 2) # F

As we can see, no single universal bound exists for all operators, and this bound can depend on
the operator and the predicate. Therefore overcoming this limitation and avoiding case-by-case
analysis is crucial to building an automatic pushdown optimizer.

3 OPERATOR AND UDF SYNTAX

Data science pipeline. A data science pipeline consists of processing steps transforming raw data
into forms ready to answer business questions or train ML models. We focus on pipelines in which
each step is presented as an operator like join or groupby, and operators are connected by dataflow.
Such pipelines are quite common in data preparation tools like Trifacta [18], PowerQuery [12],
Tableu [16] and data prep libraries like Pandas [7]. A relational query in its logical query plan is
also a pipeline composed of operators.
Operator. We mainly focus on Pandas operators that update an existing table or transform

table(s) into another table. Pandas has about 145 such operators1, which are still constantly evolving
(as the Pandas APIs are under active development), hence deciding pushdown for each individual
operator would become very hard to maintainable. A careful analysis of the APIs reveals that
many share similar functionality and how predicate can be pushed through, so we group them
into 14 core operators, as listed in Table 1, which simplifies our reasoning and avoids duplicating
implementations for pushdown verification.

These 14 operators include three categories. The first are commonly-seen operators like Filter,
InnerJoin, GroupBy, etc. They often have specific semantics on how to handle the table and only
embed UDFs for flexible local computations on rows, for instance, user-defined predicate in Filter or
aggregation in GroupBy. The second category may embde UDFs that define how tables are processed.

1We do not consider operators that do not return a dataframe, like “info” that prints out dataframe statistics.
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Table 1. Core Operators implemented byMagicPush.

Operator syntax embedded UDF input/output type Description SMP pre-condition

Filter predicate row→bool selection in SQL ROW-TO-ROW
InnerJoin join-predicate row1 ,row2 →bool innerjoin in SQL ROW-TO-ROW
RowTransform row-transform row1 →row2 user-defined row/scalar value transform ROW-TO-ROW
DropColumn NA NA projection in SQL ROW-TO-ROW
Reorder compare row1 ,row2 →bool all ops with no effect under bag semantics ROW-TO-ROW
GroupBy aggregation row1 ,row2 →row1 group-by and aggregation via UDF AGGREGATE
Pivot aggregation row1 ,row2 →row1 pivot[10] operator AGGREGATE
CumAggr aggregation row1 ,row2 →row1 accumulative aggregate prior rows AGGREGATE
UnPivot NA NA unpivot operator[10] ROW-EXPAND
RowExpand explode row row1 → [row2 ]𝑘 convert one row into up to k rows via UDF ROW-EXPAND
TopK compare row,row→bool get the first K rows after sorted TOPK
LeftOuterJoin join-predicate row1 ,row2 →bool left/right outer join in SQL LEFTOUTERJ
GroupedMap (df)*-transform (table𝑖 )*→table transform grouped sub-tables to sub-table SUBPIPELINE
RowIterPipeline (row+(df)*)-transform row1 ,(table𝑖 )*→row2 iterate rows in a table to output a new row ROW-ITER-PIPELINE
Other NA NA other operators without correct pushdown NA

We call such UDF “subpipeline”, which resembles a subquery in SQL. This category includes two
operators,GroupedMap and RowIterPipeline:GroupedMap embeds UDF specifying how each grouped
sub-table is transformed, and RowIterPipeline embeds UDF specifying how each row in the left
table computes with the right table into a new row (e.g., an UDF shown in Figure 3 contains a
subpipeline composed of operators Filter, RowTransform and Groupby as described in Figure 8). The
third category noted as “Other” in Table 1 represents operators where predicates cannot be pushed
through, like transpose, and we will discuss them in Section 6.
UDF embedded in operator. Many Pandas APIs accept function as a parameter, like apply,

transform, query, etc. MagicPush supports such UDFs embedded in an operator with specific input-
output type as listed in Table 1, e.g., InnerJoin with custom join predicate which takes in two rows
with different schemas and returns a boolean.

op := Filter(table, UDF)
InnerJoin(table, table, UDF)
RowTransform(table, UDF)
DropColumn(table, UDF)
Reorder(table, UDF)
GroupBy(table, [column]+, UDF)
Pivot(table, ([column]+), UDF)
CumAggr(table, UDF)
Unpivot(table, [column]+, UDF)
RowExpand(table, UDF)
TopK(table, UDF)
LeftOuterJoin(table, table, UDF)
GroupedMap(table, [column]+, UDF)
RowIterPipeline(table, table, UDF)

UDF := (’lambda’ [r-param]+ : [stmt]+ return_stmt) | (’lambda’ [t-param]+ : [op]+)
r-param := scalar | row | [row]𝑘
scalar := int | string | float | bool | ...
row := [scalar]𝑘
t-param := table | row
table := [row]𝑛
stmt := assignment | if_stmt | for_stmt | while_stmt | import_stmt |

with_stmt | del_stmt | ’pass’ | ’break’ | ’continue’
return_stmt := ’return’ r-param
op := Filter(table,UDF) | InnerJoin(table,table,UDF) | ...
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The syntax of operators and UDF is listed as above. The first category of operator embeds UDF
accepting parameters with a constant size like scalar value, row or row set with a constant size
(i.e., r-param) and returning a constant-size r-param. MagicPush supports UDF in Python syntax,
consisting of core Python statement types [15] like assignment, if and for statement (i.e., stmt),
only excluding statements that might have side effects like assertion or raise that throws error. To
achieve this, MagicPush includes a Python analyzer to analyze input and output types of UDF,
as well as a Python interpreter that can compile and execute Python code symbolically during
verification.

The second operator category, GroupedMap and RowIterPipeline, embed UDF that may receive
tables (i.e., t-param) as parameter. The body of such UDF is a subpipeline composed of other operators
(i.e., op), which has the same syntax as in a normal pipeline.

Comparing with SQL UDFs. UDFs in data science pipelines slightly differ from SQL UDFs in
two ways. First, data pipeline UDFs widely use Python libraries compared to a much smaller set of
functions in SQL UDFs, hence supporting uninterpreted libraries is crucial for MagicPush. Second,
data pipeline UDFs are mostly embedded in APIs due to the rich and flexible API design while SQL
UDFs sometimes contain cursor loops that actually perform an operator’s work. For example, an
aggregation that conditionally concatenates a string column into one string may be implemented
with a cursor loop because some DMBS may not support such aggregation function, while Pandas’
groupby API can embed any aggregation written in Python. So we focus on supporting embedded
UDFs but not cursor loops. We believe prior work like Aggify[39], QBS[26] and Casper[22] can be
leveraged to rewrite loop into operator and MagicPush can optimize for SQL UDFs as well.

4 PUSHDOWN FOR SINGLE OPERATOR

We first introduce how MagicPush pushes a predicate through one operator, i.e., given 𝐹 and 𝑂𝑝 ,
find the most selective predicate 𝐺 such that 𝐹 (𝑂𝑝 (𝑇 )) = 𝑂𝑝 (𝐺 (𝑇 )). We also consider predicate
𝐺 that additionally adds to the input without removing 𝐹 when 𝐹 cannot be pushed down (i.e.,
𝐹 (𝑂𝑝 (𝑇 )) = 𝐹 (𝑂𝑝 (𝐺 (𝑇 )))), which may still improve performance by making 𝑂𝑝 process less data.
For illustration purposes, we call the former case equivalent pushdown and the latter superset
pushdown.
Figure 4 shows the workflow. The predicate search module returns one candidate 𝐺 each time

following selectivity order (more selective first). Each candidate 𝐺 then goes through equivalence
verification to check whether 𝐹 (𝑂𝑝 (𝑇 )) = 𝑂𝑝 (𝐺 (𝑇 )). Upon passing, MagicPush returns this 𝐺
and stops. Otherwise, it moves on to superset verification and returns 𝐺 if passes. When both fail,
MagicPush generates the next candidate. BecauseMagicPush verifies more selective candidate
prior to less selective one, it always returns the most selective𝐺 that is correct, either equivalent
or superset.MagicPush tries a limited number of candidates and returns a true filter (that filters
out no rows) if no correct filter is found.

Fig. 4. HowMagicPush searches for 𝐺 given 𝑂𝑝 and 𝐹 .

When verifying a candidate, shown in Figure 5,MagicPush creates a symbolic table based on
the input table schema. It runs symbolic execution on this symbolic table to check whether 𝐹 , 𝑂𝑝 ,
and 𝐺 satisfy the pre-condition for the small-model property. If not, MagicPush would not be able
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Fig. 5. HowMagicPush verifies one candidate 𝐺 .

to guarantee 𝐺 ’s correctness and simply decides that 𝐺 fails. Then MagicPush continues to check
the verification target 𝐹 (𝑂𝑝 (𝑇 )) = 𝑂𝑝 (𝐺 (𝑇 )) on the symbolic table and returns fail or pass. The
process for superset verification is similar, only to replace the pre-condition and the verification
target.

4.1 Bounded verification with SMT solver

In this section we introduce how to verify 𝐹 (𝑂𝑝 (𝑇 )) = 𝑂𝑝 (𝐺 (𝑇 )) using symbolic execution.
MagicPush computes this equation on a symbolic table of fixed size, producing a logic formula to
be solved using the SMT solver. This technique has been used in prior work [27, 56, 62, 66] and we
adapt it for data science operators. Specifically, we introduce two extra symbols, a NULL indicator
associated with each cell value and a row-exist indicator associated with each row, and modify the
symbolic execution to incorporate the computing of these two symbols.

Fig. 6. Demonstration of symbolic execution with NULL indicator and row-exist indicator.

Symbolic table representation. We use symbols to represent values in a table rather than
concrete values. To handle NULL values, we add a NULL-indicator, i.e., a symbol attached to each
value to represent whether the value is not null, hence each cell is represented by a pair of symbols.
An example shown in Figure 6(1), where symbols like v1,v2 represent column values and b1,b2 are
NULL-indicators (b1 is true when v1 is not null, etc). We add another symbol associated with each
row, row-exist, an indicator where true value means that the row exists. This indicator is true in the
initial symbolic table and will be computed after applying filter 𝐹 or 𝐺 .

Running filters. As filters are running on a symbolic table instead of a concrete table, whether
a row survives a filter is computed from symbols of that row. As we introduce additional row-exist
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symbol, running filter simply resets this symbol, as an example shown in Figure 6(5): after running
filter 𝐺 , revenue>1000, the row-exist symbol is updated to an expression like v2>1000 where v2 is the
symbol representing the first row’s revenue.
Symbolic operator execution.We build a Python interpreter with symbolic execution that

allows running arbitrary UDF in Python syntax and implement each operator in Python. Different
from standard symbolic program execution [60], MagicPush computes NULL-indicator associated
with each value. Specifically, at each computational byte-code like binary add, MagicPush returns
a pair of values: an if-else expression choosing from four potential results depending on the values
of two inputs are NULL or not, and an expression as the result’s NULL-indicator. For instance, the
yellow-shaded area in Figure 6(3) shows the computation of a binary max: MagicPush returns a
pair of expressions, the max of values v2,v4 when both are not null and true as NULL-indicator, or
v2 when only v2 is not null and true as NULL-indicator, etc.
The row-exist symbol may affect NULL-indicator because rows in the symbolic table may not

be present, so the actual NULL-indicator is the conjunction of both its original NULL-indicator
and corresponding row-exist value. For instance, in Figure 6(6), when computing the max, the actual
NULL-indicator used for revenue v2 becomes b2 && v2>1000, and similarly for v4.
Checking 𝐹 (𝑂𝑝 (𝑇 )) = 𝑂𝑝 (𝐺 (𝑇 )). The equivalence checking examines pair of values in every

cell in the output symbolic table after running 𝐹 (𝑂𝑝 (𝑇 )) and 𝑂𝑝 (𝐺 (𝑇 )) to see whether they are
equivalent using the constraint solver. Due to the presence of NULL-indicator, the two cells are equal
only when their NULL-indicators are equal, and their values are equal when the NULL-indicator is
true (i.e., their values only matter when not null). Presented formally, two cells, represented by
(𝑣, 𝑏) and (𝑣 ′, 𝑏′) are equal when 𝑏 == 𝑏′ ∧ (𝑏 → 𝑣 == 𝑣 ′).

4.2 Extending to full verification

The verification using SMT solver is bounded, and in this section, we introduce how to extend it
to a full verification using pre-condition. Briefly, we find pre-condition for small model property
(SMP) [46, 47]: as long as 𝑂𝑝 , 𝐹 and 𝐺 satisfy the pre-condition, verification of 𝐹 (𝑂𝑝 (𝑇 )) =

𝑂𝑝 (𝐺 (𝑇 )) on a small, finite-size table yields a full verification. Furthermore, the pre-condition
is an expression to be computed from 𝐹 , 𝑂𝑝 , and 𝐺 , and itself also satisfies SMP. With such a
pre-condition, we are able to obtain a full verification by merely checking the pre-condition, then
𝐹 (𝑂𝑝 (𝑇 )) = 𝑂𝑝 (𝐺 (𝑇 )) on the small, finite-size symbolic table.
The magic behind such a pre-condition is that it enables inductive proofs of 𝐹 (𝑂𝑝 (𝑇 )) =

𝑂𝑝 (𝐺 (𝑇 )). When the pre-condition is satisfied, and the equivalence holds on all tables 𝑇 where
|𝑇 | ≤ 𝑁 , we can prove that it holds on all tables 𝑇 ′ where |𝑇 ′ | = 𝑁 + 1. With such proof, we only
need to show the equivalence on the base case, i.e., a table with a small number of rows, and the
inductive proof guarantees the correctness of all tables.

These pre-condition varies across operators; we summarize core operators into 6 categories with
their pre-conditions and base-case table size listed in Table 2. Due to the limited space, we only sketch
the proof for three categories, including the inductive proof for 𝐹 (𝑂𝑝 (𝑇 )) = 𝑂𝑝 (𝐺 (𝑇 )) and a proof
showing that the pre-condition itself satisfies SMP. The complete proof is implemented in Coq [1] (an
interactive proof assistant) and released at [13]. Superset verification (𝐹 (𝑂𝑝 (𝑇 )) = 𝐹 (𝑂𝑝 (𝐺 (𝑇 ))))
is similar only with different pre-conditions, which are listed in Table 2.

4.2.1 Row-to-row transformation. Pre-condition: None
Row-to-row transformation requires no pre-condition because it processes each row individually.

This is the simplest case and has been discussed in prior work [46, 47]. We use it to provide a
context to help understand the proofs of other operators. We break 𝑇 ′ into table 𝑇1 of 𝑁 rows and
another table with only one row 𝑟𝑁+1 (i.e., 𝑇 ′ = 𝑇1 + {𝑟𝑁+1} where + is table union), hence:
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𝐹 (𝑂𝑝 (𝑇 ′ ) ) = 𝐹 (𝑂𝑝 (𝑇1 ) +𝑂𝑝 ({𝑟𝑁 +1}) ) row processed individually
= 𝐹 (𝑂𝑝 (𝑇1 ) ) + 𝐹 (𝑂𝑝 ({𝑟𝑁 +1}) filter processed individually
= 𝑂𝑝 (𝐺 (𝑇1 ) ) +𝑂𝑝 (𝐺 ({𝑟𝑁 +1}) ) inductive assumption

= 𝑂𝑝 (𝐺 (𝑇1 + {𝑟𝑁 +1}) ) = 𝑂𝑝 (𝐺 (𝑇 ′ ) ) filter processed individually

(1)

Therefore we have shown that the equivalence 𝐹 (𝑂𝑝 (𝑇 ′)) = 𝑂𝑝 (𝐺 (𝑇 ′)) holds on any table 𝑇 ′ of
size 𝑁 + 1.

4.2.2 Aggregate. Pre-condition:
(1) Aggregation func 𝐴𝑔𝑔𝑟 is associative and commutative.
(2) ∀𝑇, |𝑇 | = 𝑘, 𝑘 ≥ 2, ∃𝑇𝑥 , |𝑇𝑥 | = |𝑇 | − 1, 𝑠 .𝑡 .𝐴𝑔𝑔𝑟 (𝑇 ) = 𝐴𝑔𝑔𝑟 (𝑇𝑥 ).
(3) ∀𝑈 ,𝑉 ,𝑈 ≠ ∅ ∧𝑉 ≠ ∅ ∧ 𝐹 (𝐴𝑔𝑔𝑟 (𝑈 +𝑉 )) = ∅ ⇔ 𝐹 (𝐴𝑔𝑔𝑟 (𝑈 )) = ∅ ∧ 𝐹 (𝐴𝑔𝑔𝑟 (𝑉 )) = ∅.
(4) ∀𝑈 ,𝑉 , 𝐹 (𝐴𝑔𝑔𝑟 (𝑈 +𝑉 )) ≠ ∅ ∧ 𝐺 (𝑉 ) = ∅ ⇒ 𝐴𝑔𝑔𝑟 (𝑈 +𝑉 ) = 𝐴𝑔𝑔𝑟 (𝑈 ).

where 𝑇,𝑇𝑥 ,𝑈 ,𝑉 are tables and 𝐴𝑔𝑔𝑟 is an aggregation on table.
This category involves aggregating a set of rows into a single row. We explain these four

conditions intuitively. First, the 𝐴𝑔𝑔𝑟 function is associative and commutative, meaning the order
of rows has no effect on the aggregation result. Second, the for every table with ≥ 2 rows, there
always exists a smaller table (whose content may be completely different) that computes the same
aggregation result. Third, when a table’s aggregation result does not pass 𝐹 , any of its non-empty
subset’s aggregation does not pass 𝐹 either; and reversely, when two table’s aggregation both fail
𝐹 , their union’s aggregation will not pass 𝐹 . Fourth, if a table’s aggregation passes 𝐹 , its subset that
fails on 𝐺 has no effect on the aggregation result.

We first show the inductive proof with goal 𝐹 (𝐴𝑔𝑔𝑟 (𝑇 ′)) = 𝐴𝑔𝑔𝑟 (𝐺 (𝑇 ′)). We discuss three cases:
1) 𝐴𝑔𝑔𝑟 (𝑇 ′) passes filter 𝐹 ; 2) we split rows in𝑇 ′ into𝑈 and𝑉 by whether they passes𝐺 , and none
passes 𝐺 ; 3) some rows in 𝑇 ′ passes 𝐺 . The proof is as follow.

if 𝐴𝑔𝑔𝑟 (𝑇 ′ ) does not pass 𝐹
𝐹 (𝐴𝑔𝑔𝑟 (𝑇 ′ ) ) = 𝐹 (𝐴𝑔𝑔𝑟 (𝑇1 + {𝑟𝑁 +1}) ) split𝑇 ′:𝑇 ′ = 𝑇1 + {𝑟𝑁 +1}

= 𝐹 (𝐴𝑔𝑔𝑟 (𝑇1 ) ) + 𝐹 (𝐴𝑔𝑔𝑟 ({𝑟𝑁 +1}) ) pre-condition(3), each is ∅
= 𝐴𝑔𝑔𝑟 (𝐺 (𝑇1 ) ) +𝐴𝑔𝑔𝑟 (𝐺 ({𝑟𝑁 +1}) ) inductive assumption

= 𝐴𝑔𝑔𝑟 (𝐺 (𝑇1 + {𝑟𝑁 +1}) ) = 𝐴𝑔𝑔𝑟 (𝐺 (𝑇 ′ ) ) aggregate ∅s distributive
if 𝐴𝑔𝑔𝑟 (𝑇 ′ ) passes 𝐹 and𝑉 ≠ ∅

𝐹 (𝐴𝑔𝑔𝑟 (𝑇 ′ ) ) = 𝐹 (𝐴𝑔𝑔𝑟 (𝑈 +𝑉 ) ) = 𝐹 (𝐴𝑔𝑔𝑟 (𝑈 ) ) pre-condition(4)
= 𝐴𝑔𝑔𝑟 (𝐺 (𝑈 ) ) inductive assumption

= 𝐴𝑔𝑔𝑟 (𝐺 (𝑈 +𝑉 ) ) = 𝐴𝑔𝑔𝑟 (𝐺 (𝑇 ′ ) ) 𝐺 (𝑉 ) = ∅
if 𝐴𝑔𝑔𝑟 (𝑇 ′ ) passes 𝐹 and𝑉 == ∅

𝐹 (𝐴𝑔𝑔𝑟 (𝑇 ′ ) ) = 𝐴𝑔𝑔𝑟 (𝑇 ′ ) case condition

= 𝐴𝑔𝑔𝑟 (𝐺 (𝑇 ′ ) ) case condition

(2)

Furthermore, these pre-conditions should hold on any-size tables. Next, we prove that they satisfy
SMP themselves. We similarly show an inductive proof, where for each pre-condition, assume it
holds on all tables of size ≤ 𝑁 and proves it holds on 𝑇 ′ of size 𝑁 + 1.

We skip pre-condition(1) as associativity and commutativity satisfy SMP trivially. The proof for
pre-condition(2)(3)(4) is shown in Equation(3)(4)(5), respectively. We present the main idea behind
the proof and skip corner cases (e.g., when |𝑈 | ≤ 2) due to limited space. We provide the complete
proof in [13].
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𝐴𝑔𝑔𝑟 (𝑇 ′ ) = 𝐴𝑔𝑔𝑟 (𝑇1 ) ◦𝐴𝑔𝑔𝑟 ({𝑟𝑁 +1}) split𝑇 ′:𝑇 ′ = 𝑇1 + {𝑟𝑁 +1}
= 𝐴𝑔𝑔𝑟 (𝑇1𝑥 ) ◦𝐴𝑔𝑔𝑟 ({𝑟𝑁 +1}) |𝑇1𝑥 | = |𝑇1 | − 1, inductive assumption

= 𝐴𝑔𝑔𝑟 (𝑇1𝑥 + {𝑟𝑁 +1}) set𝑇 ′𝑥 = 𝑇1𝑥 + {𝑟𝑁 +1}, |𝑇 ′𝑥 | = |𝑇 ′ | − 1
(3)

direction⇒, assume 𝐹 (𝐴𝑔𝑔𝑟 (𝑈 +𝑉 ) ) = ∅
⇒∃𝑈𝑥 , |𝑈𝑥 | = |𝑈 | − 1 ∧𝐴𝑔𝑔𝑟 (𝑈 ) = 𝐴𝑔𝑔𝑟 (𝑈𝑥 ) pre-condition(2)
⇒𝐹 (𝐴𝑔𝑔𝑟 (𝑈𝑥 +𝑉 ) ) = ∅ assumption
⇒𝐹 (𝐴𝑔𝑔𝑟 (𝑈𝑥 ) ) = ∅ ∧ 𝐹 (𝐴𝑔𝑔𝑟 (𝑉 ) ) = ∅ inductive assumption
⇒𝐹 (𝐴𝑔𝑔𝑟 (𝑈 ) ) = ∅ ∧ 𝐹 (𝐴𝑔𝑔𝑟 (𝑉 ) ) = ∅ definition of𝑈𝑥

direction⇐, assume 𝐹 (𝐴𝑔𝑔𝑟 (𝑈 ) ) = 𝐹 (𝐴𝑔𝑔𝑟 (𝑉 ) ) = ∅
⇒𝐹 (𝐴𝑔𝑔𝑟 (𝑈 ) ) = 𝐹 (𝐴𝑔𝑔𝑟 (𝑈𝑥 ) ) = ∅ assumption
⇒𝐹 (𝐴𝑔𝑔𝑟 (𝑈𝑥 +𝑉 ) ) = ∅ inductive assumption
⇒𝐹 (𝐴𝑔𝑔𝑟 (𝑈 +𝑉 ) ) = ∅ definition of𝑈𝑥

(4)

assume 𝐹 (𝐴𝑔𝑔𝑟 (𝑈 +𝑉 ) ) ≠ ∅ ∧𝐺 (𝑉 ) = ∅
⇒∃𝑈𝑥 , |𝑈𝑥 | = |𝑈 | − 1 ∧𝐴𝑔𝑔𝑟 (𝑈 ) = 𝐴𝑔𝑔𝑟 (𝑈𝑥 ) pre-condition(2)
⇒𝐹 (𝐴𝑔𝑔𝑟 (𝑈 +𝑉 ) ) = 𝐹 (𝐴𝑔𝑔𝑟 (𝑈𝑥 +𝑉 ) ) ≠ ∅ assumption, definition of𝑈𝑥

⇒𝐴𝑔𝑔𝑟 (𝑈𝑥 ) = 𝐴𝑔𝑔𝑟 (𝑈𝑥 +𝑉 ) induction assumption
⇒𝐴𝑔𝑔𝑟 (𝑈 ) = 𝐴𝑔𝑔𝑟 (𝑈 +𝑉 ) definition of𝑈𝑥

(5)

4.2.3 RowIterPipeline. Pre-condition:
(1) ∀ row 𝑟𝑙 which is the input to the UDF, each operator in the subpipeline in UDF satisfies SMP

when treating 𝑟𝑙 as a constant value.
(2) ∀ row 𝑟𝑙 , table 𝑇𝑟𝑖 which are the UDF’s input, 𝐺𝑙 ({𝑟𝑙 }) = ∅ ⇒ 𝐹 (𝑂𝑝 ({𝑟𝑙 },𝑇𝑟1 , ...)) = ∅.
(3) ∀ row 𝑟𝑙 , table 𝑇𝑟𝑖 which are the UDF’s input, 𝐺𝑙 ({𝑟𝑙 }) = {𝑟𝑙 } ⇒ 𝐹 (𝑂𝑝 ({𝑟𝑙 },𝑇𝑟1 , ...)) =

𝑂𝑝 ({𝑟𝑙 },𝐺1 (𝑇𝑟1 ), ...).
This category represents a type of UDF that takes each row of one table (we call it the left table)

and some other tables (the right tables) as input and outputs a new row. We assume the computation
inside the UDF can be represented as a subpipeline, with an example shown in Figure 3. Intuitively,
the first pre-condition says that when treating the row from the left table as a constant, the UDF
becomes a subpipeline that takes only the right tables as input, and each operator in the subpipeline
satisfies SMP. The second pre-condition says that, if a row in the left table 𝑟𝑙 does not pass its filter
𝐺𝑙 , the output of 𝑟𝑙 with any right table does not pass 𝐹 . The third pre-condition deals with the
case when 𝑟𝑙 passes 𝐺𝑙 , then treating 𝑟𝑙 as a constant value, the pushdown of the predicate on the
right table on the subpipeline is correct.

We first show the inductive proof with goal 𝐹 (𝑂𝑝 (𝑇 ′
𝑙
,𝑇 ′𝑟1 , ...)) = 𝑂𝑝 (𝐺𝑙 (𝑇 ′𝑙 ),𝐺1 (𝑇 ′𝑟1 ), ...). Because

each row in the left table is processed individually, following the reasoning of row-to-row trans-
formation, as long as we show proof for the table of size 1 for the left table, the proof holds for
𝑇𝑙 of any size. We mainly focus on the proof of the right table (assuming only 1 table for simple
illustration), and discuss two cases when the single-row 𝑟𝑙 in the left table passes/fails filter 𝐺𝑙 .

if 𝑟𝑙 passes𝐺𝑙

𝐹 (𝑂𝑝 ({𝑟𝑙 },𝑇 ′𝑟 ) ) = 𝑂𝑝 ({𝑟𝑙 },𝐺𝑟 (𝑇 ′𝑟 ) ) pre-condition(3)

= 𝑂𝑝 (𝐺𝑙 ({𝑟𝑙 }),𝐺𝑟 (𝑇 ′𝑟 ) ) assumption 𝑟𝑙 passes𝐺𝑙

if 𝑟𝑙 does not pass𝐺𝑙

𝐹 (𝑂𝑝 ({𝑟𝑙 },𝑇 ′𝑟 ) ) = ∅ pre-condition(2)

= 𝑂𝑝 (𝐺𝑙 ({𝑟𝑙 }),𝐺𝑟 (𝑇 ′𝑟 ) ) 𝑂𝑝 returns ∅ as no row input provided

(6)

Next, we show that these pre-conditions satisfy SMP themselves. The first pre-condition is trivial
as it is checking SMP itself. For (2)(3), as each operator in a subpipeline satisfies SMP, the pushdown
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Table 2. Pre-conditions for each category (including equivalence and superset), base-case table size, and

whether they allow black-box functions. “Category” corresponds to operators as shown in Table 1.

Category Embedded
UDF

Allow black-
box function
in UDF?

Equivalence pre-condition Superset pre-condition Base-case
table size 𝑛

ROW-TO-ROW row transform Yes None None 1

AGGREGATE aggregation
function

Yes if predicate
includes only
group-by cols

As listed in Section 4.2.2

Equiv pre-condition (1)(2)(4)
(3)∀𝑈 ,𝑉 ,
𝐹 (𝐴𝑔𝑔𝑟 (𝑈 +𝑉 ) ) = ∅∧
𝐺 (𝑉 ) = ∅
⇒ 𝐹 (𝐴𝑔𝑔𝑟 (𝑈 ) ) = ∅.

2,
# columns of
output table
for pivot

ROW-EXPAND convert one row
into K rows Yes None None 1

TOPK compare
function

equivalence:No
superset:Yes

∀𝑇, |𝐹 (𝑡𝑜𝑝𝐾 (𝑇 ) ) | < 𝐾 ⇒
(∀𝑟, 𝑟 ≤ 𝑚𝑖𝑛𝑈𝐷𝐹 (𝑇 )
⇒ 𝐺 ({𝑟 }) = ∅).

None K+1

LEFTOUTERJ join
predicate Yes

(1)∀𝑡𝑙 , 𝑡𝑟 ,𝑇𝑟 ,
𝐹 (𝐿𝐽 ({𝑡𝑙 }, {𝑡𝑟 }) ) = ∅,
𝑝𝑟𝑒𝑑 𝑗 (𝑡𝑙 , 𝑡𝑟 ) = True
⇒ 𝐹 (𝐿𝐽 ({𝑡𝑙 },𝑇𝑟 ) ) = ∅
(2)∀𝑡𝑙 , 𝑡𝑟 , 𝐹 (𝐿𝐽 ({𝑡𝑙 }, {𝑡𝑟 }) ) ≠ ∅,
𝑝𝑟𝑒𝑑 𝑗 (𝑡𝑙 , 𝑡𝑟 ) = True
⇒ 𝐺𝑟 ({𝑡𝑟 } ≠ ∅

Equivalence
pre-condition(2) 2

SUBPIPELINE (df)*-transform
Yes if all
subpipeline op
allows BB func

Each operator in subpipeline
satisfies SMP.

same as
equivalence pre-condition

𝑚𝑎𝑥 (𝑛) of
subpipeline
operators

ROW-ITER-PIPELINE (row+(df)*)-
transform

Yes if all
subpipeline op
allows BB func

As listed in Section 4.2.3 same as
equivalence pre-condition

𝑚𝑎𝑥 (𝑛) of
subpipeline
operators

of the entire subpipeline also satisfies SMP because the process of pushdown for each operator is
independent.

4.3 Handling uninterpretable functions

Library functions are widely used in pipeline UDFs, particularly UDFs written in Python in which
rich libraries are available. It would be a huge work to interpret each library function in verification.
Fortunately, sometimes a library function can go through verification without actually computing
it. For instance, an RowTransform operator that assigns a new column day to a table computing
dayofweek from an original column date (df.day=dayofweek(df.date)), and an 𝐹 on its output that
selects weekends (df.day in [6,7]). MagicPush will generate a candidate 𝐺 dayofweek(date) in

[6,7]. Leveraging uninterpreted function [19] in the SMT solver,MagicPush is able to verify 𝐺 ’s
correctness presented by the expression (dayofweek(date)) in [6,7]==dayofweek(date) in [6,7] (the
left-hand side is the computed row-exist symbol of 𝐹 (𝑂𝑝 (𝑇 )) and the right-hand side 𝑂𝑝 (𝐺 (𝑇 )))
without unboxing dayofweek.

However, not all black-box functions can remain unboxed and may need to be computed to verify
for some operators. For example, pre-condition(4) of group-by requires checking 𝐴𝑔𝑔𝑟 (𝑈 +𝑉 ) =
𝐴𝑔𝑔𝑟 (𝑈 ). We assume 𝑈 and 𝑉 are single-row tables with one column represented by 𝑣𝑢 and 𝑣𝑣 for
ease of explanation, and 𝑓 is a black-box aggregation function. Verifying this pre-condition checks
expression 𝑓 (𝑓 (𝑣𝑖𝑛𝑖𝑡 , 𝑣𝑢), 𝑣𝑣) = 𝑓 (𝑣𝑖𝑛𝑖𝑡 , 𝑣𝑢), where the left-hand side calls 𝑓 twice while the right-
hand side calls 𝑓 once. This expression cannot be verified unless 𝑓 is computed, andMagicPush
will return “fail” in this case. Although whether a black-box function is allowed depends on the
verification, we summarize when it is empirically allowed in Table 2.
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4.4 Predicate search

We now introduce how to search for candidate predicate𝐺 . Because of the cost to verify each𝐺 , we
cannot afford to try all possible candidates. Instead, MagicPush enumerates candidates following
their selectivity and stops when it finds a correct one. Doing so would return the most selective 𝐺
without verifying all candidates.

The challenge is to have good coverage such that the best correct𝐺 is included and enumerated
as early as possible without wasting verifying too many incorrect candidates. MagicPush obtains
predicate components from 𝐹 and𝑂𝑝 , then synthesizes candidate𝐺 by composing these components
using conjunction and disjunction. We do not assume knowing predicate cardinality, soMagicPush
approximates the selectivity order using the number of conjunctions and literals (i.e., comparisons)
in conjunction.

4.4.1 Extracting predicate components. MagicPush first extracts components from 𝐹 . As operators
can change table schema (e.g., changing column type, renaming columns, pivot table, etc.), 𝐹 usually
cannot be directly pushed to the input table as it may contain newly produced columns that do
not exist in the input tables. These new columns are usually computed from some columns in
the input table, so carefully replacing them with corresponding input columns can often lead to
a legitimate candidate 𝐺 . ThereforeMagicPush builds a mapping between output columns and
related input columns based on the operator semantics, and replaces each newly-generated column
𝑐′ in 𝐹 according to the mapping:
• 𝑐′ directly maps to exactly one input table column 𝑐 , like in column-renaming operator, then

replace 𝑐′ with 𝑐 .
• 𝑐′ maps to input columns by an expression, e.g., setting a new column by an UDF like

(df.revenue=df.price*df.quantity, then replace 𝑐′ with the expression. If the UDF contains other vari-
ables than table fields and constants (e.g., group-by’s accumulative variable v in Figure 1(2)(3)(4)),
MagicPush extracts sub-expressions that compute over only table fields and constants (e.g.,
row.revenue and row.quantity*row.price in Figure 1(4) but not max(v, row.revenue), and produces a
set of components each replacing 𝑐′ with one expression.
• 𝑐′ maps to no columns, like DropColumn operator, then remove any comparison or sub-

expression in 𝐹 containing 𝑐′. Removing comparison is done by replacing that comparison with
true; if no expression/comparison except true is left after removing, MagicPush adds a false

predicate as component.
• 𝑐′ maps to a set of columns 𝑐1, 𝑐2, ..., e.g., unpivot shown in Figure 2(2) where the revenue

column maps to column 2005 and 2006 in the input table), thenMagicPush replaces 𝑐′ with 𝑐𝑖 and
generates two components by combining all replaced expressions using disjunction or conjunction.

MagicPush then extracts components from the operator itself as it may contain predicates that
can also be pushed to 𝐺 . For instance, the branch condition selecting weekends in Figure 1(3) can
be pushed down to the input.MagicPush extracts every branch condition in the UDF (discarding
comparisons that contain anything other than table fields and constants), and uses each branch
condition as well as its negation (e.g., both row.weekday in [6,7] and !(row.weekday in [6,7]) as two
components. It also extracts predicates from the operator if it is a Filter operator as a component.
The above process can produce a set of components, and next, we show howMagicPush combines
them into a candidate 𝐺 .

4.4.2 Synthesizing candidate 𝐺 . The algorithm to combine components to produce candidate 𝐺 is
shown in Algorithm 1. After extracting components (Line 1-2),MagicPush first returns a “shortcut”:
a candidate that we observe frequently to be the most selective and correct 𝐺 (Line 4-7). This
shortcut is computed as follows: if we cannot extract components from 𝑂𝑝 , then we return the
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Algorithm 1 Combining Predicate Components
1: procedure CandidateGen(𝐹 ,𝑂𝑝)
2: comps1← extractFromF(𝐹 ,𝑂𝑝)
3: comps2← extractFromOp(𝐹 ,𝑂𝑝)
4: if len(comps2) == 0 then
5: yield comps1[0]
6: else

7: yield comps1[0] ∧ (∧(extractNonConflict(comps2)))
8: components← comps1

⋃
comps2

9: conjunctions,candidates← ∅
10: for subset𝑝 ∈ subset of conjunctions do
11: if not hasConflictLiteral(subset𝑝 ) then
12: conjunctions.add(∧(subset𝑝 ))
13: sort conjunctions by the number of literals in desc order
14: for subset𝑗 ∈ subset of conjunctions do
15: if not duplicated(candidates,subset𝑗 ) then
16: candidates.add(∨ subset𝑗 )
17: yield ∨(subset𝑗 )

rewritten 𝐹 (by replacing newly-generated column 𝑐′ as described in Section 4.4.1) alone as a
candidate (Line 5); otherwise, return a conjunction of the rewritten 𝐹 and components extracted
from 𝑂𝑝 (Line 7). When conjuncting, we take only a branch condition 𝑙 when both 𝑙 and ¬𝑙 are
included to avoid conflicting literals.

Then MagicPush falls back to the enumeration procedure after the shortcut. It first enumerates
all possible conjunctions of literals from components (Line 10-12). For each subset of components,
if it does not contain conflicts (e.g., 𝑙 and ¬𝑙 ), then MagicPush conjuncts components in the subset
and adds it to conjunctions list. ThenMagicPush sorts the conjunctions list by the number of literals
(Line 13): doing so allows choosing conjunctions with more literals first in the next loop. After
sorting,MagicPush produces candidates by enumerating subsets of conjunctions list (Line 14-17)
and disjuncting each subset. In this loop, we choose the subset with fewer elements first following
the order of the conjunctions list. That is, if conjunctions has 3 elements 𝑎 ∧ 𝑏, 𝑎, 𝑏, MagicPush
returns one-element disjunction 𝑎 ∧ 𝑏 first, next 𝑎, 𝑏, then multi-element disjunction like 𝑎 ∨ 𝑏.

5 PREDICATE PUSHDOWN FOR PIPELINE

In this section, we introduce howMagicPush pushes any predicate in the middle of a pipeline to
its input, particularly when dataflow diverges or is conditionally executed. We also introduce the
pushdown procedure for operators containing subpipeline like GroupedMap and RowIterPipeline.

5.1 Pushing through dataflow

We first look at the basic scenario where each operator has one input and one output, as shown in
Figure 7(1). MagicPush decides the pushdown for each individual operator from the last operator
to the first along the data flow: it first finds 𝐺2 given the last operator 𝑂𝑝2 and filter 𝐹 , where 𝐺2
works on 𝑑 𝑓2, the output table produced by the prior operator 𝑂𝑝1. ThenMagicPush pushes 𝐺2
through 𝑂𝑝1 and obtains 𝐺1, the filter on the input table 𝑑 𝑓1. If any 𝐺 obtained on any operator
is a superset pushdown, then we keep the original filter 𝐹 in the pipeline, otherwise, 𝐹 would be
removed.
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Fig. 7. Handling multi up/down-stream and branches.

When an operator has multiple upstreams like an innerjoin, MagicPush naturally finds the
predicate for each table when deciding predicate pushdown as it searches for 𝐺𝑖 on each table 𝑇𝑖
and verifies 𝐹 (𝑂𝑝 (𝑇1,𝑇2, ...)) = 𝑂𝑝 (𝐺1 (𝑇1),𝐺2 (𝑇2), ...).
In the case of multiple-downstream where the output of one operator is used by multiple

downstream operators, as shown in Figure 7(3). After deciding pushdown for operator𝑂𝑝2 and𝑂𝑝3
and obtaining𝐺2 and𝐺3 correspondingly, the output filter of their common upstream operator𝑂𝑝1
becomes𝐺2∨𝐺3, as the table 𝑑 𝑓1 should contain the data for both𝑂𝑝2 and𝑂𝑝3 after filtering, hence
taking disjunction. ThenMagicPush pushes 𝐺2 ∨𝐺3 through 𝑂𝑝1. Note that the result pipeline
needs to be changed by adding filter 𝐺2 before 𝑂𝑝2 and 𝐺3 before 𝑂𝑝3 because the 𝑑 𝑓 1 contains
rows for both 𝑂𝑝2 and 𝑂𝑝3 and needs to split to send corresponding rows to each downstream
operator.
When the pipeline contains conditional branches, as illustrated in Figure 7(4), MagicPush

similarly takes the disjunction of predicates pushed from each path (i.e., 𝐺2 ∨𝐺3). This is because
each path can be potentially taken, so a table entering both paths should include all data that might
be used by either path.

5.2 Pushdown for operators with a subpipeline

Unlike other operators, the search of 𝐺 for operators with a subpipeline follows the procedure to
push the predicate through pipelines operator-by-operator until reaching the subpipeline’s input.
The procedure is slightly modified for RowIterPipeline as it involves pushing down the predicate to
the input row instead of the input table. We illustrate using the example from Figure 3, and the
procedure is shown in Figure 8. First we split 𝐹 into two predicates: one involving 𝑐′ generated
by the UDF (e.g., relative_rev!=0 where relative_rev is newly-generated) which is pushed down
operator-by-operator till the inputs (e.g., resulting in quantity*price!=0 on table df and year==2006

on table df_old), and the remaining part of 𝐹 without 𝑐′ (e.g., year>=2008) is pushed directly to the
left table. When the two pushed predicate, quantity*price!=0 and year>=2008, merges at table df, they
are combined using conjunction or disjunction, producing two candidates 𝐺s to be verified. In this
example, the conjunction is returned as it passes the verification for this subpipeline.

6 DISCUSSION AND LIMITATION

Unhandled operators. For some operators, predicates cannot be pushed through without ad-
ditional effort and therefore cannot be handled byMagicPush. These operators belong to three
categories. First, if each row in the output relies on all rows from the input, like transpose and corr
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Fig. 8. Predicate pushdown with subpipeline.

(which computes the correlation among columns), predicate filtering out any row in the input will
lead to a different output. Second, if the operator is position sensitive, for instance, shift and rolling

in which each output row is computed from its neighboring rows. No predicate can be pushed
down as it would be impossible to keep neighboring rows using only predicate but not position
index, which usually does not exist in tables. Third, if the operator’s output is nondeterministic,
like sample, the correctness of pushdown can not be easily verified.

Unhandled UDFs.MagicPush is not able to handle a UDF if it 1) contains an uninterpretable
function but verification requires computing the function, as discussed in Section 4.3; or 2) has
a different input-output type than the one handled byMagicPush (as listed in Table 1), like the
mode aggregation that takes an additional state as input to keep the count of each distinct value.
However, as we will see in the evaluation, such UDFs do not often appear in real-world pipelines
built with Pandas API and our coverage is already >99% despite such limitations.

Completeness of MagicPush. The verification of pushdown correctness is sound but incom-
plete, as theoretically not all correct pushdown necessarily satisfies the small model property. For
example, a GroupBy with a count aggregation does not meet pre-condition(2) listed in Section 4.2.2
as no smaller table would return the same count as a larger table, but some predicate might be
pushed down through it. We work around count-like aggregation by adding a count column that
stores a duplication factor of that row (which can be 0 or any value >= 1), and rewrite the count
aggregation to accumulates the value in the count column (i.e., lambda v,row:v+row[’count’]). After
the rewrite, pre-condition(2) can be satisfied and the correct pushdown with count aggregation will
be returned byMagicPush if exists. This rewrite has been used in prior work [62] to accelerate
verification, and we leverage it to avoid missing a pushdown opportunity. Other than the count
aggregation, we have not seen nor been able to find any other case that MagicPush returns a
false-negative result.

Generalizability. The operators and UDFs handled byMagicPush are driven by our analysis of
Pandas, SQL and Spark UDFs, which already achieve very high coverage on real-world pipelines
(as we will show in Section 7). We do acknowledge that for new operators and UDFs outside of
MagicPush’s syntax, new pre-conditions need to be developed and proved, making it hard for
MagicPush to generalize to 100% of pipelines without additional efforts.

7 EVALUATION

7.1 Experimental setup

7.1.1 Query/Pipeline corpus. We evaluate MagicPush on both relational queries (TPC-H [17])
and real-world data science pipelines. Because TPC-H queries have already been well optimized
by existing systems, the goal is to see whether MagicPush is able to achieve the same pushdown
optimization. For real-world data pipelines, we evaluate on Jupyter Notebooks from GitHub that
use Pandas library. We build a prototype parser that translates Python code with Pandas API into
MagicPush’s syntax described in Section 3. The parser includes three components: (1) a static
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analyzer to decide whether a Pandas API or UDF can be handled byMagicPush (described later
in Section 7.3) since a small fraction may not be handled like discussed in Section 6; (2) a parser
that translates Python script into MagicPush’s syntax; and (3) a code generator that produces
optimized pipeline in Python. This parser currently parses 120 Pandas APIs with common non-UDF
parameters and embedded UDF specified as lambda function [6].

To collect the data processed by these pipelines, we use the automatic notebook-replay technique
introduced in AutoSuggest [67], We use the automatic notebook-replay technique introduced in
AutoSuggest [67], and collected the trace of replay, i.e., the sequence of functions executed. We
use the longest dataflow path in a notebook as the data processing pipeline, removing side paths
like checking intermediate results. The final output of the pipeline is often used to build machine
learning models or visualized to understand specific aspects of the data. We randomly sampled
from replayable notebooks for coverage and performance evaluation: how many operators and
UDFs can MagicPush cover and how much performance gain can it obtain by pushing predicates
down.
MagicPush is implemented in Python with Z3 [20] SMT solver, and the data science pipelines

run in-memory with Pandas versioned 1.1.4. We perform our evaluations on a server with a 2.4GHz
processor and 64GB memory.

7.1.2 Baseline. We compare MagicPush with PostgreSQL query optimizer on relational queries.
We also construct a rule-based baseline where rules are collected from existing systems or prior
research [11, 23, 31, 32, 42, 44, 49]. These rules cover all common relational operators and some
popular non-relational operators, listed as follow.
(1) If 𝑂𝑝 is a projection, then 𝐹 can be pushed through 𝑂𝑝; if 𝑂𝑝 renames columns while

projection, 𝐹 can be pushed down by replacing column names correspondingly; if 𝑂𝑝 sets
new a column with a UDF, 𝐹 can be pushed if it does not involve the new column, otherwise,
replace the new column in 𝐹 with the UDF only if the UDF is an invertible function on a
single column. However, prior work does not mention how to check if a function is invertible,
so we check invertibility using SMT solver2 and simply treat it as not invertible if it contains
black-box function [42, 44].

(2) If 𝑂𝑝 is a groupby, push 𝐹 if all columns involved are group-by columns (same rule applies
for distinct); if the aggregation is max(C) and 𝐹 is𝑚𝑎𝑥𝐶 ≥ 𝑣 (where C is a column and v is a
constant), then set 𝐺 to be 𝐶 ≥ 𝑣 , and similarly for min aggregation [23, 42, 44].

(3) If𝑂𝑝 is an intersection, union or sorting operator, then 𝐹 can be directly pushed down [42, 44].
(4) If 𝑂𝑝 is an equijoin and all columns in 𝐹 belong to one table, push 𝐹 to that table; if 𝐹 is in

conjunctive normal form (CNF), then push the literals in CNF that involve only columns
from one table; if the CNF involves literals involving columns from both tables, then keep 𝐹

to filter the join output and treat the pushed literals as additional predicates [11, 32, 42, 49].
(5) If 𝑂𝑝 is an equijoin, 𝐹 in disjunctive normal form and each literal involves both tables (e.g.,

predicate (n1.name==’NATION1’ & n2.name==’NATION2’) | (n1.name==’NATION2’ & n2.name==’NATION1’)

in TPC-H Q7), add additional predicate to each table by rewriting 𝐹 to remove compar-
isons on foreign columns (e.g., (n1.name==’NATION1’) | (n1.name==’NATION2’) to table n1 and
(n2.name==’NATION1’) | (n2.name==’NATION2’) to table n2), while still keeping the original predi-
cate after 𝑂𝑝 [11, 32].

(6) If 𝑂𝑝 is a left outer join and 𝐹 only involve columns from the left table, push 𝐹 to the left
table; if 𝐹 only involves the join column, push to both tables. Same for right join [11, 42].
only involve columns

2Because the operator is required to take only one column, so the UDF takes in a single value for each row, the check is
sound.
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(7) If 𝑂𝑝 is a semi-join or anti-semi join (which corresponds to RowIterPipeline operator that
returns a boolean value for each row to be used as filter) and all columns in 𝐹 belong to the
left table, push 𝐹 to the left table [42].

(8) If 𝑂𝑝 has subquery (i.e.,RowIterPipeline), push down the predicate in subquery that involve
only tables in the subquery (e.g., r.name==’REGION’ in TPC-H Q2) but not tables from the
outer query (e.g., p.partkey==ps.partkey in Q2 where p.partkey is from outer table part). Any
predicate pushed to the table in the subquery will be disjuncted with other predicates on the
same table obtained from the outer query [11, 23, 49].

(9) If 𝑂𝑝 is a pivot or unpivot and all columns in 𝐹 are index columns, then 𝐹 can be pushed
down [31].

7.2 Evaluation on TPC-H

We observe that existing system like PostgreSQL already pushes predicates down in the query plan,
therefore in this experiment, we check whetherMagicPush is able to achieve the same optimization
as PostgreSQL. We manually construct unoptimized query plans as follow: we ask PostgreSQL to
generate a query plan, rewrite it into a pipeline, and then move all predicates in the query plan to
their original position in the SQL query. Doing so often results in plans where joins operate on
unfiltered tables, while other non-join predicates and aggregates are later executed on the joined
result. We construct 18 unoptimized plans that are different from what PostgreSQL generated
(except for Q1, Q6, Q14, and Q18 where predicates cannot be moved), and we ask MagicPush and
the baseline described in Section 7.1.2 to work on these unoptimized plans.
BothMagicPush and the baseline are able to push down predicates properly for all 18 unopti-

mized plans, producing the same plan as what PostgreSQL originally generated. It is not surprising
for the baseline as many rules are particularly designed for relational queries like TPC-H. However,
MagicPush’s approach without any particular rule tailored to relational queries is still able to
find and verify all the previously-discovered pushdown opportunities in TPC-H, including
non-trivial pushdowns like adding additional predicates to optimize Q7 and Q19 (covered by rule
(5)).

7.3 Coverage of real-world operators and UDFs

We randomly sample 1000 operators and 1000 UDFs to analyze the coverage ratio regarding the
limitation discussed in Section 6. For UDFs, it cannot be covered byMagicPush if it either has a
different input-output type than specified in Table 1, or includes black-box functions not allowed
other than scenarios listed in Table 2. For operators, it cannot be covered if it either belongs to
unhandled operator types like transpose or embed uncovered UDFs.
MagicPush’s parser includes a static analyzer that checks whether a UDF can be handled by

MagicPush, which we leverage to examineMagicPush’s UDF coverage. It analyzes the type of
input and output to any UDF involved. Furthermore, it examines if any global variable is used in
the UDF (e.g., the UDF in Figure 3 uses a global variable df_old) and treats these variables as UDF’s
implicit input. To check for black-box functions, it compiles the UDF into bytecode to see if it uses
any global variable that are imported library other than Pandas library (e.g., re.sub(...) where re is
of type “module”), or if it contains any function call outside the list of python built-in functions [14]
(e.g., x.strip() or unidecode(x) where both strip and unidecode are not built-in functions). Any non
built-in library functions are treated as black-box functions.
Table 3 shows the result. 99.7% UDFs can be handled byMagicPush, only 3 include black-box

functions in unsupported operators like GroupBy and RowIterPipeline. This does not mean that
library functions are rarely used: indeed 18.7% UDFs call library functions, only that most are
embedded in operators allowing uninterpretable functions like RowTransform, Filter and RowExpand.
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Table 3. Coverage on 1000 sampled operators and UDFs.

covered

unhandled
operator

other input-
output type

unhandled
black-box function

UDF 99.7% - 0% 0.3%
Operator 92.9% 6.7% 0% 0.4%

Table 4. Profile of 200 sampled pipelines.

#
operators

input
data size

scaled
data size

original
running time

scaled
running time

min 5 0.01MB 10MB 0.005sec 0.5sec
max 100 390MB 4GB 183sec 964sec

average 17 22MB 0.9GB 2.6sec 35.2sec
median 13 2.8MB 1GB 0.5sec 6.9sec

For operator coverage, 92.9% operators are covered and the rest are mainly unhandled operators
that predicates cannot be pushed through.

7.4 Evaluation on real-world data pipelines

To evaluate the actual performance gain, we sampled 200 pipelines that contain at least one Filter

operator and can be compiled into MagicPush’s syntax by our parser. Among them, 95 cannot be
optimized because 1) the filters are invoked immediately after data loading (i.e., already “down” at
loading) so there is no room for optimization, or 2) the predicate cannot be pushed down to data
loading by by either MagicPush or the baseline. We report the performance for the remaining 105
pipelines that can be optimized.

Table 4 shows the profile of the sampled pipelines. The size of data processed by these pipelines
ranges from 0.01MB to 390MB and the number of operators ranges from 5 to 100. Because many
pipelines only process a small amount of data, the running time is short (a median of only 0.5sec)
with a large variance. We further run them on scaled data where we duplicate each original input
until reach 1GB.3 If the pipeline fails to run due to out-of-memory, we scale it down to 100MB or
10MB. Running on the scaled data takes longer (a median of 28sec) and the running time is more
stable.

Figure 9(a) shows the amount of data reduced by the pushed predicate, measured by row count.
The result shows that pushdown opportunities are abundant in real-world pipelines: MagicPush
is able to push down predicate to the pipeline input for 105 pipelines while the baseline can
optimize for a subset of 74. In 42 pipelinesMagicPush reduces more data than the baselines by
46% on average, up to 99% (variance=0.1). We compare the predicates after pushed down and find
that in all casesMagicPush’s predicate is either strictly more selective (i.e., conjuncting

more comparisons) than the baseline (in 42 pipelines) or the same (in the remaining 63

pipelines), but never worse. Furthermore a statistical significance test on the data (where the
null hypothesis states thatMagicPush is no better than baselines) produces a p-value of 1.4e-8,
allowing us to reject the null hypothesis and showing a strong statistical significance of our results.
This result shows thatMagicPush is able to discover all pushdown opportunities found by prior
rules and often more opportunities where the baseline would miss due to the limited patterns.

3Duplicating data ensures that UDFs can run successfully – alternatives such as mixing values sometimes makes the pipeline
fail due to implicit dependency assumed on the data, e.g., “df.apply(lambda row: row[‘c1’]+row[‘c2’] if notnull(row[‘c1’])
else NULL)” assumes the value of column c2 is not NULL if c1 not NULL; mixing values randomly will likely crash the UDF.

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 136. Publication date: June 2023.



Predicate Pushdown for Data Science Pipelines 136:21

Fig. 9. Improvement on real-world data pipelines; each point in x-axis represents a pipeline, sorted by the

gap of row reduction betweenMagicPush and the baseline in (a).

Figure 9(b)(c) shows the end-to-end performance gain on both the original and scaled data.
On the 42 pipelines whereMagicPush can further reduce data loading than baseline, it achieves
better performance gain on 35 pipelines on the original data and 38 pipelines on the scaled data,
further reducing pipeline running time by 10% on average (up to 53%, with a variance of 0.02)
on the original data, and 26% on average (up to 99%, with a variance of 0.04) on the scaled data.
The statistical significance tests on the two running time results are 𝑝 = 0.0013 and 𝑝 = 0.0001,
respectively, again confirming the significance of our results.
Because we still load the entire data and use Pandas API to run the pushed filter, the filter

itself often becomes slower after pushdown as it processes more data using the same API. The
performance gain is only significant when the predicate is very selective such that other operators
can be greatly accelerated. We expect the benefit to be much larger on systems that support
processing predicates during data loading like Mison [45].

In a few cases pushing down predicate actually makes the pipeline slower when the predicate is
not selective, or includes UDF that takes a long time to finish. Whether to push the predicate down
or pull it up should depend on the cost estimation [44], which can be very challenging, particularly
under the wide existence of library functions. We leave it as future work.

7.5 Case studies

In addition to the non-trivial pushdowns listed in Section 2, we present more interesting cases
observed from real-world pipelines.
Case 1. Pushing predicates through outer joins is usually not straightforward. Listing 3 shows

an example where the original code includes a left outer join (line 5) followed by a predicate 𝐹
involving columns from both tables (line 7). This conjuntive predicate can be split and added to each
table, which reduces about half of the data loaded. Different from inner join where such predicate
𝐹 can be pushed down directly (i.e., 𝐹 removed after pushdown), with left outer join the 𝐹 remains
as the pushdown actually returns a superset. Whether a predicate can be pushed becomes even
more challenging when null-value is involved. For instance, the predicate shown on Line 8 cannot
be pushed down at all, since both joinable and non-joinable rows are both used in this predicate.
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Listing 3. Pushdown with left join

1 # corresponding G:

2 df_2017 = df_2017['act_2017 ']>0.5

3 df_2018 = df_2018['act_2018 ']>0.5

4 # left outer join operator

5 df = df_2017.merge(df_2017 , on='state ', how='outer ')

6 # predicate F to be pushed down

7 df = df[(df['act_2017 ']>0.5) & (df['act_2018 '] >0.5)]

8 #df = df[(df.apply(lambda r: r['v_2017 '] if pd.isnull(r['v_2018 ']) else r['v_2018 '])>1)]

Case 2.MagicPush handles many non-relational operators that has not been studied before,
like the popular get_dummies operator that converts row into one-hot encoding (a common step in
ML), with an example shown in Listing 4.

Listing 4. Pushdown with getdummies

1 # corresponding G:

2 df = df[df['status ']=='Left']

3 # get_dummies operator

4 dummy = df.get_dummies(df['status '])

5 # predicate F to be pushed down

6 count = dummy[dummy['Left']==1]. count()

Case 3. Occasionally MagicPush returns predicate that has the same selectivity as the baseline
but more efficient when evaluated. Listing 5 shows one example which includes a row-transform
operator (line 5) followed by a predicate 𝐹 (line 7) which involve rows being transformed earlier.
MagicPush is able to push 𝐹 down unchanged as the row-transformation does not affect the
evaluation of 𝐹 and 𝐹 passes the verification. In contrast, the baseline always returns a predicate
replacing the column in 𝐹 with the transformation using rule (a) (line 3), which is much slower.
Three pipelines, as circled out in Figure 9(c), benefit from such more-efficient predicate, improving
the performance by up to 25× compared to the baseline.

Listing 5. Pushdown returning simpler predicate

1 # corresponding G:

2 df = df[df['Country '] != 'U.S.']

3 # df=df[df['Country '].replace('HongKong ','China ')!='U.S ']

4 # row -transform operator

5 df['Country '] = df['Country ']. replace('HongKong ','China ')

6 # predicate F to be pushed down

7 df = df[df['Country '] != 'U.S.']

7.6 MagicPush’s running time

We present MagicPush’s end-to-end running time to optimize a query or a pipeline (i.e., from
taking a Python script to producing the optimized pipeline in Python) in Figure 10. It is very
efficient, taking <0.2sec for TPC-H query (0.1sec on average) and <0.8sec for 98 pipelines (0.33sec
on average).
There are only three “outlier” pipelines thatMagicPush takes a while to optimize, due to the

complicated UDF and large symbolic table in verification. The slowest is due a UDF that contains 14
branch conditions, shown in Listing 6. The correct predicate𝐺 is a disjunction of 2 branch condition
picked from 14, and MagicPush exhaustively tried over 1000 candidates before finding the correct
one. The other two slow pipelines are due to the Pivot operators. Because for Pivot the base-case
table size is the number of pivoted columns in the output table, when the output table is wide (over
30 columns in these pipelines), MagicPush will verify on a large symbolic tables containing over
30 symbolic rows, leading to a slow verification. This can be accelerated by exploiting symmetry
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Fig. 10. MagicPush’s running time

among symbolic rows to reduce the base-case table size proposed by Wang et. al. [62], and we leave
this optimization as future work.

Listing 6. An UDF including many branch conditions

# corresponding G:

df = df[df.apply(lambda row: 'Software ' in row['CategoryGroup ']

or 'Data' in row['CategoryGroup '])]

# UDF

df['Category '] = df.apply(lambda row:

'Finance ' if 'Finance ' in row['CategoryGroup '] else
'Software ' if 'Software ' in row['CategoryGroup '] else
... # other 12 similar branches

else 'Unknown ')

# predicate F to be pushed down

df = df[(df['Category ']=='Software ') | (df['Category ']=='Data')]

8 RELATEDWORK

Predicate pushdown. Rules to pushdown predicate are used in nearly all database systems:
Postgres [40], Spark [24], Synapse [48], SQL Server [34], Hadoop [35], Vertica [57], AnalyticDB [70],
to name a few. Various new systems have been developed to leverage the power of predicate:
Crystal [33] is a caching system incorporating query optimization like predicate pushdown, Qd-
tree [69] leverages pushed predicate to better organize data on disk, FlexPushdownDB [68] explores
pushdown on storage-disaggregation architecture, diP [42] shows how to use indexes to push
additional predicate, Mison [45] implements an efficient JSON parser for data loading that leverages
predicate. While predicate pushdown has been widely studied and supported in DBMS,MagicPush
extends its power to also optimize for ETL pipelines. Other work like SIA [74] shares similar
optimization by synthesizing additional predicate on top of existing ones, but focuses only on
predicate equivalence instead of pushdown equivalence over UDFs and operators.

Dataframe algebra, optimizations, and systems. Modin [52, 53] proposes dataframe algebra
that captures commonality among various Pandas operators such that implementing a few core
operators can cover a wide range of APIs. This algebra is also helpful in deciding a decomposed
execution of an operator to run it in parallel. We also propose core operators summarized based
on logical functionalities for predicate pushdown, compared to Modin’s summarized from shared
implementation.
Dataframe systems are becoming increasingly prevalent due to the popularity of Pandas in

EDA: Koalas [4] runs Pandas on Spark, Dask [2] scales in-memory Pandas with multi-threads,
Modin [53] parallelizes operator execution with Ray, Ibis [3] translates Pandas APIs into a few
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database backends, MagPie [41] decides which backend to choose in a cloud environment. These
systems scale out the execution of each single operator or running it on a relational database.
As MagicPush optimizes operator execution order, it is orthogonal to these systems and can
be combined together (e.g., applying MagicPush first to reorder operators before running on
optimized dataframe systems) to improve pipeline performance.
Deciding query equivalence. SQL query equivalence is a problem that has been extensively

studied in the database theory community [25, 29, 30]. Recently Chu et al. [28] proposes formalizing
queries with U-semiring and built Cosette with Coq to search for equivalence proof. Many other
systems apply or improve Cosette: WeTune [65] discovers rewrite rules from a workload and verifies
these rules automatically, SPEC [73, 75] extends to verify queries with different structures by trying
to “normalize” the query structure, and also extends U-semiring formalization to handle NULL
values. These techniques show great potential for various query optimization but are restricted
to relational operators and cannot be extended to UDFs. Furthermore, each query pair to be
checked often requires a distinct proof, making full automatic verification challenging. In contrast,
MagicPush focuses only on predicate pushdown, fully leveraging the structural similarity between
queries (e.g., the operator 𝑂𝑝 is the same) to construct a single proof for each operator category
which is often too complicated to be automatically searchable. However, it greatly extends the
scope of operators and UDFs (like UDF that includes a subpipeline) and achieves great coverage on
real-world pipelines.

Other than read-only SQL, Mediator [63] reasons about database applications with updates, Wang
et. al [64] proposes FGH-rules to optimize recursive Datalog programs, and SparkLite verifier [37]
checks MapReduce program equivalence. The invariants proposed in FGH-rules and SparkLite
share the same spirit with our pre-condition for the small-model property. However, FGH-rules
work on single-recursion programs with different loop bodies and SparkLite’s invariant works with
different aggregation functions; both cannot be directly used to solve predicate pushdown.
Symbolic execution in DMBS. Researchers have leveraged symbolic execution to optimize

queries and test database functionalities: Chestnut [66] and Cozy [46] generate new data layout and
verify query plan on the layout, Blitz [43, 56] synthesizes UDO from spark programs to better parallel
query execution, and many efforts to generate test cases for database applications [50, 51, 59, 61].
These work either admit bounded verification as a limitation or only returns example with no need
for correctness proof.
Other query optimization with SQL UDFs. Prior work explored optimizing queries with

UDF 1) by converting them into SQL queries and integrating them into other SQL components,
like Froid [55], QBS [26] and CLIS [71]; 2) by analyzing properties of UDF like data partition to
avoid unnecessary data shuffling in parallel query execution [21, 38, 72]; 3) by optimizing the
UDF compilation to generate more efficient execution in DBMS runtime, like Tuplex [58], and
YeSQL [36]; etc. We discussed the scope of UDFs MagicPush focuses on and compared it with
SQL UDFs in Section 3. The difference is slight andMagicPush can be easily extended to cover a
wide range of SQL UDFs, and we believe its potential in many other optimizations with UDFs (like
parallel query execution) beyond predicate pushdown.

9 CONCLUSION

In this work, we proposeMagicPush to decide predicate pushdown for data pipelines involving
relational and non-relational operators with embedded UDFs. We show thatMagicPush’s novel
search-verification method outperforms traditional pushdown rules and discovers more pushdown
opportunities on TPC-H queries and sampled real-world pipelines, while providing a full correctness
guarantee of its optimization. We believe MagicPush’s approach will guide many other systematic
query optimizations on UDFs for future research.
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