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Abstract

Dense retrieval is widely used for entity linking
to retrieve entities from large-scale knowledge
bases. Mainstream techniques are based on a
dual-encoder framework, which encodes men-
tions and entities independently and calculates
their relevances via rough interaction metrics,
resulting in difficulty in explicitly modeling
multiple mention-relevant parts within entities
to match divergent mentions. Aiming at learn-
ing entity representations that can match diver-
gent mentions, this paper proposes a Multi-
View Enhanced Distillation (MVD) frame-
work, which can effectively transfer knowledge
of multiple fine-grained and mention-relevant
parts within entities from cross-encoders to
dual-encoders. Each entity is split into mul-
tiple views to avoid irrelevant information be-
ing over-squashed into the mention-relevant
view. We further design cross-alignment and
self-alignment mechanisms for this framework
to facilitate fine-grained knowledge distillation
from the teacher model to the student model.
Meanwhile, we reserve a global-view that em-
beds the entity as a whole to prevent dispersal
of uniform information. Experiments show our
method achieves state-of-the-art performance
on several entity linking benchmarks1.

1 Introduction

Entity Linking (EL) serves as a fundamental task
in Natural Language Processing (NLP), connect-
ing mentions within unstructured contexts to their
corresponding entities in a Knowledge Base (KB).
EL usually provides the entity-related data foun-
dation for various tasks, such as KBQA (Ye et al.,
2022), Knowledge-based Language Models (Liu
et al., 2020) and Information Retrieval (Li et al.,
2022). Most EL systems consist of two stages: en-
tity retrieval (candidate generation), which retrieves
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Entity 1: 2014 UEFA Champions League final 

Description: Real Madrid won the match 4–1 after extra time, with goals from 

Cristiano Ronaldo, Gareth Bale, Marcelo and Sergio Ramos. In doing so, Real Madrid 

secured a record 10th title in the competition. As the winners, Real Madrid earned the 

right to play against 2013–14 UEFA Europa League winners Sevilla in the 2014 UEFA 

Super Cup. 

Mention: Ronaldo fired home the penalty as Real Madrid won Europe’s biggest prize for 

the 10th time in its history.

Entity 2: Cristiano Ronaldo

Description: …Ronaldo has won five Ballon d'Or awards and four European Golden 

Shoes, he has won 32 trophies in his career, including seven league titles, five UEFA 

Champions Leagues, the UEFA European Championship and the UEFA Nations 

League. ... Ronaldo was cautioned by police for smashing a phone out of a 14-year-old 

boy’s hand following his team’s 1-0 Premier League defeat to Everton in April.

Mention:  Ronaldo has amassed an unrivalled collection of records in the Champions 

League and EURO finals.

Mention:  Ronaldo has been banned with improper conduct by the FA for smashing a 

teenage fan's phone.

Figure 1: The illustration of two types of entities. Men-
tions in contexts are in bold, key information in entities
is highlighted in color. The information in the first type
of entity is relatively consistent and can be matched
with a corresponding mention. In contrast, the second
type of entity contains diverse and sparsely distributed
information, can match with divergent mentions.

a small set of candidate entities corresponding to
mentions from a large-scale KB with low latency,
and entity ranking (entity disambiguation), which
ranks those candidates using a more accurate model
to select the best match as the target entity. This
paper focuses on the entity retrieval task, which
poses a significant challenge due to the need to
retrieve targets from a large-scale KB. Moreover,
the performance of entity retrieval is crucial for EL
systems, as any recall errors in the initial stage can
have a significant impact on the performance of the
latter ranking stage (Luan et al., 2021).

Recent advancements in pre-trained language
models (PLMs) (Kenton and Toutanova, 2019)
have led to the widespread use of dense retrieval
technology for large-scale entity retrieval (Gillick
et al., 2019; Wu et al., 2020). This approach
typically adopts a dual-encoder architecture that
embeds the textual content of mentions and enti-
ties independently into fixed-dimensional vectors
(Karpukhin et al., 2020) to calculate their relevance
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scores using a lightweight interaction metric (e.g.,
dot-product). This allows for pre-computing the
entity embeddings, enabling entities to be retrieved
through various fast nearest neighbor search tech-
niques (Johnson et al., 2019; Jayaram Subramanya
et al., 2019).

The primary challenge in modeling relevance
between an entity and its corresponding mentions
lies in explicitly capturing the mention-relevant
parts within the entity. By analyzing the diversity
of intra-information within the textual contents of
entities, we identify two distinct types of entities,
as illustrated in Figure 1. Entities with uniform
information can be effectively represented by the
dual-encoder; however, due to its single-vector rep-
resentation and coarse-grained interaction metric,
this framework may struggle with entities contain-
ing divergent and sparsely distributed information.
To alleviate the issue, existing methods construct
multi-vector entity representations from different
perspectives (Ma et al., 2021; Zhang and Stratos,
2021; Tang et al., 2021). Despite these efforts, all
these methods rely on coarse-grained entity-level
labels for training and lack the necessary super-
vised signals to select the most relevant represen-
tation for a specific mention from multiple entity
vectors. As a result, their capability to effectively
capture multiple fine-grained aspects of an entity
and accurately match mentions with varying con-
texts is significantly hampered, ultimately leading
to suboptimal performance in dense entity retrieval.

In order to obtain fine-grained entity represen-
tations capable of matching divergent mentions,
we propose a novel Multi-View Enhanced Distilla-
tion (MVD) framework. MVD effectively transfers
knowledge of multiple fine-grained and mention-
relevant parts within entities from cross-encoders
to dual-encoders. By jointly encoding the entity
and its corresponding mentions, cross-encoders
enable the explicit capture of mention-relevant
components within the entity, thereby facilitating
the learning of fine-grained elements of the entity
through more accurate soft-labels. To achieve this,
our framework constructs the same multi-view rep-
resentation for both modules by splitting the textual
information of entities into multiple fine-grained
views. This approach prevents irrelevant informa-
tion from being over-squashed into the mention-
relevant view, which is selected based on the results
of cross-encoders.

We further design cross-alignment and self-

alignment mechanisms for our framework to sep-
arately align the original entity-level and fine-
grained view-level scoring distributions, thereby
facilitating fine-grained knowledge transfer from
the teacher model to the student model. Motivated
by prior works (Xiong et al., 2020; Zhan et al.,
2021; Qu et al., 2021; Ren et al., 2021), MVD
jointly optimizes both modules and employs an ef-
fective hard negative mining technique to facilitate
transferring of hard-to-train knowledge in distil-
lation. Meanwhile, we reserve a global-view that
embeds the entity as a whole to prevent dispersal of
uniform information and better represent the first
type of entities in Figure 1.

Through extensive experiments on several entity
linking benchmarks, including ZESHEL, AIDA-
B, MSNBC, and WNED-CWEB, our method
demonstrates superior performance over existing
approaches. The results highlight the effectiveness
of MVD in capturing fine-grained entity represen-
tations and matching divergent mentions, which
significantly improves entity retrieval performance
and facilitates overall EL performance by retrieving
high-quality candidates for the ranking stage.

2 Related Work

To accurately and efficiently acquire target entities
from large-scale KBs, the majority of EL systems
are designed in two stages: entity retrieval and en-
tity ranking. For entity retrieval, prior approaches
typically rely on simple methods like frequency in-
formation (Yamada et al., 2016), alias tables (Fang
et al., 2019) and sparse-based models (Robertson
et al., 2009) to retrieve a small set of candidate
entities with low latency. For the ranking stage,
neural networks had been widely used for calcu-
lating the relevance score between mentions and
entities (Yamada et al., 2016; Ganea and Hofmann,
2017; Fang et al., 2019; Kolitsas et al., 2018).

Recently, with the development of PLMs (Ken-
ton and Toutanova, 2019; Lewis et al., 2020), PLM-
based models have been widely used for both stages
of EL. Logeswaran et al. (2019) and Yao et al.
(2020) utilize the cross-encoder architecture that
jointly encodes mentions and entities to rank can-
didates, Gillick et al. (2019) employs the dual-
encoder architecture for separately encoding men-
tions and entities into high-dimensional vectors
for entity retrieval. BLINK (Wu et al., 2020) im-
proves overall EL performance by incorporating
both architectures in its retrieve-then-rank pipeline,



making it a strong baseline for the task. GERENE
(De Cao et al., 2020) directly generates entity
names through an auto-regressive approach.

To further improve the retrieval performance,
various methods have been proposed. Zhang and
Stratos (2021) and Sun et al. (2022) demonstrate
the effectiveness of hard negatives in enhancing
retrieval performance. Agarwal et al. (2022) and
GER (Wu et al., 2023) construct mention/entity cen-
tralized graph to learn the fine-grained entity rep-
resentations. However, being limited to the single
vector representation, these methods may struggle
with entities that have multiple and sparsely dis-
tributed information. Although Tang et al. (2021)
and MuVER (Ma et al., 2021) construct multi-view
entity representations and select the optimal view to
calculate the relevance score with the mention, they
still rely on the same entity-level supervised signal
to optimize the scores of different views within the
entity, which limit the capacity of matching with
divergent mentions.

In contrast to existing methods, MVD is pri-
marily built upon the knowledge distillation tech-
nique (Hinton et al., 2015), aiming to acquire fine-
grained entity representations from cross-encoders
to handle diverse mentions. To facilitate fine-
grained knowledge transfer of multiple mention-
relevant parts, MVD splits the entity into multi-
ple views to avoid irrelevant information being
squashed into the mention-relevant view, which is
selected by the more accurate teacher model. This
Framework further incorporates cross-alignment
and self-alignment mechanisms to learn mention-
relevant view representation from both original
entity-level and fine-grained view-level scoring dis-
tributions, these distributions are derived from the
soft-labels generated by the cross-encoders.

3 Methodology

3.1 Task Formulation

We first describe the task of entity linking as fol-
lows. Give a mention m in a context sentence
s =< cl,m, cr >, where cl and cr are words to
the left/right of the mention, our goal is to effi-
ciently obtain the entity corresponding to m from
a large-scale entity collection ε = {e1, e2, ..., eN},
each entity e ∈ ε is defined by its title t and de-
scription d as a generic setting in neural entity link-
ing (Ganea and Hofmann, 2017). Here we follow
the two-stage paradigm proposed by (Wu et al.,
2020): 1) retrieving a small set of candidate enti-

ties {e1, e2, ..., eK} corresponding to mention m
from ε, where K ≪ N ; 2) ranking those candi-
dates to obtain the best match as the target entity.
In this work, we mainly focus on the first-stage
retrieval.

3.2 Encoder Architecture

In this section, we describe the model architec-
tures used for dense retrieval. Dual-encoder is the
most adopted architecture for large-scale retrieval
as it separately embeds mentions and entities into
high-dimensional vectors, enabling offline entity
embeddings and efficient nearest neighbor search.
In contrast, the cross-encoder architecture performs
better by computing deeply-contextualized repre-
sentations of mention tokens and entity tokens,
but is computationally expensive and impractical
for first-stage large-scale retrieval (Reimers and
Gurevych, 2019; Humeau et al., 2019). Therefore,
in this work, we use the cross-encoder only dur-
ing training, as the teacher model, to enhance the
performance of the dual-encoder through the distil-
lation of relevance scores.

3.2.1 Dual-Encoder Architecture
Similar to the work of (Wu et al., 2020) for entity
retrieval, the retriever contains two-tower PLM-
based encoders Encm(·) and Ence(·) that encode
mention and entity into single fixed-dimension vec-
tors independently, which can be formulated as:

E(m) = Encm([CLS] cl [Ms] m [Me] cr [SEP])

E(e) = Ence([CLS] t [ENT] d [SEP])
(1)

where m,cl,cr,t, and d are the word-piece tokens of
the mention, the context before and after the men-
tion, the entity title, and the entity description. The
special tokens [Ms] and [Me] are separators to iden-
tify the mention, and [ENT] serves as the delimiter
of titles and descriptions. [CLS] and [SEP] are
special tokens in BERT. For simplicity, we directly
take the [CLS] embeddings E(m) and E(e) as the
representations for mention m and entity e, then
the relevance score sde(m, e) can be calculated by
a dot product sde(m, e) = E(m) · E(e).

3.2.2 Cross-Encoder Architecture
Cross-encoder is built upon a PLM-based encoder
Encce(·), which concatenates and jointly encodes
mention m and entity e (remove the [CLS] token
in the entity tokens), then gets the [CLS] vectors as
their relevance representation E(m, e), finally fed



it into a multi-layer perceptron (MLP) to compute
the relevance score sce(m, e).

3.2.3 Multi-View Based Architecture
With the aim to prevent irrelevant information be-
ing over-squashed into the entity representation
and better represent the second type of entities
in Figure 1, we construct multi-view entity rep-
resentations for the entity-encoder Ence(·). The
textual information of the entity is split into mul-
tiple fine-grained local-views to explicitly capture
the key information in the entity and match men-
tions with divergent contexts. Following the set-
tings of MuVER (Ma et al., 2021), for each entity
e, we segment its description d into several sen-
tences dt(t = 1, 2, .., n) with NLTK toolkit 2, and
then concatenate with its title t as the t-th view
et(t = 1, 2, .., n):

E(et) = Ence([CLS] t [ENT] d
t [SEP]) (2)

Meanwhile, we retain the original entity representa-
tion E(e) defined in Eq. (1) as the global-view e0

in inference, to avoid the uniform information be-
ing dispersed into different views and better repre-
sent the first type of entities in Figure 1. Finally, the
relevance score s(m, ei) of mention m and entity ei
can be calculated with their multiple embeddings.
Here we adopt a max-pooler to select the view with
the highest relevant score as the mention-relevant
view:

s(m, ei) = max
t

{s(m, eti)}

= max
t

{E(m) · E(et)}
(3)

3.3 Multi-View Enhanced Distillation
The basic intuition of MVD is to accurately transfer
knowledge of multiple fine-grained views from a
more powerful cross-encoder to the dual-encoder
to obtain mention-relevant entity representations.
First, in order to provide more accurate rele-
vance between mention m and each view et(t =
1, 2, ..., n) of the entity e as a supervised signal for
distillation, we introduce a multi-view based cross-
encoder following the formulation in Sec 3.2.3:

E(m, et) = Encce([CLS]menc [SEP] e
t
enc [SEP])

(4)
where menc and etenc(t = 1, 2, ..,n) are the word-
piece tokens of the mention and entity representa-
tions defined as in Eq. (1) and (2), respectively.

2www.nltk.org

We further design cross-alignment and self-
alignment mechanisms to separately align the
original entity-level scoring distribution and fine-
grained view-level scoring distribution, in order
to facilitate the fine-grained knowledge distillation
from the teacher model to the student model.
Cross-alignment In order to learn entity-level scor-
ing distribution among candidate entities at the
multi-view scenario, we calculate the relevance
score s(m, ei) for mention m and candidate entity
ei in candidates {e1, e2, ..., eK} by all its views
{e1i , e2i , ..., eni }, the indexes of relevant views ide
and ice for dual-encoder and cross-encoder are as
follows:

ide = argmax
t

{sde(m, eti)}

ice = argmax
t

{sce(m, eti)}
(5)

here to avoid the mismatch of relevant views (i.e.,
ide ̸= ice), we align their relevant views based on
the index ice of max-score view in cross-encoder,
the loss can be measured by KL-divergence as

Lcross =
K∑
i=1

s̃ce(m, ei) · log
s̃ce(m, ei)

s̃de(m, ei)
(6)

where

s̃de(m, ei) =
esde(m,eicei )

esde(m,eicei ) +
∑
j ̸=i

esde(m,ejcej )

s̃ce(m, ei) =
esce(m,eicei )

esce(m,eicei ) +
∑
j ̸=i

esce(m,ejcej )

(7)

here s̃de(m, ei) and s̃ce(m, ei) denote the probabil-
ity distributions of the entity-level scores which are
represented by the ice-th view over all candidate
entities.
Self-alignment Aiming to learn the view-level scor-
ing distribution within each entity for better distin-
guishing relevant view from other irrelevant views,
we calculate the relevance score s(m, et) for men-
tion m and each view eti(t = 1, 2, ..., n) of entity
ei, the loss can be measured by KL-divergence as:

Lself =
K∑
i=1

n∑
t=1

s̃ce(m, eti) · log
s̃ce(m, eti)

s̃de(m, eti)

(8)

www.nltk.org
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Figure 2: The general framework of Multi-View Enhanced Distillation (MVD). V i
de and V i

ce are the relevance scores
between m and ei separately calculated by dual-encoder and cross-encoder, Ede and Ece are the entity relevance
scores represented by V i

de and V i
ce, base on the max-score view’s index i in cross-encoder.

where

s̃de(m, eti) =
esde(m,eti)

esde(m,eti) +
∑
j ̸=t

esde(m,eji )

s̃ce(m, eti) =
esce(m,eti)

esce(m,eti) +
∑
j ̸=t

esce(m,eji )

(9)

here s̃de(m, eti) and s̃ce(m, eti) denote the probabil-
ity distributions of the view-level scores over all
views within each entity.
Joint training The overall joint training framework
can be found in Figure 2. The final loss function is
defined as

Ltotal = Lde + Lce + αLcross + βLself (10)

Here, Lcross and Lself are the knowledge distil-
lation loss with the cross-encoder and defined as
in Eq. (6) and (8) respectively, α and β are co-
efficients for them. Besides, Lde and Lce are the
supervised training loss of the dual-encoder and
cross-encoder on the labeled data to maximize the
s(m, ek) for the golden entity ek in the set of can-
didates {e1, e2, ..., eK}, the loss can be defined as:

Lde = −sde(m, ek) + log

K∑
j=1

exp(sde(m, ej))

Lce = −sce(m, ek) + log
K∑
j=1

exp(sce(m, ej))

(11)

Inference we only apply the mention-encoder to
obtain the mention embeddings, and then retrieve
targets directly from pre-computing view embed-
dings via efficient nearest neighbor search. These
view embeddings encompass both global and lo-
cal views and are generated by the entity-encoder
following joint training. Although the size of the
entity index may increase due to the number of
views, the time complexity can remain sub-linear
with the index size due to mature nearest neighbor
search techniques (Zhang et al., 2022).

3.4 Hard Negative Sampling

Hard negatives are effective information carriers
for difficult knowledge in distillation. Mainstream
techniques for generating hard negatives include
utilizing static samples (Wu et al., 2020) or top-K
dynamic samples retrieved from a recent iteration
of the retriever (Xiong et al., 2020; Zhan et al.,
2021), but these hard negatives may not be suitable
for the current model or are pseudo-negatives (i.e.,
unlabeled positives) (Qu et al., 2021). Aiming to
mitigate this issue, we adopt a simple negative sam-
pling method that first retrieves top-N candidates,
then randomly samples K negatives from them,
which reduces the probability of pseudo-negatives
and improves the generalization of the retriever.

4 Experiments

4.1 Datasets

We evaluate MVD under two distinct types of
datasets: three standard EL datasets AIDA-CoNLL



Method R@1 R@2 R@4 R@8 R@16 R@32 R@50 R@64

BM25 - - - - - - - 69.26
BLINK (Wu et al., 2020) - - - - - - - 82.06
Partalidou et al. (2022) - - - - - - 84.28 -
BLINK* 45.59 57.55 66.10 72.47 77.65 81.69 84.31 85.56
SOM (Zhang and Stratos, 2021) - - - - - - - 89.62
MuVER (Ma et al., 2021) 43.49 58.56 68.78 75.87 81.33 85.86 88.35 89.52
Agarwal et al. (2022) 50.31 61.04 68.34 74.26 78.40 82.02 - 85.11
GER (Wu et al., 2023) 42.86 - 66.48 73.00 78.11 82.15 84.41 85.65

MVD (ours) 52.51 64.77 73.43 79.74 84.35 88.17 90.43 91.55

Table 1: Recall@K(R@K) on test set of ZESHEL, R@K measures the percentage of mentions for which the top-K
retrieved entities include the golden entities. The best results are shown in bold and the results unavailable are left
blank. * is reproduced by Ma et al. (2021) that expands context length to 512.

Method
AIDA-b MSNBC WNED-CWEB

R@10 R@30 R@100 R@10 R@30 R@100 R@10 R@30 R@100

BLINK 92.38 94.87 96.63 93.03 95.46 96.76 82.23 86.09 88.68
MuVER 94.53 95.25 98.11 95.02 96.62 97.75 79.31 83.94 88.15
MVD (ours) 97.05 98.15 98.80 96.74 97.71 98.04 85.01 88.18 91.11

Table 2: Recall@K(R@K) on test set of Wikipedia datasets, best results are shown in bold. Underline notes for
the results we reproduce.

(Hoffart et al., 2011), WNED-CWEB (Guo and
Barbosa, 2018) and MSNBC (Cucerzan, 2007),
these datasets are all constructed based on a uni-
form Wikipedia KB; and a more challenging Wikia-
based dataset ZESHEL (Logeswaran et al., 2019),
adopts a unique setup where the train, valid, and
test sets correspond to different KBs. Statistics of
these datasets are listed in Appendix A.1.

4.2 Training Procedure

The training pipeline of MVD consists of two
stages: Warmup training and MVD training. In the
Warmup training stage, we separately train dual-
encoder and cross-encoder by in-batch negatives
and static negatives. Then we initialize the student
model and the teacher model with the well-trained
dual-encoder and cross-encoder, and perform multi-
view enhanced distillation to jointly optimize the
two modules following Section 3.3. Implementa-
tion details are listed in Appendix A.2.

4.3 Main Results

Compared Methods We compare MVD with pre-
vious state-of-the-art methods. These methods can
be divided into several categories according to the
representations of entities: BM25 (Robertson et al.,

2009) is a sparse retrieval model based on exact
term matching. BLINK (Wu et al., 2020) adopts a
typical dual-encoder architecture that embeds the
entity independently into a single fixed-size vector.
SOM (Zhang and Stratos, 2021) represents entities
by its tokens and computes relevance scores via the
sum-of-max operation (Khattab and Zaharia, 2020).
Similar to our work, MuVER (Ma et al., 2021) con-
structs multi-view entity representations to match
divergent mentions and achieved the best results,
so we select MuVER as the main compared base-
line. Besides, ARBORESCENCE (Agarwal et al.,
2022) and GER (Wu et al., 2023) construct men-
tion/entity centralized graphs to learn fine-grained
entity representations.

For Zeshel dataset we compare MVD with all
the above models. As shown in Table 1, MVD
performs better than all the existing methods. Com-
pared to the previously best performing method
MuVER, MVD significantly surpasses in all met-
rics, particularly in R@1, which indicates the abil-
ity to directly obtain the target entity. This demon-
strates the effectiveness of MVD, which uses hard
negatives as information carriers to explicitly trans-
fer knowledge of multiple fine-grained views from
the cross-encoder to better represent entities for



Model R@1 R@64

MVD 51.69 89.78

- w/o multi-view cross-encoder 50.85 89.24
- w/o relevant-view alignment 51.02 89.55
- w/o self-alignment 51.21 89.43
- w/o cross-alignment 50.82 88.71

- w/o all components 51.40 84.16

Table 3: Ablation for fine-grained components in MVD
on test set of ZESHEL. Results on Wikipedia-based
datasets are similar and omitted due to limited space.

Method R@1 R@64

MVD 51.69 89.78
- w/o dynamic distillation 51.11 88.50
- w/o dynamic negatives 50.26 88.46

- w/o all strategies 50.16 87.54

Table 4: Ablation for training strategies in MVD on test
set of ZESHEL.

matching multiple mentions, resulting in higher-
quality candidates for the ranking stage.
For Wikipedia datasets we compare MVD with
BLINK 3 and MuVER (Ma et al., 2021). As shown
in Table 2, our MVD framework also outperforms
other methods and achieves state-of-the-art perfor-
mance on AIDA-b, MSNBC, and WNED-CWEB
datasets, which verifies the effectiveness of our
method again in standard EL datasets.

4.4 Ablation and Comparative Studies

4.4.1 Ablation Study
For conducting fair ablation studies and clearly
evaluating the contributions of each fine-grained
component and training strategy in MVD, we ex-
clude the coarse-grained global-view to evaluate
the capability of transferring knowledge of multiple
fine-grained views, and utilize Top-K dynamic hard
negatives without random sampling to mitigate the
effects of randomness on training.
Fine-grained components ablation results are pre-
sented in Table 3. When we replace the multi-
view representations in the cross-encoder with
the original single vector or remove the relevant
view selection based on the results of the cross-
encoder, the retrieval performance drops, indicat-

3BLINK performance is reported in https://github.
com/facebookresearch/BLINK

Method View Type R@1 R@64

BLINK global 46.04 87.46
MuVER global 36.90 80.65
MVD (ours) global 47.11 87.04

BLINK local 37.20 86.38
MuVER local 41.99 89.25
MVD (ours) local 51.27 90.25

MVD (ours) global+local 52.51 91.55

Table 5: Comparison for representing entities from
multi-grained views on test set of ZESHEL. Results
of BLINK and MuVER are reproduced by us.

ing the importance of providing accurate super-
vised signals for each view of the entity during
distillation. Additionally, the removal of cross-
alignment and self-alignment results in a decrease
in performance, highlighting the importance of
these alignment mechanisms. Finally, when we ex-
clude all fine-grained components in MVD and em-
ploy the traditional distillation paradigm based on
single-vector entity representation and entity-level
soft-labels, there is a significant decrease in perfor-
mance, which further emphasizes the effectiveness
of learning knowledge of multiple fine-grained and
mention-relevant views during distillation.
Training strategies we further explore the effec-
tiveness of joint training and hard negative sam-
pling in distillation, Table 4 shows the results. First,
we examine the effect of joint training by freez-
ing the teacher model’s parameters to do a static
distillation, the retrieval performance drops due
to the teacher model’s limitation. Similarly, the
performance drops a lot when we replace the dy-
namic hard negatives with static negatives, which
demonstrates the importance of dynamic hard neg-
atives for making the learning task more challeng-
ing. Furthermore, when both training strategies are
excluded and the student model is independently
trained using static negatives, a substantial decrease
in retrieval performance is observed, which vali-
dates the effectiveness of both training strategies in
enhancing retrieval performance.

4.4.2 Comparative Study on Entity
Representation

To demonstrate the capability of representing enti-
ties from multi-grained views, we carry out com-
parative analyses between MVD and BLINK (Wu
et al., 2020), as well as MuVER (Ma et al., 2021).

https://github.com/facebookresearch/BLINK
https://github.com/facebookresearch/BLINK


Candidate Retriever U.Acc.

Base Version Ranker

BM25 (Logeswaran et al., 2019) 55.08
BLINK (Wu et al., 2020) 61.34
SOM (Zhang and Stratos, 2021) 65.39
Agarwal et al. (2022) 62.53
MVD (ours) 66.85

Large Version Ranker

BLINK (Wu et al., 2020) 63.03
SOM (Zhang and Stratos, 2021) 67.14
MVD (ours) 67.84

Table 6: Performance of ranker based on different candi-
date retrievers on the test set of ZESHEL. U.Acc. means
the unnormalized macro accuracy.

These systems are founded on the principles of
coarse-grained global-views and fine-grained local-
views, respectively.

We evaluate the retrieval performance of both en-
tity representations and present the results in Table
5. The results clearly indicate that MVD surpasses
both BLINK and MuVER in terms of entity repre-
sentation performance, even exceeding BLINK’s
global-view performance in R@1, despite being a
fine-grained training framework. Unsurprisingly,
the optimal retrieval performance is attained when
MVD employs both entity representations concur-
rently during the inference process.

5 Further Analysis

5.1 Facilitating Ranker’s Performance
To evaluate the impact of the quality of candidate
entities on overall performance, we consider two
aspects: candidates generated by different retriev-
ers and the number of candidate entities used in
inference. First, we separately train BERT-base
and BERT-large based cross-encoders to rank the
top-64 candidate entities retrieved by MVD. As
shown in Table 6, the ranker based on our frame-
work achieves the best results in the two-stage per-
formance compared to other candidate retrievers,
demonstrating its ability to generate high-quality
candidate entities for the ranking stage.

Additionally, we study the impact of the num-
ber of candidate entities on overall performance,
as shown in Figure 3, with the increase of candi-
dates number k, the retrieval performance grows
steadily while the overall performance is likely to
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Figure 3: Recall and overall micro accuracy based on
different number of candidates k.

be stagnant. This indicates that it’s ideal to choose
an appropriate k to balance the efficiency and effi-
cacy, we observe that k = 16 is optimal on most of
the existing EL benchmarks.

5.2 Qualitative Analysis

To better understand the practical implications of
fine-grained knowledge transfer and global-view
entity representation in MVD, as shown in Table
7, we conduct comparative analysis between our
method and MuVER (Ma et al., 2021) using re-
trieval examples from the test set of ZESHEL for
qualitative analysis.

In the first example, MVD clearly demon-
strates its ability to accurately capture the mention-
relevant information Rekelen were members of this
movement and professor Natima Lang in the golden
entity “Cardassian dissident movement”. In con-
trast, MuVER exhibits limited discriminatory abil-
ity in distinguishing between the golden entity and
the hard negative entity “Romulan underground
movement”. In the second example, Unlike Mu-
VER which solely focuses on local information
within the entity, MVD can holistically model mul-
tiple mention-relevant parts within the golden en-
tity “Greater ironguard” through a global-view en-
tity representation, enabling matching with the cor-
responding mention “improved version of lesser
ironguard”.

6 Conclusion

In this paper, we propose a novel Multi-View En-
hanced Distillation framework for dense entity
retrieval. Our framework enables better repre-
sentation of entities through multi-grained views,
and by using hard negatives as information car-



Mention and Context Entity retrieved by MVD Entity retrieved by MuVER

Title: Cardassian dissident movement Title: Romulan underground movement
Rekelen was a member of the
underground movement and a
student under professor Natima
Lang. In 2370, Rekelen was
forced to flee Cardassia prime
because of her political views.

The Cardassian dissident movement was a
resistance movement formed to resist and
oppose the Cardassian Central Command
and restore the authority of the Detapa
Council. They believed this change was
critical for the future of their people. Pro-
fessor Natima Lang, Hogue, and Reke-
len were members of this movement in
the late 2360s and 2370s. ...

The Romulan underground movement was
formed sometime prior to the late 24th century
on the planet Romulus by a group of Romu-
lan citizens who opposed the Romulan High
Command and who supported a Romulan -
Vulcan reunification. Its methods and princi-
ples were similar to those of the Cardassian
dissident movement which emerged in the
Cardassian Union around the same time. ...

Title: Greater ironguard Title: Lesser ironguard
Known as the improved ver-
sion of lesser ironguard, this
spell granted the complete im-
munity from all common, un-
enchanted metals to the caster
or one creature touched by the
caster.

Greater ironguard was an arcane abjura-
tion spell that temporarily granted one
creature immunity from all non-magical
metals and some enchanted metals. It
was an improved version of ironguard.
The effects of this spell were the same as
for "lesser ironguard" except that it also
granted immunity and transparency to met-
als that had been enchanted up to a certain
degree. ...

... after an improved version was devel-
oped, this spell became known as lesser
ironguard. Upon casting this spell, the caster
or one creature touched by the caster became
completely immune to common, unenchanted
metal. metal weapons would pass through the
individual without causing harm. likewise,
the target of this spell could pass through
metal barriers such as iron bars, grates, or
portcullises. ...

Table 7: Examples of entities retrieved by MVD and MuVER, mentions in contexts and mention-relevant information
in entities are in bold.

riers to effectively transfer knowledge of multi-
ple fine-grained and mention-relevant views from
the more powerful cross-encoder to the dual-
encoder. We also design cross-alignment and self-
alignment mechanisms for this framework to facil-
itate the fine-grained knowledge distillation from
the teacher model to the student model. Our exper-
iments on several entity linking benchmarks show
that our approach achieves state-of-the-art entity
linking performance.

Limitations

The limitations of our method are as follows:

• We find that utilizing multi-view represen-
tations in the cross-encoder is an effective
method for MVD, however, the ranking per-
formance of the cross-encoder may slightly
decrease. Therefore, it is sub-optimal to di-
rectly use the cross-encoder model for entity
ranking.

• Mention detection is the predecessor task of
our retrieval model, so our retrieval model
will be affected by the error of the mention
detection. Therefore, designing a joint model
of mention detection and entity retrieval is an
improvement direction of our method.
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A Appendix

A.1 Statistics of Datasets
Table 8 shows statistics for ZESHEL dataset, which
was constructed based on documents in Wikia from
16 domains, 8 for train, 4 for valid, and 4 for test.

Domain #Entity #Mention

Training
American Football 31929 3898
Doctor Who 40281 8334
Fallout 16992 3286
Final Fantasy 14044 6041
Military 104520 13063
Pro Wrestling 10133 1392
Star Wars 87056 11824
World of Warcraft 27677 1437
Training 332632 49275

Validation
Coronation Street 17809 1464
Muppets 21344 2028
Ice Hockey 28684 2233
Elder Scrolls 21712 4275
Validation 89549 10000

Testing
Forgotten Realms 15603 1200
Lego 10076 1199
Star Trek 34430 4227
YuGiOh 10031 3374
Testing 70140 10000

Table 8: Statistics of ZESHEL dataset.

Table 9 shows statistics for three Wikipedia-
based datasets: AIDA, MSNBC, and WNED-
CWEB. MSNBC and WNED-CWEB are two out-
of-domain test sets, which are evaluated on the
model trained on AIDA-train, and we test them on
the version of Wikipedia dump provided in KILT
(Petroni et al., 2021), which contains 5.9M entities.

Dataset #Mention #Entity
AIDA-train 18448

5903530
AIDA-valid 4791
AIDA-test 4485
MSNBC 678

WNED-CWEB 10392

Table 9: Statistics of three Wikipedia-based datasets.

A.2 Implementation Details
For ZESHEL, we use the BERT-base to initial-
ize both the student dual-encoder and the teacher
cross-encoder. For Wikipedia-based datasets, we
finetune our model based on the model released
by BLINK, which is pre-trained on 9M annotated
mention-entity pairs with BERT-large. All exper-
iments are performed on 4 A6000 GPUs and the
results are the average of 5 runs with different ran-
dom seeds.
Warmup training We initially train a dual-encoder
using in-batch negatives, followed by training a
cross-encoder as the teacher model via the top-k
static hard negatives generated by the dual-encoder.
Both models utilize multi-view entity representa-
tions and are optimized using the loss defined in
Eq. (11), training details are listed in Table 10.

Hyperparameter ZESHEL Wikipedia

Dual-encoder

Max mention length 128 32
Max view num 10 5
Max view length 40 40
Learning rate 1e-5 1e-5
Negative num 63 63
Batch size 64 64
Training epoch 40 40
Training time 4h 2h

Cross-encoder

Max input length 168 72
Learning rate 2e-5 2e-5
Negative num 15 15
Batch size 1 1
Training epoch 3 3
Training time 7h 5h

Table 10: Hyperparameters for Warmup training.

MVD training Next, we initialize the student
model and the teacher model with the well-trained
dual-encoder and cross-encoder obtained from the
Warmup training stage. We then employ multi-
view enhanced distillation to jointly optimize both
modules, as described in Section 3.3. To determine
the values of α and β in Eq. (10), we conduct a grid
search and find that setting α = 0.3 and β = 0.1
yields the best performance. We further adopt a
simple negative sampling method in Sec 3.4 that
first retrieves top-N candidates and then samples K
as negatives. Based on the analysis in Sec 5.1 that



16 is the optimal candidate number to cover most
hard negatives and balance the efficiency, we set it
as the value of K; then to ensure high recall rates
and sampling high quality negatives, we search
from a candidate list [50, 100, 150, 200, 300] and
eventually determine N=100 is the most suitable
value. The training details are listed in Table 11.

Hyperparameter ZESHEL Wikipedia

Max mention length 128 32
Max view num 10 5
Max view length 40 40
Max cross length 168 72
Learning rate 2e-5 2e-5
Negative num 15 15
Batch size 1 1
Training epoch 5 5
Training time 15h 6h

Table 11: Hyperparameters for MVD training.

Inference MVD employs both local-view and
global-view entity representations concurrently dur-
ing the inference process, details are listed in Table
12.

Hyperparameter ZESHEL Wikipedia

Local-view length 40 40
Global-view length 512 128
Avg view num 16 6

Table 12: Hyperparameters for Inference.


