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We propose a novel trace-guided approach to tackle the challenges of ambiguity and generalization in synthesis
of recursive functional programs from input-output examples. Our approach augments the search space of
programs with recursion traces consisting of recursive subcalls of the programs. Our method is based on a
new version space algebra (VSA) for succinct representation and efficient manipulation of pairs of recursion
traces and programs that are consistent with each other. We have implemented this approach in a tool called
SyRup and evaluated it on benchmarks from prior work. Our evaluation demonstrates that SyRup not only
requires fewer examples to achieve a certain success rate than existing synthesizers, but is also less sensitive
to the quality of the examples.
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1 INTRODUCTION

The last decade has witnessed significant advances in synthesis of recursive functional programs [Al-
barghouthi et al. 2013; Farzan and Nicolet 2021; Feser et al. 2015; Itzhaky et al. 2021; Kneuss et al.
2013; Lee and Cho 2023; Lubin et al. 2020; Miltner et al. 2022; Osera and Zdancewic 2015; Polikarpova
et al. 2016], and, in particular, in inductive synthesis of recursive programs from input-output (I/O)
examples [Albarghouthi et al. 2013; Feser et al. 2015; Lubin et al. 2020; Miltner et al. 2022; Osera
and Zdancewic 2015]. The latter problem, however, is far from solved and continues to pose several
challenges that are best illustrated through an example. Let us consider a synthesis task where the
goal is a recursive program that adds two natural numbers and is consistent with an I/O example
(2, 1){3. In Fig. 1, we list several candidate programs in the search space of a typical synthesizer
for functional programs, along with the corresponding recursion traces; informally, recursion traces
capture sequences of recursive subcalls of a program induced by an I/O example. While all programs
are consistent with the example (2, 1){3, notice that only the programs annotated with a ✓ are
correct for all possible program inputs. So, how would the typical synthesizer resolve the ambiguity
between these programs and pick one that generalizes to other inputs?
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Recursion Trace Program
(2,1){3

(1,1){2

(0,1){1

let rec nat_add m n =

match m with

| Zero -> n

| Succ m' ->

Succ (nat_add m' n)

!

(2,1){3

(1,1){3

(0,1){3

let rec nat_add1 m n =

match m with

| Zero -> Succ (Succ n)

| Succ m' ->

nat_add1 m' n

%

(2,1){3

(1,0){1

let rec nat_add2 m n =

match m, n with

| Zero , Zero -> Zero

| Succ m', Zero -> m

| Zero , Succ n' -> n

| Succ m', Succ n' ->

Succ (Succ (nat_add2 m' n'))

!

(2,1){3
let rec nat_add3 m n =

Succ (Succ n) %

Fig. 1. Consistent trace-program pairs for an I/O example (2, 1){3.

— The synthesizer may use everyone’s favorite inductive bias—Occam’s razor—to pick the “smallest”
program among the candidates [Barke et al. 2020; Gulwani 2011;Wang et al. 2017]. In our example,
however, program nat_add3 is the smallest and is obviously incorrect; further, programs
nat_add and nat_add1 are about the same size and only one of them is correct.

— Or, the synthesizer may require the user to provide a complete recursion trace, say ((2, 1){3 −→

(1, 1){2 −→ (0, 1){1), and use the recursion trace to find a program, such as nat_add ,
consistent with the trace [Albarghouthi et al. 2013; Feser et al. 2015; Osera and Zdancewic 2015].
This is an instance of programming by demonstration [Lau et al. 2003] and trace-based synthesis
[Chugh et al. 2016], and helps the synthesizer by expecting more information about the behavior
of the target program. Unfortunately, requiring users to provide a complete recursion trace, or,
essentially, a trace-complete set of examples can be prohibitive.
In this paper, we propose a new trace-guided synthesis approach to tackle the challenges of

trace-completeness, generalization, and ambiguity-resolution in inductive synthesis of recursive
programs. Our approach augments the search space of programs with recursion traces, thereby
using recursion traces as an inductive bias without burdening users. Given a set of I/O examples,
our method jointly explores the space of recursion traces and programs that are consistent with
each other, keeping track of consistent trace-program pairs in a version space [Lau et al. 2003;
Mitchell 1982], and using a ranking function over such trace-program pairs to pick the most likely
program.
The key technical contribution of this work is a new version space algebra (VSA) for succinct

representation and efficient manipulation of consistent trace-program pairs. Our VSA has several
important properties. First, it allows us to explore the space of recursion traces and programs
incrementally. In each step, we leverage angelic semantics [Bodik et al. 2010; Floyd 1967] to track
possible valuations of recursive subcalls that a consistent program might make in the next recursion
step. Second, it allows us to construct a version space of consistent trace-program pairs composi-

tionally. The VSA operators enable us to compose the version space for the current recursion step
with version spaces for subsequent recursion steps through a clever manipulation that involves
consing recursion traces and unifying sets of programs. Last, but not the least, all VSA operators
are designed to be consistency-preserving, thereby eliminating the need for backtracking.
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Fig. 2. An AND/OR graph representing a trace-indexed VS for I/O example (2, 1){3. Each ⃝ is an AND node

representing a set of programs and each i{o is an OR node representing a synthesis problem.

We have implemented our approach in a tool called SyRup1 and evaluated it on 43 programming
tasks collected from prior work [Osera and Zdancewic 2015]. Our experiments extensively evaluate
SyRup’s ability to generalize across different classes of I/O example sets. SyRup not only requires
fewer examples to achieve a certain success rate than the two state-of-the-art inductive synthesizers
Smyth [Lubin et al. 2020] and Burst [Miltner et al. 2022], but is also less sensitive to the quality of
the examples.
To summarize, our paper makes the following contributions.
(1) We present a new trace-guided procedure for inductive synthesis of recursive programs to

tackle the challenges of trace-completeness, generalization, and ambiguity-resolution . Our
procedure is sound and complete modulo a notion of observational equivalence (Sec. 5).

(2) We define a new VSA for succinct representation and efficient manipulation of the space of
recursion traces and programs that are consistent with each other (Sec. 4).

(3) We develop a tool SyRup and extensively evaluate it on synthesis tasks. We demonstrate that
SyRup outperforms prior work in multiple aspects (Sec. 6, Sec. 7).

2 TRACE-GUIDED SYNTHESIS: ILLUSTRATIVE OVERVIEW

In this section, we illustrate key aspects of our trace-guided synthesis algorithm using our running
example of synthesis from one I/O example (2, 1){3.
Recursion Traces. Given an I/O example and a recursive program, a recursion trace (or, in short,
trace) is a tree that witnesses the execution of the program on the given example. In particular,
the nodes i{o of a trace correspond to recursive subcalls with input i and output o, where the
root node represents the given I/O example and the descendants of a node represent subsequent
recursive subcalls made in the program execution. A trace is linear iff each node has at most one
child. Given an I/O example i{o, we say that a trace-program pair (Tr, P) is consistent iff the nodes

1SyRup stands for “Synthesizer for Recursive Programs”.
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of the trace Tr witness the recursive calls necessary to complete the execution of P on input i as
described above.
For instance, for the example (2, 1){3, each row in Fig. 1 presents a consistent trace-program

pair, where each trace is linear.
Trace-Indexed Version Space. Our approach leverages (recursion) traces for inductive synthesis of
recursive programs using a trace-indexed version space (VS). Given an example i{o, a trace-indexed
VS consists of pairs (Tr, PS) of traces and sets of programs such that for each program P in PS, the
trace-program pair (Tr, P) is consistent.

To help illustrate how our method constructs a trace-indexed VS, we use a rooted AND/OR graph
as shown in Fig. 2. Each (Tr, PS) pair in the trace-indexed VS for example (2, 1){3 corresponds
to a rooted tree from the root OR node to leaf AND nodes in the AND/OR graph. For instance,
nat_add and its trace in the first row of Fig. 1 corresponds to the leftmost path in the AND/OR
graph (indicated using thick edges), and so on. Note that because each trace in this example is
linear, the rooted tree corresponding to each (Tr, PS) pair in the trace-indexed VS is simply a path.

We now illustrate how our method constructs the trace-indexed VS for the leftmost path in Fig. 2.
Each OR node i{o represents a new synthesis problem, defined by an example i{o, with the root
OR node representing the original synthesis problem defined by (2, 1){3. The children of an OR
node i{o are AND nodes (denoted by circles) and the children of an AND node are OR nodes.
Each AND node represents a program set containing programs that that are consistent with the
parent OR-node, assuming the children OR-nodes. For instance, each program P in the program set
PS1 is consistent with the original example (2, 1){3 given the assumption (that P is also consistent
with) (1, 1){2. An example of a program in the program set PS1 is as shown below:

let rec nat_add4 m n =

match m with

| Zero -> ??

| Succ m' -> Succ (nat_add4 m' n)

where ?? can be substituted with any well-typed expression. This program belongs to program
set PS1 because given the assumption nat_add 1 1 = 2, we have nat_add 2 1 equals Succ (

nat_add 1 1) equals 3, as expected.
Similarly, the program set PS2 contains programs that are consistent with (1, 1){2, given the

assumption (0, 1){1. In particular, the program set PS2 also contains the partial program shown
above; given the assumption nat_add 0 1 = 1, we have nat_add 1 1 equals Succ (nat_add

0 1) equals 2, as expected.
Finally, the program set PS3 contains programs that are consistent with (0, 1){1, and includes

the following program that does not involve any recursive subcalls:

let rec nat_add5 m n =

match m with

| Zero -> n

| Succ m' -> ??

where ?? can be substituted by any well-typed expression as before.
The (Tr, PS) pair for the leftmost path can now be constructed by “combining” the assumptions

into the trace (2, 1){3 −→ (1, 1){2 −→ (0, 1){1, and by “intersecting” the program sets PS1,
PS2, and PS3. Notice that this intersection contains the correct program nat_add in Fig. 1.
By exhaustively exploring other rooted trees in the AND/OR graph, our method constructs a

trace-indexed VS that consists of (Tr, PS) pairs corresponding to all rooted trees in the AND/OR
graph by splicing together assumptions and program sets. In particular, our method uses operators
defined in our version space algebra to do these manipulations efficiently.
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Inferring Assumptions. The exploration of an AND/OR graph, and thus the construction of a trace-
indexed VS, is driven by a procedure for inferring assumptions about the target program. This
involves conjecturing new I/O examples that the target program is expected to be consistent with,
based on the synthesis problem defined by the current OR node. Let’s revisit the assumption
nat_add4 1 1 = 2 from earlier. To tackle the synthesis problem defined by (2, 1){3, we not
only search for candidate programs like nat_add4 , but also infer the output of the recursive subcall
nat_add4 1 1 such that Succ(nat_add4 1 1) equals to 3. In this case, the inference is trivially
done by “deconstructing” 3 ≡ Succ(Succ(Succ(Zero))). In general, the inference may be more
involved. Consider an alternative candidate program for the synthesis problem:

let rec nat_add5 m n =

match m with

| Zero -> ??

| Succ m' -> plus_one (nat_add5 m' n)

Here, plus_one is a background function with the same semantics as the constructor Succ . The
inverse semantics of background functions, particularly recursive ones, are not always readily
available. Hence, we symbolically encode the semantics of plus_one in an SMT solver, and query
the solver for the output U (1,1) of the recursive subcall on (1, 1) such that plus_one U (1,1) = 3.
Trace-Based Ranking Function. Given a trace-indexed VS for an I/O example, how do we pick
programs that generalize better? As argued in Sec. 1, simply choosing a program with the “smallest”
size may not always suffice. Fortunately, the recursion traces in the trace-indexed VS encode rich
semantic features of the corresponding programs. For instance, one may easily identify the recursion
scheme used in a program from the shape of its recursion trace; if we simply prefer programs with
longer traces, then the program nat_add ranks higher than the smaller non-recursive program
nat_add3 in Fig. 1.

3 PROBLEM DEFINITION AND SOLUTION OVERVIEW

program P ::= fix f (Gin).4

expression 4, 6 ::= G | 41 (42) | � () | � (4)

| match G with {�1 (G1) � 41, . . . ,�n (Gn) � 4n}

| cond {61 � 41, . . . , 6n � 4n}

value i, o, E ::= true | false | � () | � (E)

42 ⇓ E2 [Gin ≔ E2, f ≔ (fix f (Gin).41)] 41 ⇓ E

(fix f (Gin).41) (42) ⇓ E
ERec

4 ⇓ E

� (4) ⇓ � (E)
ECtor

6 ⇓ true 4 ⇓ E

cond {. . . 6 � 4 . . .} ⇓ E
ECond

4′ ⇓ � (E ′) [G ≔ E ′] 4 ⇓ E

match 4′ with {. . .� (G) � 4 . . .} ⇓ E
EMatch

Fig. 3. tinyML: Syntax and Semantics.
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Algorithm 1 Top-Level Synthesis Algorithm

Input: I/O examples E
Input: Layered search space (Lj)j∈N
Output: Program P

1: procedure Synthesize(E, (Lj)j∈N)
2: for j ∈ N do

3: Ψ← Learn(E,Lj)

4: if Ψ ≠ ∅ then

5: P← Rank(Ψ)

6: return P

Given a set E of I/O examples, our goal is to synthesize a recursive functional program P of the
form fix f (Gin).4 in a search space defined by a DSL. In what follows, we present our target DSL,
formalize our problem statement, and present our top-level synthesis algorithm.

Our target DSL tinyML is a functional ML-like programming language with recursive functions,
algebraic data types, and pattern matching (see Fig. 3). The syntax of expressions is mostly standard,
with variables G , function applications 41 (42), and constructors � . Both function applications and
constructors may take multiple arguments (omitted in Fig. 3). To ensure that programs terminate,
recursive subcalls are only permitted on values that are strictly smaller than the input. Expressions
include a restricted form of match , where scrutinees can only be variables, and patterns are required
to be non-overlapping and exhaustive, i.e., there is exactly one branch for each constructor of the
data type being matched. Finally, expressions include conditional expressions cond consisting of a
set of guarded expressions, where guards are essentially Boolean expressions that do not permit
recursive subcalls to f. The guards in a cond expression are required to be mutually-exclusive
and exhaustive; this ensures that cond expressions are equivalent in expressiveness to the more
commonly used if expressions. The program semantics is standard.

Definition 3.1 (Program Correctness). Given a program P in tinyML, P is consistent w.r.t. a set E
of I/O examples, denoted P |= E, if and only if P (i) ⇓ o for each I/O example i{o ∈ E.

Let us denote by L the set of programs generated by tinyML.

Definition 3.2 (Problem Definition). Given a set E of I/O examples, find a program P such that
P ∈ L and P |= E.

Our top-level synthesis procedure is presented in Algo. 1. Because L is unbounded, we follow
common practice in program synthesis literature to both bound the search space and prioritize
search. Thus, we assume that L is layered into a sequence of finite subspaces (L1,L2, . . .), where
each subspace Lj is obtained from L by constraining the value of some suitable program parame-
ter(s), and the ordering of subspaces encodes preference based on parameter values. For instance,
a popular layering strategy is to use program size to bound the search space and prefer smaller

programs by ordering subspaces by increasing size.

Definition 3.3 (Layered Search Space2). Search space L is defined to be layered by a sequence
(L1,L2, . . .) of finite subsets Lj of L, denoted L = (Lj)j∈N, iff L =

⋃
j∈N Lj.

Given a set E of examples and a layered search space L = (Lj)j∈N, procedure Synthesize

(1) iterates through each finite subspace Lj of L, (2) learns a (representation of a) set Ψ of programs

2Notice that, unlike conventional notions of layering, say based on program size, we do not require Lj+1 ⊇ Lj. As we shall

see in Sec. 5 and Sec. 7, our relaxed notion of layering offers more flexibility in exploring the search space L.
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in subspace Lj such that P |= E for each P ∈ Ψ, and (3) returns a program in Ψ that maximizes a
ranking function on L. In any iteration, if Ψ is empty, the procedure moves onto the next subspace.

Most existing solutions [Barke et al. 2020; Lee 2021; Lubin et al. 2020; Miltner et al. 2022] for the
program synthesis problem in Def. 3.3 are instances of Algo. 1 and iteratively increase the upper
bound on some program parameter (such as AST size or depth) to systematically expand the search
space. The key distinguishing elements lie in the design of the layered search space, the Learn
procedure, and the ranking function.
In what follows, we formalize our version space algebra to represent and manipulate sets of

programs in Sec. 4. We then present the definition of our layered search space along with the Learn
and Rank procedures for our program representation in Sec. 5 and Sec. 6 respectively.

4 TRACE-INDEXED EXTENDED VERSION SPACES

In this section, we present the definitions required to describe our synthesis algorithm.

4.1 Trace-Witnessed Semantics

Frames and Recursion Traces. We use frames to represent the behavior within the current
instance of a call to the recursive function f and recursion traces to represent the behavior of the
full tree of recursive sub-calls. A frame Fr is denoted as (Δ{E)�Asm where: (a) Δ is a sequence of
substitutions Gj ≔ Ej, called valuation context, with [Δ] 4 being the result of applying substitutions
in 4 , (b) E is a target value, and (c) Asm =

[
i1{o1 . . . in{on

]
is an assumption sequence of I/O

examples ij{oj where we also have that ij = ik =⇒ oj = ok. A recursion trace Tr is given by a
tree (i{o)�Trs where: (a) the root Root(Tr) is an I/O example (i{o), and (b) the (possibly empty)
sequence of recursion traces Trs =

[
Tr1 . . . Trn

]
are the children. We assume that the set of I/O

examples in a recursion trace is consistent, i.e., no two nodes are labeled with examples having the
same input but differing outputs.
For brevity, frame ((Gin ≔ i){o)�Asm is written as (i{o)�Asm for the rest of the paper.

Example 4.1. Consider the tinyML program P ≡ (fix f (Gin).4) where 4 ≡ match Gin with {nil �

0, cons(h, t) � h + f (t)}. On the input i = cons(5, cons(10, nil)), the program P returns 15.
The invocation to f (i) makes one direct recursive sub-call (i.e., f (cons(10, nil))), which in
turn makes another recursive sub-call f (nil). This behavior is represented by the frame Fr =

(i{15)�
[
cons(10, nil){10

]
and the recursion trace Tr = (i{15)�

[
(cons(10, nil){10)�

[
(nil{0)�[]

]]
.

Here, the frame Fr captures the local behavior, i.e., that calling f on i returns 15 while making
one direct recursive sub-call characterized by cons(10, nil){10; while the recursion trace Tr

characterizes the full nested and thus global recursion behavior. □

Example 4.2. Consider a standard recursive implementation 4∗ for computing Fibonacci Numbers:
4∗ ≡ cond {Gin = 0 � 1, Gin = 1 � 1, Gin > 1 � f (Gin − 2) + f (Gin − 1)}. Similarly, the recursive
sub-call (fix f (Gin).4

∗) (3) is characterized by the frame (3{3)�
[
1{1, 2{2

]
and the trace Tr∗ =

(3{3)�
[
(1{1)�

[]
, (2{2)�

[
(0{1)�

[]
, (1{1)�

[]]] . Note that Tr∗ (unlike Tr from Example 4.1) is branching,
i.e., that a node has more than 1 child corresponding to multiple direct recursive sub-calls. □

Angelic Semantics and Trace-Witnessed Semantics. The angelic semantics and trace-witnessed
semantics formalize the idea of frames and traces representing local and global recursion behavior
as seen in Example 4.1. The rules for angelic and trace-witnessed semantics are shown in Fig. 4.
Intuitively, the angelic semantics evaluate a term left-to-right in a standard manner, except that
when a recursive function call f (4) is encountered, its output value is obtained from the assumption
sequence Asm. Formally, the judgment 4 ⇓Asm

Asm′
E asserts that: (a) evaluating the expression 4

requires = = |Asm| − |Asm′ | direct recursive calls, (b) the arguments to the recursive calls and their

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 141. Publication date: June 2023.
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4 ⇓ E

4 ⇓AsmAsm E
AEBase

6 ⇓Asm
Asm′

true 4 ⇓Asm
′

Asm′′
E

cond {. . . 6 � 4 . . .} ⇓Asm
Asm′′

E
AECond

4 ⇓Asm
Asm′

E

� (4) ⇓Asm
Asm′

� (E)
AECtor

4 ⇓Asm
Asm′

� (E) [G ≔ E] 4 ⇓Asm
′

Asm′′
E

match 4 with {. . .� (G) � 4 . . .} ⇓Asm
Asm′′

E
AEMatch

4 ⇓Asm
Asm′

i Asm′ =
[
i{o

]
⊔ Asm′′

f (4) ⇓Asm
Asm′′

o
AERec

Asm =
[
. . . Root(Trj) . . .

]

[G ≔ i] 4 ⇓Asm
[ ]

o ∀j. (fix f (G) .4) |= Trj

(fix f (G) .4) |= ((i{o)�
[
. . . Trj . . .

]
)

TERec

Fig. 4. Angelic semantics and trace-witnessed semantics of a recursive program P = fix f (G).4 .

return values form the first = I/O examples in Asm, and (c) Asm′ is the suffix of Asm excluding the
first = I/O examples. And we write Asm \ Asm′ to denote the assumption sequence obtained from
removing the suffix Asm′ from Asm.

The trace-witnessed semantics build on the angelic semantics. Intuitively, Rule TERec combines
the local behavior (the 2=3 premise stating that f angelically evaluates i to o making assumptions
Asm) and the global behavior (the 3A3 premise stating that for each assumption ij{oj in Asm, there
is a trace Trj witnessing it).

Example 4.3. Consider the program P, frame Fr = (i{15)�Asm, and Tr from Example 4.1.
Using the angelic semantics, we can derive 4 ⇓Asm

[ ]
15, i.e., assuming f (cons(10, nil)) evaluates

to 10, we have that 4 evaluates to 15. Note that the value of the recursive call is not obtained by
executing 4 on the arguments, but from the assumption list

[
cons(10, nil){10

]
. In fact, we also have

4′ ⇓
[cons(10,nil){10]

[ ]
15 for 4′ ≡ match Gin with {nil � 100, cons(h, t) � h + f (t)}. But we cannot

derive (fix f (Gin).4
′) |= Tr′ for any Tr′ = (cons(5, cons(10, nil)){15)�Trs, while we can derive

(fix f (Gin).4) |= Tr for Tr defined in Example 4.1. □

Thm. 4.4 establishes the equivalence of the trace-witnessed semantics and standard semantics of
programs in tinyML with the help of Lem. 4.5 and Lem. 4.6.

Theorem 4.4 (Soundness and Completeness of Trace-Witnessed Semantics). Given an I/O example
i{o, we have that P (i) ⇓ o if and only if P |= Tr for some trace Tr = (i{o)�Trs.

Proof. Soundness follows by rule induction on P |= Tr. The only case that applies is TERec. We
have P = (fix f (Gin).4), Tr = (i{o)�

[
. . . Trj . . .

]
, [Gin ≔ i] 4 ⇓Asm

[ ]
o, and (fix f (Gin).4) |= Trj for

all j. Let’s say Root(Trj) = ij{oj for all j, and Asm =
[
. . . ij{oj . . .

]
. By the inductive hypothesis,

P
(
ij
)
⇓ oj. Then by Lem. 4.5 (see below), P (i) ⇓ o. Lastly, completeness follows directly from

Lem. 4.6 (see below). □

Lemma 4.5. If 4 ⇓Asm
Asm′

E and P (i) ⇓ o for all i{o ∈ Asm \ Asm′ then 4 ⇓ E .

Proof. By rule induction on 4 ⇓Asm
Asm′

E . Since the assumptions used in evaluation of sub-
expression(s) have to be subsequences of Asm \ Asm′, applying the inductive hypothesis gives us
the evaluation of sub-expression(s) in standard semantics. Applying rules from standard semantics,
we reconstruct the evaluation of 4 in standard semantics. □
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Lemma 4.6. If 4 ⇓ E then





41 ⇓ E1 and P |= (E1{E)�Trs for some Trs if 4 = P (41)

4 ⇓Asm1

Asm2
E for some Asm2 for arbitrary Asm1 and

P |= (ij{oj)�Trsj for some Trsj
for all ij{oj ∈ Asm1 \ Asm2

otherwise

Proof. By rule induction on 4 ⇓ E and case analysis on whether the sub-expression(s) in 4 is
a recursive subcall or not, we apply the inductive hypothesis accordingly and reconstruct the
evaluation of 4 in trace-witnessed semantics along with witnessing Asm and/or Tr. □

4.2 Extended Version Spaces

Version space algebras (VSAs) are a way to compactly represent and manipulate solution sets to
synthesis problems [Gulwani 2011; Lau et al. 2003; Polozov and Gulwani 2015]. In this section, we
extend this representation with a new kind of version space operator called choice which allows us
to more efficiently represent solution sets that involve conditional operators.
An extended version space is given by a term specified by the syntax below.

PS ::= ⊤ | {41, . . . , 4n} | ∪ (PS1, . . . , PSn) | ⊲⊳op (PS1, . . . , PSn) | � (PS1, . . . , PSn)

Here, PSj are extended version spaces, 4j are tinyML expressions, and op is a function, a constructor,
or a match from tinyML. The first four operators (top, list, union, and join) are standard version
space algebra operators and have standard semantics. More formally, given any tinyML expression
4 , we have that: (a) 4 ∈ ⊤, (b) 4 ∈ {41, . . . , 4n} if ∃j.4 = 4j, (c) 4 ∈ ∪ (PS1, . . . , PSn) if ∃j.4 ∈ PSj,
and (d) 4 ∈ ⊲⊳op (PS1, . . . , PSn) if 4 is of the form op(41, . . . , 4n) and ∀j.4j ∈ PSj. Note that these
semantics do not cover conditional terms, i.e., those involving the operator cond {}.

To understand how conditional terms are handled and how they interact with the choice operator
� (·), we first define the notion of supporting valuations. Formally, each extended version space PS
is implicitly annotated with a set of valuations denoted by Support(PS). Intuitively, in our synthesis
procedures from Sec. 5, if PS represents the solution set to a synthesis task, any program P that
behaves equivalent to some program P∗ ∈ PS on all valuations in Support(PS) is also a solution.
Our procedures ensure that a version space rooted at a non-choice operator has the same support
as its sub-spaces, while the support of a version space rooted at a choice operator is the disjoint
union of the support of its sub-spaces.

Example 4.7. Consider the version spaces PS1 ≡ {Gin, 2 × Gin} with support Support(PS1) =
{Gin ≔ 1, Gin ≔ 2} and PS2 ≡ {−Gin} with support Support(PS2) = {Gin ≔ −1, Gin ≔ 0}. These two
version spaces are disjoint in the classical sense. However, the program P∗ ≡ cond {Gin > 0 �

Gin, Gin ≤ 0 � −Gin} behaves like a program from both PS1 and PS2 on their respective supports. □

Thus, the choice operator � (·) in extended version spaces enables the inclusion of programs
like P∗ in � (PS1, PS2). Formally, given a tinyML expression 4 ≡ cond {. . . , 6k � 4k, . . .} and an
extended version space PS ≡ �

(
. . . , PSj, . . .

)
, we have 4 ∈ PS if

∀j.∃k.
(
4k ∈ PSj ∧ ∀Δ ∈ Support(PSj).[Δ]6k ⇓ true

)

Combining the rule with the standard rules from the previous paragraph gives the full semantics
of extended version spaces.

Example 4.8. Continuing from Example 4.7, the program P∗ is contained in � (PS1, PS2), i.e.,
P∗ ∈ � (PS1, PS2). This is because for both PS1 and PS2, there exists a unique matching branch in
P∗ whose guard is satisfied by any valuations in Support(PS1) and Support(PS2) respectively, i.e.,
(Gin > 0) is satisfied by {Gin ≔ 1, Gin ≔ 2}, and (Gin ≤ 0) is satisfied by {Gin ≔ −1, Gin ≔ 0}. □
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We now define the extended version of the version space intersection operation. The intersection
of two extended version spaces is defined by the following rules (modulo symmetry):

1○ ⊤ ∩ PS = PS
2○ {PS} ∩ {PS} = {PS}
3○ {PS1, . . . , PS=} ∩ PS = {PS1 ∩ PS, . . . , PS= ∩ PS}
4○ ∪ (PS1, . . . , PS=) ∩ PS = ∪ (PS1 ∩ PS, . . . , PS= ∩ PS)

5○ ⊲⊳op

(
PS′

1
, . . . , PS′

:

)
∩ ⊲⊳op

(
PS′′

1
, . . . , PS′′

:

)
= ⊲⊳op

(
PS′

1
∩ PS′′

1
, . . . , PS′

:
∩ PS′′

:

)

6○ PS1 ∩ PS2 = � (PS1, PS2,∪ (PS1, PS2)) if rules 1○- 5○ do not apply

Rules 1○- 2○ are the base cases. Rules 3○- 5○ push intersections through the list, union, and join
operators whenever possible. This is akin to how intersection is defined on standard version
spaces. However, when these rules fail, we have a special rule 7○ that produces a choice node
� (PS1, PS2,∪ (PS1, PS2)). Here, if (1 and (2 are the supports of the inputs PS1 and PS2, the 3

operands of the choice operator have disjoint supports (1 \ (2, (2 \ (1, and (2 ∩ (1, respectively.
Thus, the intersection contains conditional programs (e.g. P∗) that “behave” like PS1 on (1 \ (2,
like PS2 on (2 \ (1, and like one of PS1 and PS2 on (1 ∩ (2. We use this notion of observational
equivalence to formalize the soundness and completeness of extended version space intersection in
the following theorem. The notation P1 ≡( P2 denotes that P1 always evaluates to the same output
as P2 for the valuations in support ( .

Theorem 4.9 (Observational Soundness and Completeness of Extended Version Space Intersec-
tion). Given extended version spaces PS1 and PS2 with corresponding supports Support(PS1)
and Support(PS2), their intersection PS1 ∩ PS2 (as defined by the above rules) satisfies: (a) P ∈
PS1 ∩ PS2 =⇒ (P ∈ PS1 ∧ P ∈ PS2) ∨ (∀j ∈ {1, 2}.∀Pj ∈ PSj.Pj ≡Support(PSj ) P) (b) P ∈ PS1 ∧ P ∈
PS2 =⇒ P ∈ PS1 ∩ PS2, and (c) Support(PS1 ∩ PS2) = Support(PS1) ∪ Support(PS2).

4.3 Indexed Extended Version Spaces

An indexed extended version space (indexed VS) Ψ = {]1 ↦→ PS1, . . . , ]n ↦→ PSn} is a mapping from
distinct indices ]j to extended version spaces PSj. In general, the indices represent some semantic
information related to the expressions 4 ∈ PS. More specifically, fixing the type of indices to be one
of frames, recursion traces, or recursion trace sequences yields frame-indexed, trace-indexed or
traces-indexed VSes, respectively. These are usually denoted using the symbols Ψfr, Ψtr, and Ψ

trs,
respectively.

We define notions of consistency for indexed version spaces that state that the programs in the
version space “match” the semantics of the index. Formally,
(a) a frame-indexed VS Ψfr is consistent if ∀((Δ{E)�Asm) ↦→ PS ∈ Ψfr . ∀4 ∈ PS. [Δ]4 ⇓Asm

[ ]
E ;

(b) a trace-indexed VS Ψ
tr is consistent if ∀Tr ↦→ PS ∈ Ψtr. ∀4 ∈ PS. (fix f (G).4) |= Tr; and

(c) a traces-indexed VS Ψtrs is consistent if ∀Trs ↦→ PS ∈ Ψtrs. ∀4 ∈ PS, Tr ∈ Trs. (fix f (G).4) |= Tr.
Now, we define operations on trace-indexed VSes, traces-indexed VSes, and frame-indexed VSes

in Fig. 5, which preserve the consistency of indexed extended version spaces before and after
the operations. Note that one may easily generalize definitions in Fig. 5 to handle more than 2

arguments.
• Concat operation. The Concat operation takes n consistent trace-indexed VSes Ψtr

j
whose

indices are all distinct, and returns a trace-indexed VS containing all Tr ↦→ PSmappings from
each Ψ

tr

j
. The resulting trace-indexed VS is trivially consistent.

• Prod operation. The Prod operation takes a consistent traces-indexed VSΨtrs, and a consistent
trace-indexed VS Ψ

tr. For each pair of their mappings , we computes VS intersection while
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Concat(Ψtr

1
, . . . ,Ψtr

n )
def
= {Tr ↦→ PS | ∃1 ≤ j ≤ n , (Tr ↦→ PS) ∈ Ψtr

j } where all Tr are distinct

Prod(Ψtrs,Ψtr)
def
= { Trs ⊔ [Tr] ↦→ PS1 ∩ PS2 | (Trs ↦→ PS1) ∈ Ψ

trs, (Tr ↦→ PS2) ∈ Ψ
tr}

Cons(Fr ↦→ PS,Ψtrs)
def
= { ((i{o)�Trs) ↦→ PS ∩ PS′ | (Trs ↦→ PS′) ∈ Ψtrs}

where Fr = (i{o)�Asm and ∀(Trs ↦→ PS) ∈ Ψtrs .Roots(Trs) = Asm

Merge(Ψfr

1
,Ψfr

2
)
def
= {Fr ↦→ ∪ (PS1, PS2) | Fr ↦→ PS1 ∈ Ψ

fr

1
, Fr ↦→ PS2 ∈ Ψ

fr

2
}

∪ {Fr ↦→ PS1 ∈ Ψ
fr

1
| Fr ↦→ PS2 ∉ Ψ

fr

2
}

∪ {Fr ↦→ PS2 ∈ Ψ
fr

2
| Fr ↦→ PS1 ∉ Ψ

fr

1
}

Join(op, (Δ{E),Ψfr

1
,Ψfr

2
)
def
= Merge({((Δ{E)�Asm1 ⊔ Asm2) ↦→ ⊲⊳op (PS1, PS2) |

(((Δj{Ej)�Asmj) ↦→ PSj) ∈ Ψ
fr

j , j ∈ {1, 2}})

where Δ1{E1 and Δ2{E2 are sufficient specification of Δ{E

Fig. 5. Operations that compose indexed extended version spaces.

concatenating traces. The consistency of the result follows from the observational soundness
of VS intersection.
• Cons operation. The Cons operation takes a consistent frame-VS mapping Fr ↦→ PS, and a
consistent traces-indexed VS Ψtrs. Then, it constructs a trace-indexed VS by Consing Fr onto
Trs, the indices of Ψtrs, and taking the intersection of two VSes consistent with Fr and Trs.
The consistency of the resulting Ψ

trs follows from Rule TERec.
• Merge operation. The Merge operation takes two consistent frame-indexed VSes Ψfr

1
and

Ψ
fr

2
, and merges them by taking the union of PS1 and PS2 consistent with the same Fr. The

consistency of the resulting Ψ
fr follows from the semantics of ∪ (·).

• Join operation. Like join nodes in VSes, the Join operation is parametrized by an n-arity
operator op. It also takes a synthesis problem specified by Δ{E along with n consistent
frame-indexed VSes Ψfr

j , denoting the solutions to synthesis sub-problems Δj{Ej for op’s
arguments. Then it reconstructs a frame-indexed VS for Δ{E by concatenating assumptions
in Ψ

fr

j while joining the corresponding VSes with ⊲⊳op (·), whose consistency follows from
Rules AERec, AECtor, and AEMatch.

5 SYNTHESIS ALGORITHM

In this section, we present our instantiation of the top-level synthesis procedure from Algo. 1. We
first define our layering (Lj)j∈N of the search space L. We then present a trace-guided Learn

procedure to learn a traces-indexed VS from the user-provided I/O examples over a finite subspace
Lj of this layered search space. We defer to Sec. 6 the specifics of our trace-based ranking function
over traces-indexed VSes which is used to select the program returned by Algo. 1. The discussion
focuses on the body 4 of the program fix f (Gin).4 to be synthesized.
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isAtomic(4) ASTSize(4) ≤ ` (atomicSize)

4 ⊢ `
SAtomic

` (ctorDepth) > 0

`′ = ` [ctorDepth−−] 4′ ⊢ `′

� (4′) ⊢ `
SCtor

` (matchDepth) > 0 `10B4 = ` [matchDepth−−] `A42 = `10B4 [ctorDepth++]

∀j. 0A8C~ (�j) = 0⇒ 4j ⊢ `10B4 ∀j. 0A8C~ (�j) > 0⇒ 4j ⊢ `A42

match G with {. . .�j (Gj) � 4j . . .} ⊢ `
SMatch

` (condWidth) ≥ = ∀j. isAtomic(6j) ∀j. ASTSize(6j) ≤ ` (atomicSize) ∀j. 4j ⊢ `

cond {. . . 6j � 4j . . .} ⊢ `
SCond

Fig. 6. Satisfaction of a program P (its function body) with respect to a `-value.

5.1 Layered Search Space

In contrast to commonly used size-based search space layering, we layer our search space L
in a more artful way to assimilate domain-specific structural attributes or shapes of programs.
Specifically, we provide (1) a tuple ` of parameters of a program’s AST, (2) a characterization of the
finite subspace L` of L defined by each `-value, and (3) an ordering over `-values that yields a
sequence (L`j )j∈N. We describe the parametrization ` in Fig. 6 by defining judgment P ⊢ `, denoting
that program P satisfies the tuple ` of parameter values. Then the subspace L` is characterized by
the `-value in the sense that P ∈ L` iff P ∈ L and P ⊢ `. The specific ordering strategy used by us
is a low-level heuristic and is hence deferred to Sec. 6.

Nowwemotivate each parameter in `, and describe judgment P ⊢ `. (1)matchDepth specifies the
maximum depth of patternmatching (Rule SMatch), and thus helps bias against consuming toomuch
data from input at a time. (2) ctorDepth specifies the maximum depth of constructors (Rule SCtor)
without pattern matching, and is set to be 0 by default. As we want to favor the usage of constructor
when data is consumed from input via pattern matching,3 the third premise in Rule SMatch
increments ctorDepth for match branches with patterns of non-zero arity. (3) atomicSize specifies
the maximum size of atomic expressions (IsAtomic), namely function applications, constructors,
variables, and their compounds, and bounds the size of enumeration in effect. (4) condWidth

specifies the maximum width of cond expressions (Rule SCond), and thus limits the complexity of
branching logic in the programs.

Example 5.1. Consider the following two semantically equivalent implementations of the Fibonacci
number function: (1) 4∗ ≡ cond {Gin = 0 � 1, Gin = 1 � 1, Gin > 1 � f ((Gin − 2)) + f ((Gin − 1))};
(2) 4† ≡ match Gin with {zero � 1, succ(=) � match = with {zero � 1, succ(m) � f (m) + f (n)}}.
Subspace L` contains 4∗ when ` (atomicSize) is at least 9 and ` (condWidth) is at least 3, and
contains 4† when ` (atomicSize) is at least 5 and ` (matchDepth) is at least 2.

5.2 Trace-Guided Synthesis

We present a trace-guided synthesis procedure Learn (Algo. 2) which iterates through the set E
of user-provided I/O examples to generate a traces-indexed VS Ψ

trs of programs in subspace L` ,
along with their recursion traces, that is consistent with E. 4 This traces-indexed VS is constructed
by iteratively computing the product (Prod, Line 9) over the trace-indexed VS Ψ

tr of programs
consistent with each I/O example i{o.

3In contrast, “corecursive calls” may only take place under guarding constructors to ensure productivity [Coquand 1994].
4For brevity, we omit the synthesis context, which may include definition of background functions.
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Algorithm 2 Trace-guided synthesis

Input: I/O examples E
Input: Search space L`

Output: Traces-indexed VS Ψ
trs

1: procedure Learn(E,L` )
2: Ψ

trs ← {
[]
↦→ ⊤}

3: for all i{o ∈ E do

4: Ψ
tr ← ∅

5: Ψ
fr ← LearnAngelic(i{o,L`)

6: for all (Fr ↦→ PS) ∈ Ψfr do ⊲ Fr = (i{o)�Asm for some Asm
7: Ψ

tr
C4<? ← Cons

(
Fr ↦→ PS, Learn(Asm,L`)

)

8: Ψ
tr ← Concat(Ψtr, Ψtr

C4<? )

9: Ψ
trs ← Prod(Ψtrs,Ψtr)

10: return Ψ
trs

The interesting part of Learn then lies in Lines 4—8, where Learn constructs Ψtr for I/O example
i{o. 5 First, Learn uses a sub-procedure LearnAngelic (Algo. 3) to collect angelic solutions, along
with the corresponding execution frames, in a frame-indexed VS Ψ

fr. Then, for each frame-VS
mapping Fr ↦→ PS in Ψ

fr, Learn recursively calls itself with the assumptions Asm from Fr as the
new synthesis task (Line 7), and uses the output traces-indexed VS of this recursive call and the
frame-VS mapping to iteratively build up Ψ

tr (Line 7 and Line 8). Recall that the Cons operation on
Line 7 not only computes an intersection between the expressions in PS and in the output of Learn,
but also splices together Fr and the traces Trs in the output of Learn into a new trace. The Concat
operation on Line 8 collects the trace-indexed VSes for each mapping into one trace-indexed VS for
the current I/O example.

Example 5.2. The user provides an example Ex = cons(1, cons(2, cons(3, nil))){6, and intends
to have the synthesizer find a program that produces the sum of elements in the input list. Learn
calls LearnAngelic on Ex , and has it return a frame-indexed VS Ψfr

= {. . . , (Ex�Asm) ↦→ PS, . . .}.
Say Asm =

[
cons(2, cons(3, nil)){5

]
and PS contains 4∗ ≡ match Gin with {nil � 0, cons(hd, tl) �

hd+ f (tl)}. Recursively calling Learn on Asmmay produce a traces-indexed VS Ψtrs
= {. . . ,

[
Tr
]
↦→

PS′, . . .} where Tr is a linear trace (cons(2, cons(3, nil)){5)�
[
(cons(3, nil){3)�

[
(nil{0)�

[]]] and
PS′ also contains 4∗.
As a result, the traces-indexed VS produced by calling Learn on the user-provided Ex is of the
form {. . . ,

[
Ex�

[
Tr
]]
↦→ PS ∩ PS′, . . .}. And the desired implementation 4∗, of course, is contained in

PS ∩ PS′. □

5.3 Angelic Synthesis

Given a synthesis problem specified by an example Δ{E and a bounded search space L` , the
synthesis procedure LearnAngelic (Algo. 3) constructs a frame-indexed VS Ψ

fr of expressions
in L` , along with the assumptions that make them satisfy Δ{E . The procedure is based on top-
down enumerative search and lightweight deductive reasoning. In particular, the procedure uses
deduction for expressions with top-level operators that enable deductive reasoning (Lines 3—5)
and uses enumeration for atomic expressions (Line 6). At each step, theMerge operation is used to

5In our implementation, trace-indexed VSes are memoized.
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Algorithm 3 Angelic synthesis

Input: Valuation context Δ
Input: Goal value E
Input: Search space L`

Output: Frame-indexed VS Ψ
fr

1: procedure LearnAngelic(Δ{E,L` )
2: Ψ

fr ← ∅

3: for all op ∈ DeducibleOp(L`) do

4: Ψ
fr
C4<? ← LearnOp(op, Δ{E, L`)

5: Ψ
fr ← Merge(Ψfr, Ψfr

C4<? )

6: Ψ
fr
4=D< ← LearnEnum(Δ{E,L`)

7: returnMerge(Ψfr,Ψfr
4=D<)

8: procedure LearnOp(op, Δ{E, L` )
9: for j← 1, . . . ,Arity(op) do

10: (Δj{Ej) ← Deduceop,j (Δ{E)

11: L`j ←WalkDownop,j (L`)

12: Ψ
fr

j ←LearnAngelic(Δj{Ej,L`j )

13: return Join(op,Δ{E, . . . ,Ψfr

j , . . .)

14: procedure LearnEnum(Δ{E,L` )
15: Ψ

fr ← ∅

16: for all 4 ∈ AtomicExp(L`) do

17: for all Asm∈InferAsm( [Δ] 4, E) do

18: Ψ
fr ← Merge(Ψfr,

19: {((Δ{E)�Asm) ↦→ {4}})

20: return Ψ
fr

combine frame-indexed VSes by grouping the corresponding angelic solutions by their assumptions
(Line 5, Line 6).

The procedure LearnOp implements a general top-down algorithm that propagates the angelic
synthesis problem, specified by example Δ{E and search space L` , into the arguments of an
operator op in tinyML. The Join operation then combines the angelic solutions for each argument
by joining the respective version spaces and concatenating the respective assumptions.
The only two “deducible” operators in tinyML are � (·) and match G with {. . .�j (Gj) � · . . .}.

And thus, we present Deduce procedures for them as follows. Notice that, in both cases, at most
one example per argument is deduced. In particular, only one branch of match will get an example6.

DeduceCtor,j (Δ{E) = Δ{Ej for all j, where E = � (. . . , Ej, . . .)

Deducematch(G ),j (Δ{E) =

{
(Δ, Gj ≔ E ′){E if [Δ] G = �j (E

′)

∅ otherwise

The procedure LearnEnum iterates through all atomic expressions 4 such that ASTSize(4) ≤
` (atomicSize), and collects, in a frame-indexed VS, assumptions that make 4 angelically evaluate
to the goal value E .
The procedure InferAsm is responsible for identifying all assumptions Asm such that 4 ⇓Asm

[ ]
E

(Fig. 4). The key idea in the procedure is to identify the desired outputs for recursive subcalls in 4

that make 4 evaluate to E using an SMT solver (Z3 in our case). First, we substitute Δ into 4 so that
f is the only free variable in 4 if any; for variables denoting background functions, we substitute
them with the Z3 encoding of their functional definitions. Then we substitute all recursive subcalls
f
(
ij
)
in 4 with a fresh symbol Uij denoting their yet-to-be-determined outputs (making sure that

the same symbol is used for recursive subcalls sharing the argument ij). 7 This leaves us a formula
n such that 4 ≡

[
Uij ≔ f

(
ij
) ]
n . Repeatedly, we query Z3 for satisfying assignments Uij ↩→ oj of

formula q ≡ (n = E), and add conjuncts, that negate the seen assignments, to q until q becomes
unsatisfiable. Each set of satisfying assignments Uij ↩→ oj becomes a set of consistent assumptions
about f, i.e., f (ij) = oj.

6The other branches get no example, and we use a placeholder ⊤ for them to indicate that any expression of type g works.
7ij has to be a value rather than a nested recursive subcalls since we only permit structural recursion.
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Example 5.3. Recall in Example 5.2, Learn passes an example cons(1, cons(2, cons(3, nil))){6

to LearnAngelic. Calling LearnAngelic on this Ex may produce a frame-indexed VS Ψ
fr

=

{(Ex�Asm1) ↦→ PS1, (Ex�Asm2) ↦→ PS2, . . .} where:
• Asm1 =

[
cons(2, cons(3, nil)){5

]
and PS1 contains match Gin with {nil � 0, cons(hd, tl) �

hd + f (tl)}, and
• Asm2 =

[
cons(2, cons(3, nil)){6

]
and PS2 contains match Gin with {nil � 1, cons(hd, tl) �

hd × f (tl)}.
In the first case, assuming f ( [2, 3]) = 5, head(xin) + f (tail(xin)) conforms to Ex and similarly,
assuming f ( [2, 3]) = 5, head(xin) × f (tail(xin)) conforms to Ex. Note that, though the two pro-
grams mentioned here happen to truly satisfy Ex, PS1 and PS2 may contain programs that only
angelically satisfy Ex. match Gin with {nil � 1, cons(hd, tl) � hd + f (tl)} is such an angelic
candidate program that will be pruned away during VS intersection on Line 7 of Algo. 2. □

5.4 Soundness and Completeness

Since InferAsm returns all assumptions Asm such that 4 ⇓Asm
[ ]

E , and operationsMerge and Join are

consistency preserving (as discussed in Sec. 4.3), frame-indexed VSes returned by LearnAngelic

are consistent by construction. As a result, LearnAngelic is sound (Thm. 5.4).

Theorem 5.4 (Soundness of LearnAngelic). For all Fr ↦→ PS ∈ LearnAngelic(Ex,L`) and for
all 4 ∈ PS, we have 4 ∈ L` and [Δ] 4 ⇓Asm[ ] E where Fr = (Δ{E)�Asm.

Since operations Concat, Prod, and Cons are consistency preserving (as discussed in Sec. 4.3),
the soundness of Learn (Thm. 5.5) follows directly from Thm. 5.4.

Theorem 5.5 (Soundness of Learn). For all Trs ↦→ PS ∈ Learn(E,L`) and for all 4 ∈ PS, we
have that 4 ∈ L` and (fix f (G) .4) |= Trs.

Now, we discuss the completeness of procedures LearnAngelic and Learn. Careful readers
may have noticed that neither procedure LearnDeduce nor procedure LearnEnum considers
cond expressions. This is because neither deduction nor enumeration scales well for synthesis of
cond expressions. The return value of LearnAngelic, implicitly and thus efficiently, carries cond

expressions by only storing their branches, which may later be unified into choice nodes during VS
intersection (Line 7 and Line 9)!

As a result, the completeness of Learn and LearnAngelic holds modulo conditional expressions.
That is, when an expression 4 uses a conditional expression when it is not necessary, it is not
guaranteed that it is present in the return value of LearnAngelic or Learn — only that another
expression 4′ (possibly conditional free) that is observationally equivalent to 4 is present.

Theorem 5.6 (Observational Completeness of LearnAngelic). If 4 ∈ L` and [Δ] 4 ⇓Asm
[ ]

E ,

then there exists ((Δ{E)�Asm) ↦→ PS ∈ LearnAngelic(Δ{E,L`) and 4′ ∈ PS such that
4′ ≡Support(PS) 4 .

Theorem 5.7 (Observational Completeness of Learn). If 4 ∈ L` and (fix f (G).4) |= Trs, then
there exists Trs ↦→ PS ∈ Learn(Roots(Trs),L`) and 4′ ∈ PS such that 4′ ≡Support(PS) 4 .

6 IMPLEMENTATION

We implement a type-directed synthesizer, called SyRup, in OCaml from scratch. Instead of pars-
ing user-provided definitions, SyRup incorporates inbuilt definitions of algebraic data types and
background functions along with their Z3 encodings. In this section, we will expand on important
implementation details and heuristics omitted in previous sections.
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6.1 Parameterized Search Space Layering

In Sec. 5.1, we have seen that the search space parametrization enables us to concentrate on
programs with a specific shape rather than a certain size in each synthesis iteration.

We now describe how SyRup changes parameters across synthesis iterations, thereby prioritizing
the search for programs of certain shapes over others. Parameters atomicSize, matchDepth, and
condWidth are successively increased in lexicographic order; first atomicSize is incremented up to
an upper bound; if a solution isn’t found, then matchDepth is incremented, while atomicSize is
reset to its initial value and incremented again upto an upper bound; and so on. Similar methods
have been used in prior work [Lubin et al. 2020], and are referred to as “staging”.

Finally, we use initial values of the parameters that are sufficiently large to encompass interesting
programs in the search space, but not excessively large to prevent the inclusion of improbable
programs in the search space. Specifically, we initially let atomicSize = 3 to include function
application, matchDepth = 1 since pattern matching is ubiquitous in functional programming, and
condWidth = 1 to avoid overfitting.

6.2 Program Ranking Function

Program rank plays an important role in picking programs that generalize to unseen examples as
we will see in Sec. 7.4. From the traces-indexed VS Ψtrs returned by Algo. 2, SyRup picks Trs ↦→ PS

that maximizes the number of unique assumptions in Trs, favoring candidate programs that exploit
more input information via recursion. Then, from PS, SyRup picks a program with the smallest
AST depth.

In the presence of choice nodes in the VSes in Ψ
trs, SyRup proceeds slightly differently. In

particular, SyRup first attempts to select a program using the above ranking function without any
match expressions in its conditional guards. If this fails, SyRup then attempts to select a program
using the above ranking function with at most 1 match expression in its guards.

6.3 Tracking of Recursion Traces

Instead of tracking complete recursion traces, we choose to track an abstraction of recursion traces,
specifically, the unique recursive sub-calls subsumed. Recall that we track supporting valuation
contexts for our extended version spaces; the supports of top-level VS nodes exactly corresponds
to the input of recursive sub-calls made by the programs contained. For example, a join node that
contains the program in the first row of Fig. 1 has the following supports {[m ≔ 2, n ≔ 1], [m ≔

1, n ≔ 1], [m ≔ 0, n ≔ 1]}. While this abstraction is sufficient for our benchmarks and evaluation,
we defer the exploration of more precise abstractions to future work.

7 EVALUATION

In our experimental evaluation of SyRup’s performance, we consider the following research ques-
tions.

RQ1 How does SyRup perform on various synthesis tasks compared to existing techniques?
RQ2 How sensitive is SyRup’s performance to the quality of the I/O examples?
RQ3 How does SyRup’s layered search space and ranking function impact its overall performance?

All experiments are performed in a single thread on a department-wide shared Linux server
equipped with two 2.90GHz Intel Xeon E5-2690 2.90GHz 8-core processors and 192GB of RAM,
with a time limit of 120 seconds.
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7.1 Experimental Setup

Synthesis Tasks. A synthesis task consists of a programming task T (e.g., write a program that
adds two natural numbers) and a set of I/O examples e.g. {(1, 1){2, (2, 1){3}). We use a suite of
43 functional programming tasks that have been used to evaluate prior work [Lubin et al. 2020;
Osera and Zdancewic 2015]. Of these, 32 tasks require recursion. For each programming task T, we
spawn numerous synthesis tasks by generating I/O examples using the following two strategies.
These strategies simulate the expertise of different users, allowing us to assess the performance of
SyRup in diverse scenarios.
(1) Expert Examples: Each programming task in our suite was originally developed with

a corresponding trace-complete set of I/O examples [Osera and Zdancewic 2015]. Similar
to evaluations in prior work (Smyth, Burst), we evaluate our synthesizer’s performance
on subsets of these trace-complete example sets. Because such subsets are aware of the
(recursive) semantics of the desired program to some degree, we regard them as expert
examples. However, evaluations in prior work only use a single, manually crafted subset of
the original trace-complete example set for each programming task. To effectively examine
how well a synthesizer generalizes to unseen inputs given expert examples, we argue that it
is important to evaluate across different subsets of these trace-complete example sets. In our
experiments, we use subsets of different sizes, ranging from 1 to the total number of available
expert examples, sampling up to 10 subsets for each size.

(2) Random Examples: Expert examples, while not necessarily trace-complete, serve as a
reasonable approximation of a user who is familiar with recursive programs and synthesis
tools. To evaluate SyRup’s performance on examples provided by non-experts, we generate
random inputs and execute reference implementations on them, obtaining 10 example sets
of sizes ranging from 1 to 6. To ensure that these example sets can be provided by a human
user, we bound the number of constructors allowed in the input values, following a similar
approach to Lubin et al. [2020]. For inputs with a function type, we randomly select from the
functions used in expert examples.

Success Rate. To evaluate a synthesizer’s performance on a programming task T under various
scenarios, we spawn synthesis tasks associated with T using I/O example sets with different
attributes (identified by example generation strategies and number of examples). Then for a set ET
of example sets E with the same attribute, we compute the synthesizer’s success rate (ET as follows:

(ET =
|{E ∈ ET | given E, the synthesizer generates a correct program for T }|

|ET |

Baselines. We compare SyRup against the two state-of-the-art tools, Smyth [Lubin et al. 2020] and
Burst [Miltner et al. 2022], for synthesis of recursive functional programs from examples. Neither
Smyth nor Burst requires trace-complete specifications. While Smyth is based on top-down
propagation and partial evaluation, Burst performs bottom-up search using a tree automata-based
program representation.

We do not consider other synthesizers for recursive functional programs such as Leon [Kneuss
et al. 2013], _2[Feser et al. 2015], and Synqid [Polikarpova et al. 2016] in our evaluation. Both
Leon and Synqid are less effective in handling example-based specifications, and, in particular,
ones that are not trace-complete [Lubin et al. 2020]. While _2can handle examples that are not
trace-complete, the technique heavily relies on the use of language-level recursion schemes in the
form of higher-order combinators such as map and fold .
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Fig. 7. Percentage of trace-complete examples needed to achieve specific success rates for each programming

task. The x-axis label in each sub-figure indicates the size of the trace-complete example set for the corre-

sponding programming task.

7.2 SyRup’s Performance on Expert Examples

To evaluate SyRup’s performance in the absence of trace-complete examples, we spawn synthesis
tasks using sets of expert examples of different sizes for each programming task, and compute
the respective success rates as discussed earlier. In Fig. 7, we present the percentages of trace-

complete examples needed to achieve specific success rates (ranging from 10%, 20%, . . . , 100%) for
each programming task 8.

8tree_inorder_bool corresponds to tree_collect_leaves in prior work.We correct the name to reflect its true semantics.
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Fig. 8. Average percentage of trace-complete examples

needed to achieve specific success rates.

For all 43 programming tasks, SyRup over-
all needs less or similar number of exam-
ples to achieve the same success rate. For in-
stance, to achieve 50% success rate, SyRup
needs less examples on 16 tasks than both
Burst and Smyth, and only needs more ex-
amples on 5 tasks than both of them (list_-
sum, list_rev_append, list_filter, list_-
fold, and tree_inorder_bool). This is better
demonstrated in Fig. 8, which shows the per-
centage of trace-complete examples needed on
average to achieve specific success rates. For
instance, to achieve 50% success rate, SyRup
needs 70%, Burst needs 76%, and Smyth needs
81% of trace-complete examples on average.

7.3 SyRup’s Sensitivity to the�ality of Examples
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Fig. 9. Average success rate on example sets of size 1 to 6.

To assess the sensitivity of SyRup to the quality of examples, we spawn synthesis tasks on
example sets generated in different ways. Then, we present the average (the horizontal bars) and
the variation (the violin plots) of success rate across all 43 programming tasks in Fig. 9. In addition
to the two strategies for example generation mentioned already, we differentiate between example
sets that must or may contain the base case for the recursive programming tasks (i.e. the example(s)
with the smallest input). This yields 4 classes of example sets as shown in the figure (Random,
Random + BC, Expert, Expert + BC). We repeat the experiment for example sets of sizes ranging
from 1 to 6.

We observe that: (1) the average success rate of SyRup across all programming tasks exhibits less
variation compared to Burst and Smyth when provided with the same number of I/O examples
with different attributes; (2) the distribution of success rates of SyRup across all programming
tasks demonstrates a consistent trend regardless of the attribute of the given I/O examples (the
shapes of the violin plots within each subplot are similar for SyRup); and (3) with one exception
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(discussed in Sec. 7.5), SyRup overall has a higher or comparable success rate. Additionally, the
specific attributes of example sets used highlights that: (1) SyRup gains little improvement in success
rate from the inclusion of base case examples, and thus does not fully rely on knowledge about the
base case to synthesize the desired program; (2) providing random examples or expert examples
has little impact on SyRup’s success rate, and thus SyRup does not rely on users’ mental model of
the implementation to synthesize the desired program.

7.4 Ablation Study
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Fig. 10. Average percentage of trace-complete exam-

ples needed to achieve certain success rates across 32

recursive programming tasks.

Recall Algo. 1. To evaluate the impact of
SyRup’s design choice of search space layer-
ing and ranking function on its overall per-
formance, we perform an ablation study us-
ing commonly-used variants for each design
choice.
Layered Search Space. First, we implement a
version of SyRup, called SyRup+ that layers the
search space based on AST height (similar to
Burst) and rerun our experiment for expert ex-
amples. Unfortunately, SyRup+ times out very
often for 33 out of 43 programming tasks.
Trace-based Ranking Function. We next im-
plement a version of SyRup, called SyRup∗, that
uses the same layered search space as SyRup
but uses a different ranking function.
In particular, SyRup∗ selects a program with the minimum AST height from the constructed traces-
indexed VS. We rerun our experiment for expert examples. Since our ranking function greatly
biases towards programs with longer recursion traces, the results shown in Fig. 10 focus on the 32
recursive tasks. As can be seen, both SyRup and SyRup∗ need less examples to achieve the same
success rate on average than Burst and Smyth, with SyRup slightly outperforming SyRup∗. After
inspecting the performance difference on individual tasks manually (omitted in the paper to save
space), we observe that for 8 out of 10 tasks on which SyRup outperforms (needs less examples to
achieve the same success rate) SyRup∗, SyRup also outperforms Burst and Smyth. Therefore, we
conclude that, both trace-guided synthesis and trace-based ranking function contribute to SyRup’s
performance on expert examples.

7.5 Discussion

Evaluation Summary. Our evaluation demonstrates SyRup’s ability to effectively tackle the chal-
lenges of generalization, trace-completeness, and ambiguity-resolution across diverse programming
tasks and I/O example sets. In particular, the evaluation shows that SyRup requires fewer (trace-
complete) examples than its counterparts to achieve the same success rates, and is significantly less
sensitive to example quality. Thus, SyRup’s trace-guided approach utilizing recursion traces as an
inductive bias can benefit a variety of synthesis tasks for recursive programs.
Synthesis Time and Scalability. The synthesis time of SyRup is comparable to that of Smyth
and Burst and is typically within 5 seconds or less when given a few examples with exceptions on
a few relatively difficult tasks, which is often accompanied by time-outs. For instance, given 10 sets
of expert examples of size 6, SyRup times out at least once on 6 tasks, and Burst times out at least
once on 9 tasks, out of 43 programming tasks. On the other hand, Smyth, while rarely timing out,
might fail to return a solution due to the absence of a base case example.
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It is interesting to note that both SyRup and Burst start to time out more often when the number
of examples increases or the quality of examples decreases (if we consider expert examples as
high quality), while Smyth’s runtime is less affected. However, this is expected as both SyRup and
Burst predominantly rely on computationally expensive version space (tree automata for Burst)
intersections. Consequently, we see in Sec. 7.3 that the increase in success rates of SyRup and Burst
slows down as the number of user-provided examples increases, especially when the examples are
randomly generated. While we plan to explore optimizations for version space intersection, it is
helpful to note that scalability is not an issue for the current benchmarks and the intended use-case
of SyRup only expects users to provide a small number of examples.
Failure Analysis and Limitations. SyRup fails to find a correct implementation for list_rev_-
tailcall because we only permit recursive subcalls on values that are strictly smaller than the
input argument—this is also the case in prior work with the same assumption [Lubin et al. 2020;
Miltner et al. 2022; Osera and Zdancewic 2015]. Furthermore, due to efficiency considerations, we
limit scrutinees in match expressions to be variables. As a result, SyRup fails on list_pairwise_-

swap, whose correct implementation relies on inside-out recursion [Osera and Zdancewic 2015].
Allowing scrutinees to make recursive subcalls would require enumerating and checking the
consistency of candidate programs as a whole since our algorithm relies on the concrete value of
the scrutinee to deduce examples for branches in match expressions. Lastly, our implementation
of the InferAsm decision procedure assumes that all background functions are first-order and
monomorphic, as it is based on the Z3 Solver. While this limitation does not cause any issues
with the current set of benchmarks, alternative or augmented implementations of InferAsm that
overcome this limitation are worth exploring in future work.

8 RELATED WORK

Synthesis of Recursive Programs. Synthesis of recursive programs has witnessed great progress
since Summers [1977], especially in the past decade. There are techniques that synthesize recursive
programs from logical specifications [Itzhaky et al. 2021; Kneuss et al. 2013; Kuncak et al. 2010],
refinement types [Polikarpova et al. 2016], or reference implementations [Farzan et al. 2022; Farzan
and Nicolet 2021]. Here, we focus on synthesis of recursive programs from I/O examples. To enable
efficient synthesis, initial attempts rely on either (1) comprehensive (trace-complete) examples,
including Igor II [Hofmann 2010], Escher [Albarghouthi et al. 2013], and Myth [Osera and
Zdancewic 2015], or (2) built-in recursion schemes, such as recursive higher-order functions used
by _2 [Feser et al. 2015] and BIG_ [Smith and Albarghouthi 2016].
More recently, Smyth [Lubin et al. 2020] and Burst [Miltner et al. 2022] have relaxed the

requirement. Specifically, Smyth devises a technique called un-evaluation and uses it in combination
with best-effort forward evaluation [Omar et al. 2019] for top-down propagation of examples. Burst
leverages angelic semantics to identify an over-approximating set of satisfying programs, picks
the smallest program along with witnesses to the angelic satisfaction, and refines the program set
with the witnesses, until a truly satisfying program is found. However, both Smyth and Burst can
miss programs that generalize better, and, in particular, have more suitable recursion traces. SyRup
extends the idea of angelic semantics to explore all possible traces in a bounded search space, and
presents a novel VSA to represent and manipulate consistent trace-program pairs.
Representation-based Synthesis. The use of VSAs to learn and store sets of programs dates back to
[Lau et al. 2003;Mitchell 1982]. Since FlashFill [Gulwani 2011] introduced a compact representation
similar to e-graphs [Downey et al. 1980], multiple efforts have used similar representations in
different problem settings [Barowy et al. 2015; Le and Gulwani 2014; Lee 2021; Polozov and Gulwani
2015; Rolim et al. 2017; Wang et al. 2016]. Another line of work uses finite tree automata (FTA) as a
version space representation [Koppel et al. 2022; Miltner et al. 2022; Wang et al. 2017, 2018a,b] Our
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work presents a richer representation augmented with recursion traces and conditional semantics.
Generalization to other semantic features, compact representation of indexed extended version
spaces, and adaption to FTAs, are all exciting opportunities for future work.
Condition Abduction/Unification. Conditional expressions have been widely used to improve
the scalability of synthesis using a divide-and-conquer approach [Albarghouthi et al. 2013; Alur et al.
2017; Gulwani 2011; Ji et al. 2021; Lee 2021; Shi et al. 2019;Wang et al. 2017]. Most of these approaches
introduce conditionals in an eager way. Leveraging the conditional semantics of extended version
space, SyRup introduces conditionals in an on-demand (like Escher [Albarghouthi et al. 2013]), and
delayed (like FrAngel [Shi et al. 2019]) manner. A potential direction for future work is extension
of the conditional semantics of extended version spaces using unification mechanisms that go
beyond conditionals [Alur et al. 2015].
Search Space Layering. Existing synthesizers typically use a bounded search space and increase the
bound (e.g., on program ASTs or intermediate values) when the current search space is exhausted.
While one can construct a larger search space from the smaller ones, the search space still grows
exponentially with respect to the bound [Barke et al. 2020]. Inspired byMyth [Osera and Zdancewic
2015] and Smyth [Lubin et al. 2020], SyRup parameterizes functional programs in a domain-specific
and structural way. The parameters allow us to layer the search space more finely so that the search
space not only grows more slowly, but also focuses on programs of different shapes. This means
that our technique is likely to benefit from parallelizing the search with different threads focusing
on programs of different shapes like Bornholt et al. [2016]; Padhi et al. [2019].
ProgramRanking. Existing synthesis techniques, especially those based on VSAs, use a monotonic
function defined over program ASTs to pick a “smallest” program. Smaller programs may not always
generalize better as we have seen in Fig. 1. To the best of our knowledge, the only work that considers
semantic features for ranking programs is Ellis and Gulwani [2017]. However, their approach relies
on post-synthesis computation to rank candidate programs. In contrast, we collect and compose
semantic features during synthesis. Our notion of indexed extended version space also opens up
opportunities for exploration of other semantic features with different levels of abstraction.

9 DATA-AVAILABILITY STATEMENT

Our implementation along with the code required for reproduction, is available at Yuan et al. [2023].
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