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Abstract

Recent studies on automatic note generation
have shown that doctors can save significant
amounts of time when using automatic clinical
note generation (Knoll et al., 2022). Summa-
rization models have been used for this task to
generate clinical notes as summaries of doctor-
patient conversations (Krishna et al., 2021; Cai
et al., 2022). However, assessing which model
would best serve clinicians in their daily prac-
tice is still a challenging task due to the large
set of possible correct summaries, and the po-
tential limitations of automatic evaluation met-
rics. In this paper, we study evaluation meth-
ods and metrics for the automatic generation of
clinical notes from medical conversations. In
particular, we propose new task-specific met-
rics and we compare them to SOTA evaluation
metrics in text summarization and generation,
including: (i) knowledge-graph embedding-
based metrics, (ii) customized model-based
metrics, (iii) domain-adapted/fine-tuned met-
rics, and (iv) ensemble metrics. To study
the correlation between the automatic metrics
and manual judgments, we evaluate automatic
notes/summaries by comparing the system and
reference facts and computing the factual cor-
rectness, and the hallucination and omission
rates for critical medical facts. This study re-
lied on seven datasets manually annotated by
domain experts. Our experiments show that
automatic evaluation metrics can have substan-
tially different behaviors on different types of
clinical notes datasets. However, the results
highlight one stable subset of metrics as the
most correlated with human judgments with
a relevant aggregation of different evaluation
criteria.

1 Introduction

In recent years, the volume of data created in health-
care has grown considerably as a result of record
keeping policies (Kudyba, 2010). The documen-
tation requirements for electronic health records
significantly contribute to physician burnout and

work-life imbalance (Arndt et al., 2017). Auto-
matic generation of clinical notes can help health-
care providers by significantly reducing the time
they spend on documentation, and allowing them to
spend more time with patients (Payne et al., 2018).
It can also improve the clinical notes’ accuracy by
reducing errors and inconsistencies in documenta-
tion, leading to patient records with higher quality.

A reliable evaluation methodology is necessary
to build and improve clinical note generation sys-
tems, but faces the two traditional limitations of
evaluating Natural Language Generation (NLG)
systems. On one hand, human-expert evaluation,
considered to be the most reliable way to evaluate
NLG systems, can be both time-consuming and
expensive. On the other hand, evaluating the per-
formance of natural language generation (NLG)
systems automatically can be challenging due to
the complexity of human language.

Several metrics have been proposed to evaluate
the performance of NLG systems, including lex-
ical N-gram based metrics and embedding-based
metrics that measure the similarity between a sys-
tem’s generated text and one or more reference
texts using pre-trained language models.

While several research efforts studied and com-
pared automatic evaluation metrics on many open-
domain and domain-specific datasets such as the
CNN/DailyMail and TAC datasets (Lin, 2004a;
Owczarzak et al., 2012; Peyrard, 2019; Fabbri et al.,
2021a; Deutsch et al., 2022), very few research
works addressed the adequacy of evaluation met-
rics to the task of clinical note generation, where
e.g., omitting critical medical facts in the gener-
ated text is a more significant failure point. To the
best of our knowledge, only one research paper
addressed this task based on one synthetic dataset
of 57 mock consultation transcripts and summary
notes (Moramarco et al., 2022).

In this paper, we study evaluation methods and
metrics for the automatic generation of clinical



notes from medical conversations, including their
correlations with human assessments of factual
omissions and hallucinations. We also propose
new task-specific metrics and we compare them
to SOTA evaluation metrics across several clinical
text summarization datasets.
Our contributions are as follows:

• We study the relevance and impact of a wide-
range of existing automatic evaluation metrics
in clinical note generation.

• We propose and study four types of evaluation
metrics for the task of automatic note gen-
eration: knowledge-graph embedding-based
metrics, customized model-based metrics,
domain-adapted/fine-tuned metrics, and en-
semble metrics1.

• We compare these metrics with SOTA met-
rics by performing a wide evaluation with 21
metrics according to different criteria such as
factual correctness, hallucination, and omis-
sion rates.

• To perform a fact-based evaluation of the gen-
erated notes, we annotate seven datasets of
automatically generated clinical notes using
key phrase- and fact-based annotation guide-
lines that we use to compute reference manual
scores for the correlation study2.

2 Related Work

Different evaluation metrics are commonly used to
evaluate text summarization and generation includ-
ing ROUGE-N (Lin, 2004b), BERTScore (Zhang*
et al., 2020), MoverScore (Zhao et al., 2019),
BARTScore (Yuan et al., 2021), and BLEURT (Sel-
lam et al., 2020). Other metrics have been also pro-
posed for evaluating factual consistency and faith-
fulness (Durmus et al., 2020; Maynez et al., 2020;
Wang et al., 2020; Pagnoni et al., 2021; Zhang et al.,
2022).

To study their effectiveness, several efforts fo-
cused on comparing automatic metrics such as
ROUGE and BLEU based on their correlation with
human judgments (Graham, 2015), and showed
that automatic evaluation of generated summaries

1We publish the source code and fine-tuned
checkpoint at: https://github.com/abachaa/
EvaluationMetrics-ACL23

2We also release the manual annotations: https://
github.com/abachaa/EvaluationMetrics-ACL23

still has several limitations and biases (Hardy et al.,
2019; Fabbri et al., 2021b). Furthermore, in (Bhan-
dari et al., 2020), the authors showcase that the
effectiveness of an evaluation metric depends on
the task (e.g. summarization) and on the applica-
tion scenario (e.g. system-level/ summary level).

Despite observations of frequent disagreements
in manual evaluation campaigns (Howcroft et al.,
2020), expert-based evaluation remains an effective
method to assess the performance of automatic met-
rics, especially in specialized domains. However,
it relies on the availability of domain experts to
rate the summaries and relevant datasets. Recently,
(Moramarco et al., 2022) studied the task of medi-
cal note generation on a small set of 57 transcript-
note pairs, manually annotated by clinicians. Their
experiments showed that character-based Leven-
shtein distance, BERTScore, and METEOR per-
formed best for evaluating automatic note genera-
tion in that dataset.

3 Evaluation Methodology

To assess the relevance and suitability of automatic
evaluation metrics for the task of clinical note gen-
eration, we create expert-based annotations for crit-
ical aspects such as factual consistency, hallucina-
tions, and omissions. We then assess each metric
in light of its correlation with manual scores gener-
ated from the expert annotations.

3.1 Fact-based Annotation
We define a fact as information that cannot be writ-
ten in more than one sentence (e.g., "Family his-
tory is significant for coronary artery disease.").
Medical facts include problems, allergies, medi-
cal history, treatments, medications, tests, labora-
tory/radiology results, and diagnoses. We also in-
clude the patient age, gender, and race, and expand
the critical facts to the patient and his family.

Annotators extracted individual facts from both
the reference and system summaries in the form of
subject-predicate-object expressions and following
the above fact definition.

Comparing between a reference and hy-
pothesis summary, and referencing the source
text/conversation if required, the annotators were
additionally tasked to identify overlapping and non-
overlapping facts to one of several categories which
were later automatically counted. These included:

• Critical Omissions: the number of medical
facts that were omitted,

https://github.com/abachaa/EvaluationMetrics-ACL23
https://github.com/abachaa/EvaluationMetrics-ACL23
https://github.com/abachaa/EvaluationMetrics-ACL23
https://github.com/abachaa/EvaluationMetrics-ACL23


Dataset #Summary #Words #Words Annotations
Pairs /Summary /Reference

MTS-DIALOG 400 15 36 Facts
MEDIQA-RRS 182 18 28 Facts
CONSULT-FACTS 54 203 214 Facts
CONSULTHPI 3,397 333 336 Key Phrases
CONSULTASSESSMENT 3,141 149 177 Key Phrases
CONSULTEXAM 2,144 163 137 Key Phrases
CONSULTRESULTS 540 38 15 Key Phrases

Table 1: Annotated datasets of clinical summaries and reference notes.

• Hallucinations: the number of hallucinated
facts. Hallucinations are factual errors that do
not exist in the source text and cannot be sup-
ported by the source facts (e.g., added dates,
names, or treatments).

• Correct Facts: the number of correct facts
according to the input conversation and the
reference summary, and

• Incorrect Facts: the number of incorrect facts
outside of hallucinations. Incorrect facts in-
clude values and attributes that are incorrectly
copied from the source (e.g., date with a
wrong year, wrong age, or dose).

Three trained annotators with medical back-
ground participated in the annotation process. Inter-
annotator agreement for these computations are
shown in Table 7 and Table 8 in Appendix A.

3.2 Key Phrase-based Annotation

The key phrase- and fact-based annotations use dif-
ferent ways of representing information in clinical
notes. While the fact-based annotation compares
semantic triples (e.g., "Back pain stopped 8 days
ago" vs. "Low back pain started 8 years ago"), the
key-phrase annotations involved labeling incorrect
words and phrases; for instance: "back pain" (in-
stead of "lower back pain"), "stopped" (instead of
"started"), or "8 days" (instead of "8 years"). This
method is more conducive in a production environ-
ment where errors can be attributable to specific
parts of the report; the same labeling method is
often also used for feedback to the author of the
note in our different human quality review settings.

In our annotation setups, the key phrase-based
annotation operated on text span highlights, while
the fact-based annotation required more steps as the
annotators were required to write the system and
reference facts based on the system and reference
summaries before comparing their counts.

Using highlights, critical hallucinations and in-
correct information can be identified; meanwhile
omissions were marked by identifying a required
insertion of information in a corresponding loca-
tion of the note. However, unlike the previous
annotation, repeats of the same incorrect facts may
be counted more than once if they appear multi-
ple times. The labels produced here were from
CONSULT-FULL dataset (cf. Section 3.4), with a
reported average agreement of critical hallucina-
tions, omissions, and inaccuracies was at 0.80 F1
score, relaxed overlap between 12 annotator pairs.

3.3 Reference Scores

From the fact-based annotations, we compute the
following reference scores:

FactualPrecision =
#CorrectFacts

#SystemFacts

Factual Recall =
#Correct Facts

#Reference Facts

Hallucination Rate =
#Hallucinated Facts

#SystemFacts

Omission Rate =
#Omitted Facts

#Reference Facts

• System Facts = Correct + Incorrect + Hallucinated

From the key phrase-based annotations, we com-
pute the normalized hallucination and omission
counts:

HallucinationCount =
#Hallucinated key phrases

#System Summary Words

OmissionCount =
#Omitted key phrases

#Reference Summary Words



3.4 Datasets

Publicly available datasets on medical note gen-
eration and clinical text summarization are rare
compared to open-domain data. For this study, we
use three main collections:

• The MTS-DIALOG collection of 1.7k pairs of
doctor-patient dialogues and associated clin-
ical notes (Ben Abacha et al., 2023). Sys-
tem summaries are generated using the BART
model (Lewis et al., 2020).

• The MEDIQA-RRS dataset includes 182
pairs of clinical notes and system summaries
randomly selected from the MEDIQA-RRS
collection (Ben Abacha et al., 2021).

• An in-house collection of medical notes
(called CONSULT-FULL) from multiple spe-
cialties with system summaries generated us-
ing a pointer-generator transformer model
from doctor-patient conversations (Enarvi
et al., 2020).

We followed the fact-based annotation
guidelines to annotate the MTS-DIALOG and
MEDIQA-RRS datasets, and a random subset
from the CONSULT-FULL collection, called
CONSULT-FACTS.

To study the relevance of the automatic met-
rics to the individual sections of clinical notes, we
also split the CONSULT-FULL collection into four
subsets: CONSULTHPI, CONSULTASSESSMENT,
CONSULTEXAM, and CONSULTRESULTS, which in-
clude summaries associated with the HPI, Assess-
ment, Exam, and Results sections, and we anno-
tated them manually at a phrase level.

Table 1 provides statistics about the datasets.

4 Task-specific Evaluation Metrics

We study four different types of evaluation met-
rics for the task of automatic clinical note genera-
tion, that take into account the specificities of the
medical domain by: (i) using embeddings built
from medical Knowledge graphs (e.g, UMLS), (ii)
adapting model-based metrics (e.g., BERTScore)
by increasing the weights of medical terms, (iii)
fine-tuning a model-based metric on a large col-
lection of clinical notes, and (iv) building linear
ensembles based on normalization and averaging
of different metrics.

4.1 Knowledge-Graph Embedding-based
Metrics

Our first approach, called MIST, relies on knowl-
edge embeddings generated by a Knowledge-
Graph Embedding (KGE)-based model. Knowl-
edge graphs provide additional semantic informa-
tion that can support language understanding, espe-
cially in the medical domain where both terminolo-
gies and facts might not be common enough to be
captured by contextual embeddings.

To build medical KGE, we use a generative ad-
versarial networks model (Cai and Wang, 2018)
trained on concepts and relations from the Uni-
fied Medical Language System (UMLS) (Lindberg
et al., 1993; Bodenreider, 2004).

The MIST metric relies on the embeddings of the
medical concepts recognized in the texts to com-
pute the similarity between the reference clinical
notes and the automatically generated summaries.

To link the clinical notes to the UMLS concepts,
we extract medical concepts by combining the scis-
paCy (Neumann et al., 2019) and MedCAT (Kral-
jevic et al., 2021) entity linking models.

We compute the final recall-oriented MIST value
using the graph-based embeddings (Gc) of each
concept c recognized in the reference and system
summaries and the cosine similarity, as follows, for
a set of reference concepts R and a set of system
concepts S:

MIST (S,R) =
1

|R|
∑
c∈S

maxr∈R cos(Gc, Gr)

(1)
4.2 Finetuning-based Metric
Our second approach relies on fine-tuning model-
based metrics on relevant large medical collections
of family medicine and orthopaedic notes. In par-
ticular, we started with the BLEURT-512 model
(Sellam et al., 2020) and fine-tuned it using a qual-
ity score, derived from an assigned error score3

from an internal quality review grading. The de-
rived quality score was calculated by the following
equation:

quality = 1− error_score
max_sentlen(summary, reference)

(2)

A total of 6,367 family medicine and orthopaedic
encounters were used for fine-tuning. To maximize

3This error score is calculated by a weighted sum of critical
and non-critical errors, as well as spelling/grammar/style er-
rors annotated by domain expert labelers. The weight scheme
is given in Appendix B, Table 9.



diverse pairings as well as to satisfy BLEURT’s
maximum sequence length constraint, we fine-
tuned at the level of each note’s HPI, EXAM, RE-
SULTS, and ASSESSMENT sections (with empty
sections removed), resulting in 17,852 pairs. We
fine-tuned over one epoch at default parameters.
We call the resulting metric based on this model:
ClinicalBLEURT.

4.3 Customized Model-based Metrics

4.3.1 Medical Weighted Evaluation Metrics
Our third approach relies on designing new cus-
tomized model-based metrics that assign a higher
weight to the term with a medical meaning. These
medical weighted metrics will allow us to exam-
ine whether words with a medical meaning can be
more indicative for sentence similarity than com-
mon words for the task of automated medical note
generation. Specifically, we update the scoring pol-
icy of two popular evaluation metrics, by providing
a higher weight to the words in the summaries that
have a medical meaning:
(i) BARTScore (Yuan et al., 2021) which uses a
seq-seq model to calculate the log probability of
one text y given another text x, and
(ii) BERTScore (Zhang* et al., 2020) which com-
putes a similarity score for each token in the candi-
date summary with each token in the reference.
For both metrics, firstly we identify all the words, in
the candidate and in the reference summary, which
have a clinical meaning defined in UMLS using
the MedCAT toolkit (Kraljevic et al., 2021). We
then modify the scoring policy of both evaluation
metrics to a weighted scoring policy where the
weight for all the medical words is higher to pro-
vide a stronger incentive to the evaluation model to
take in consideration these words during the eval-
uation of a candidate summary. Specifically, the
BARTScore metric is updated to:

MedBARTScore =

m∑
i=1

wt log p(yt|y < t, x)

(3)where x is the source sequence and y =
(y1, ..., ym) are the tokens of the target sequence of
length m.

We also update the BERTScore for a pair of a
reference summary x and candidate summary x̂ to:

MedBERTScoreP =
1

ˆ|x|

∑
x̂i∈x̂

wxmax
xj

x⊤i x̂j

where, for both metrics, w = 1 for all the non-
medical words and wt = 1 + α for all the words
with a medical meaning, where α is an additional
weight value for these words. After experiment-
ing with different values in the [0.1, 1.5] range, we
found that the best α value was 1.0 for the weight
policy.

4.3.2 Sliding Window Policy
The main disadvantage of the previously mentioned
model-based metrics over the traditional evaluation
metrics (e.g., ROUGE) is that they can only encode
texts that have length less than the encode-limit
of the pre-trained models that are based on. For
example, the encode-limit for a BERT-based met-
ric is 512 tokens. However, real-world summaries
and clinical notes may contain more than 512 to-
kens. For instance, our analysis in the CONSULT-
FULL dataset shows that 31% of the summaries
have more than 512 tokens. We, therefore, create a
variation of the BERTScore metric where we use
a sliding window approach with the offset size of
100 tokens to encode overlength summaries.

Our sliding window policy is to first split the
initial sentence into segments of at most 512 tokens
with an overlap size of 100 tokens. Afterward,
we calculate the embeddings of these segments
independently and concatenate the results to get
the original document representation.

This metric will be referred to as
MedBERTScore-SP in the Results section.

4.4 Ensemble Metrics
To take advantage of the different perspectives
brought by knowledge graph-based metrics, contex-
tual embedding-based metrics, and lexical metrics,
we tested different ensembles of normalized metric
values. We selected the top-2 performing ensemble
metrics for further experiments; MISTComb1 and
MISTComb2:

Zm(x) =
x− µm

σm
(4)

MISTComb1(x) =
1

3

∑
m∈C1

Zm(m(x)) (5)

MISTComb2(x) =
1

3

∑
m∈C2

Zm(m(x)) (6)

with Zm(x) the normalized Zscore of a metric m,
µm the mean value of m over the summaries set,
σm the standard deviation of m, C1 = {MIST,
ROUGE-1-R, BERTScore} and C2 = {MIST,
ROUGE-1-R, BLEURT}



5 Evaluation Setup

We used the deberta-xlarge-mnli model (He et al.,
2021) as the base model for BERTScore and the
BLEURT-20 checkpoint for the BLEURT metric,
that correlate better with human judgment than the
default variants based on recent experiments. For
BARTScore metric, we used the BART model that
was trained on the ParaBank2 dataset (Hu et al.,
2019) which was provided by the authors.

From the designed and tested 50+ metrics and
variants (e.g. our new metrics and variants, open-
domain metrics, ensemble metrics), we selected
the top 21 metrics to study and analyze their per-
formance on the different datasets. The selec-
tion was based on the performance of these met-
rics and their Pearson correlation scores with hu-
man judgments on the MTS-DIALOG and the
CONSULT-FULL datasets. Our first tests also in-
cluded open-domain fact-based metrics such as
FactCC (Kryściński et al., 2019) (trained on the
CNN/DailyMail dataset) and QA metrics such as
QUALS (Nan et al., 2021) (developed using XSUM
and CNN/DailyMail) but they did not perform well
due to the differences between open-domain and
clinical questions/answers.

The experiments were performed on one 80GB
NVidia A100 GPU.

6 Performance of Evaluation Metrics

We compute the Pearson correlation scores be-
tween the automatic metrics and the reference
scores. When both manual factual scores (F ), hal-
lucination (H), and omission rates (O) are avail-
able, we compute an aggregate score:

AggregateScore =
1

4
(2F −H −O) (7)

The intuition behind this score is that both omis-
sions (O) and hallucinations (H) are critical criteria
but they need to be taken into account in the context
of factual correctness (F).

The results on the MTS-DIALOG dataset are
presented in Table 2, where the ensemble metric
MIST-Comb1 achieved the best correlation with
manual scores on Factual F1, Factual Recall, and
Omission Rate, with respective correlation values
of 0.61, 0.64, and -0.71. The new MedBARTScore
metric achieved the best correlation with human
assessment for both Factual Precision and Halluci-
nation Rate with 0.46 and -0.46 correlation values.

Table 3 presents the Pearson correlations be-
tween the automatic metrics and reference scores
on the CONSULT-FACTS dataset. Compared with
the results on the MTS dataset, ROUGE-N variants
achieved high correlation scores in all categories.
In particular, ROUGE-1-R and ROUGE-L-R have
the best scores for Factual F1 and Factual Recall.
ROUGE-1-F and ROUGE-L-F have the best scores
for Factual Precision. ROUGE-1-P and ROUGE-
L-P have the best correlations with the Hallucina-
tion Rate. BERTScore-R and the ensemble met-
ric MIST-Comb2 achieved the highest correlations
with manual scores for the Omission Rate.

On the larger CONSULT-FULL dataset,
ROUGE-N results followed a similar pattern
on the CONSULTHPI, CONSULTASSESSMENT,
CONSULTEXAM, and CONSULTRESULTS subsets,
as presented in Table 5, with ROUGE-1-P,
ROUGE-2-P, and ROUGE-L-P having the highest
correlations with the Omission Rate in the
CONSULTASSESSMENT dataset, and the Hallucina-
tion Rate in the CONSULTRESULTS dataset. This
could be explained in part by the fact that the
reference notes in the CONSULT-FULL dataset
have been created from initial drafts produced
by summarization models which increases the
likelihood of word overlap.

The fine-tuned ClinicalBLEURT metric achieves
the highest correlation scores for the Hallucina-
tion Rate in the CONSULTHPI, CONSULTEXAM,
and CONSULTRESULTS datasets. The new medical
metrics MedBERTScore-P and MedBERTScore-
PS have the highest correlations for Hallucination
and Omission Rates on the CONSULTASSESSMENT
and CONSULTEXAM datasets, respectively.

Table 4 presents the Pearson correlations be-
tween the automatic metrics and reference scores
on the MEDIQA-RRS dataset, where ROUGE-1-
P has the highest correlation with Factual Precision
and Hallucination Rate with 0.40 and -0.39. The
new MIST metric has the highest correlation scores
with Factual Recall and Factual F1 with 0.73 and
0.66, respectively.

Table 6 presents the average scores of the 21
metrics across all datasets. On specific evalua-
tion criteria, the new MedBARTScore metric per-
formed the best on average on correlating with
low Hallucinate Rate, with a correlation score of
-0.38, and Factual Precision with an average cor-
relation score of 0.45. Both MIST-Comb2 and
BERTScore-R have the highest Aggregate Score



Automatic
Reference ↑ Factual P ↑ Factual R ↑ Factual F1 ↓ Hallucination ↓ Omission ↑ Aggregate Score

SOTA Metrics
ROUGE-1-P 0.14 -0.09 -0.04 -0.16 0.06 0.00
ROUGE-1-R 0.10 0.57 0.53 0.02 -0.60 0.41
ROUGE-1-F 0.13 0.39 0.40 -0.08 -0.44 0.33
ROUGE-2-P 0.12 0.05 0.07 -0.12 -0.12 0.10
ROUGE-2-R 0.12 0.34 0.34 -0.09 -0.39 0.29
ROUGE-2-F 0.12 0.28 0.29 -0.10 -0.33 0.25
ROUGE-L-P 0.13 -0.08 -0.05 -0.15 0.07 0.00
ROUGE-L-R 0.10 0.56 0.51 0.02 -0.58 0.40
ROUGE-L-F 0.13 0.38 0.38 -0.08 -0.41 0.31
BERTScore-P 0.10 0.11 0.15 -0.18 -0.23 0.18
BERTScore-R 0.07 0.62 0.59 0.02 -0.71 0.47
BERTScore-F 0.09 0.44 0.45 -0.08 -0.56 0.38
BLEURT 0.11 0.48 0.47 -0.08 -0.59 0.40
BARTScore 0.37 0.09 0.19 -0.34 -0.26 0.25
New Metrics
MedBERTScore-P 0.28 -0.16 -0.02 -0.27 -0.32 0.14
MedBERTScore-SP 0.28 -0.16 -0.02 -0.27 -0.32 0.14
MedBARTScore 0.46 0.13 0.24 -0.46 -0.27 0.30
ClinicalBLEURT 0.19 0.22 0.19 -0.06 -0.20 0.16
MIST 0.02 0.46 0.45 0.08 -0.51 0.33
MIST-Comb1 0.08 0.64 0.61 0.05 -0.71 0.47
MIST-Comb2 0.09 0.60 0.58 0.01 -0.68 0.46

Table 2: MTS-DIALOG: Pearson’s correlation coefficients between the automatic and manual scores. Best results
are highlighted in bold and second best are underlined.

Automatic
Reference ↑ Factual P ↑ Factual R ↑ Factual F1 ↓ Hallucination ↓ Omission ↑ Aggregate Score

SOTA Metrics
ROUGE-1-P 0.63 0.32 0.50 -0.73 -0.46 0.55
ROUGE-1-R 0.59 0.80 0.79 -0.39 -0.84 0.70
ROUGE-1-F 0.70 0.70 0.78 -0.55 -0.79 0.73
ROUGE-2-P 0.56 0.33 0.45 -0.60 -0.43 0.48
ROUGE-2-R 0.55 0.73 0.71 -0.39 -0.78 0.65
ROUGE-2-F 0.62 0.62 0.68 -0.49 -0.70 0.64
ROUGE-L-P 0.63 0.33 0.51 -0.73 -0.47 0.56
ROUGE-L-R 0.60 0.80 0.79 -0.40 -0.84 0.71
ROUGE-L-F 0.70 0.70 0.78 -0.56 -0.79 0.73
BERTScore-P 0.62 0.47 0.58 -0.56 -0.60 0.58
BERTScore-R 0.60 0.80 0.78 -0.37 -0.85 0.70
BERTScore-F 0.66 0.69 0.74 -0.49 -0.79 0.69
BLEURT 0.61 0.67 0.71 -0.49 -0.76 0.67
BARTScore 0.61 0.34 0.51 -0.66 -0.41 0.52
New Metrics
MedBERTScore-P 0.63 0.47 0.59 -0.57 -0.60 0.59
MedBERTScore-SP 0.63 0.47 0.59 -0.57 -0.61 0.59
MedBARTScore 0.61 0.35 0.51 -0.67 -0.42 0.53
ClinicalBLEURT 0.04 0.15 0.08 0.09 -0.15 0.05
MIST 0.08 0.44 0.31 0.08 -0.44 0.25
MIST-Comb1 0.48 0.78 0.72 -0.26 -0.81 0.63
MIST-Comb2 0.53 0.80 0.75 -0.33 -0.85 0.67

Table 3: CONSULT-FACTS: Pearson’s correlation coefficients between the automatic and manual scores.



Automatic
Reference ↑ Factual P ↑ Factual R ↑ Factual F1 ↓ Hallucination ↓ Omission ↑ Aggregate Score

SOTA Metrics
ROUGE-1-P 0.40 -0.10 0.00 -0.39 -0.30 0.17
ROUGE-1-R 0.22 0.55 0.57 -0.22 -0.74 0.53
ROUGE-1-F 0.31 0.39 0.47 -0.31 -0.69 0.49
ROUGE-2-P 0.34 0.04 0.10 -0.32 -0.36 0.22
ROUGE-2-R 0.20 0.46 0.47 -0.18 -0.66 0.45
ROUGE-2-F 0.25 0.37 0.41 -0.23 -0.63 0.42
ROUGE-L-P 0.37 -0.11 -0.02 -0.36 -0.29 0.15
ROUGE-L-R 0.20 0.54 0.55 -0.21 -0.73 0.51
ROUGE-L-F 0.29 0.38 0.44 -0.29 -0.69 0.47
BERTScore-P 0.31 -0.07 0.03 -0.30 -0.33 0.17
BERTScore-R 0.17 0.56 0.58 -0.21 -0.73 0.53
BERTScore-F 0.29 0.32 0.38 -0.30 -0.64 0.43
BLEURT 0.33 0.46 0.51 -0.29 -0.69 0.50
BARTScore 0.38 0.15 0.23 -0.37 -0.39 0.31
New Metrics
MedBERTScore-P 0.32 -0.04 0.05 -0.31 -0.35 0.19
MedBERTScore-SP 0.32 -0.04 0.05 -0.31 -0.35 0.19
MedBARTScore 0.29 0.03 0.13 -0.28 -0.30 0.21
ClinicalBLEURT 0.27 0.11 0.10 -0.26 -0.09 0.14
MIST 0.11 0.73 0.66 -0.10 -0.52 0.49
MIST-Comb1 0.18 0.67 0.66 -0.19 -0.72 0.56
MIST-Comb2 0.24 0.64 0.65 -0.23 -0.72 0.56

Table 4: MEDIQA-RRS: Pearson’s correlation coefficients between the automatic and manual scores. Best results
are highlighted in bold and second best are underlined.

HPI Section Assessment Section Exam Section Results Section
Hallucination Omission Hallucination Omission Hallucination Omission Hallucination Omission

SOTA Metrics
ROUGE-1-P -0.23 -0.21 -0.45 -0.30 -0.19 -0.17 -0.18 -0.23
ROUGE-1-R -0.20 -0.18 -0.33 -0.21 -0.19 -0.15 -0.09 -0.19
ROUGE-1-F -0.24 -0.22 -0.37 -0.25 -0.21 -0.18 -0.11 -0.20
ROUGE-2-P -0.25 -0.21 -0.46 -0.30 -0.24 -0.17 -0.18 -0.24
ROUGE-2-R -0.22 -0.19 -0.37 -0.24 -0.21 -0.18 -0.12 -0.23
ROUGE-2-F -0.25 -0.21 -0.41 -0.27 -0.23 -0.18 -0.13 -0.22
ROUGE-L-P -0.23 -0.21 -0.45 -0.30 -0.20 -0.17 -0.18 -0.23
ROUGE-L-R -0.20 -0.18 -0.33 -0.21 -0.19 -0.15 -0.09 -0.20
ROUGE-L-F -0.24 -0.22 -0.38 -0.25 -0.21 -0.18 -0.11 -0.20
BERTScore-P -0.23 -0.21 -0.46 -0.27 -0.22 -0.20 -0.12 -0.23
BERTScore-R -0.22 -0.18 -0.31 -0.19 -0.22 -0.16 -0.05 -0.16
BERTScore-F -0.24 -0.20 -0.39 -0.23 -0.22 -0.19 -0.08 -0.20
BLEURT -0.20 -0.20 -0.37 -0.23 -0.18 -0.13 -0.10 -0.21
BARTScore -0.26 -0.21 -0.42 -0.29 -0.27 -0.19 -0.16 -0.21
New Metrics
MedBERT-P -0.23 -0.21 -0.47 -0.27 -0.21 -0.20 -0.10 -0.23
MedBERT-SP -0.23 -0.22 -0.47 -0.28 -0.22 -0.20 -0.10 -0.23
MedBART -0.26 -0.23 -0.46 -0.29 -0.25 -0.19 -0.16 -0.23
ClinicalBLEURT -0.30 -0.19 -0.29 -0.25 -0.31 -0.18 -0.25 -0.19
MIST -0.07 -0.05 -0.12 -0.16 -0.09 -0.09 0.02 -0.02
MIST-Comb1 -0.18 -0.15 -0.27 -0.20 -0.19 -0.15 -0.04 -0.13
MIST-Comb2 -0.18 -0.17 -0.30 -0.22 -0.18 -0.15 -0.06 -0.15

Table 5: CONSULT-FULL: Pearson’s correlation coefficients between the automatic and manual scores on the
CONSULTHPI, CONSULTASSESSMENT, CONSULTEXAM, and CONSULTRESULTS datasets. Unlike Tables 2-4 which
present the fact-based results, here, Hallucination and Omission are measured at the key-phrase level.



SOTA Metrics ↑ Factual P ↑ Factual R ↑ Factual F1 ↓ Hallucination ↓ Omission ↑ Aggregate Score
ROUGE-1-P 0.39 0.04 0.15 -0.35 -0.23 0.22
ROUGE-1-R 0.30 0.64 0.63 -0.20 -0.46 0.48
ROUGE-1-F 0.38 0.49 0.55 -0.27 -0.43 0.45
ROUGE-2-P 0.34 0.14 0.21 -0.31 -0.27 0.25
ROUGE-2-R 0.29 0.51 0.51 -0.23 -0.41 0.41
ROUGE-2-F 0.33 0.42 0.46 -0.26 -0.39 0.39
ROUGE-L-P 0.38 0.04 0.15 -0.34 -0.23 0.22
ROUGE-L-R 0.30 0.63 0.62 -0.20 -0.45 0.47
ROUGE-L-F 0.37 0.49 0.53 -0.27 -0.42 0.44
BERTScore-P 0.34 0.17 0.25 -0.30 -0.31 0.28
BERTScore-R 0.28 0.66 0.65 -0.19 -0.47 0.49
BERTScore-F 0.35 0.48 0.52 -0.26 -0.44 0.44
BLEURT 0.35 0.54 0.56 -0.25 -0.44 0.45
BARTScore 0.45 0.19 0.31 -0.37 -0.29 0.32
New Metrics
MedBERTScore-P 0.41 0.09 0.20 -0.32 -0.33 0.26
MedBERTScore-SP 0.41 0.09 0.20 -0.32 -0.33 0.27
MedBARTScore 0.45 0.17 0.29 -0.38 -0.28 0.31
ClinicalBLEURT 0.17 0.16 0.13 -0.08 -0.15 0.12
MIST 0.07 0.55 0.47 -0.02 -0.28 0.31
MIST-Comb1 0.25 0.70 0.66 -0.15 -0.45 0.48
MIST-Comb2 0.29 0.68 0.66 -0.18 -0.46 0.49

Table 6: Average scores of the 21 automatic metrics across all datasets. Best results are highlighted in bold and
second best are underlined.

of 0.49 followed by MIST-Comb1 and ROUGE-
1-R. The same set of metrics has similar pos-
itive results on the MTS-DIALOG, MEDIQA-
RRS, and CONSULT-FACTS datasets. Using the
dataset-specific Aggregate Score, we observe that
MIST-Comb1, MIST-Comb2, BERTScore-R, and
ROUGE-1-R perform well on Factual correctness
while maintaining a stable/good performance on
being indicative of lower hallucination and omis-
sion rates. These datasets are substantially different
from each other: long clinical notes for CONSULT-
FACTS (with 214 words/note), concise impression
sections from radiology reports for MEDIQA-
RRS(with 18 words/summary), and different types
of sections from different specialities for MTS-
DIALOG (15 words/summary), which suggests that
this set of metrics can be relied upon for the evalu-
ation of clinical note generation.

7 Conclusion

While finding a relevant and generic evaluation met-
ric for NLG systems remains a challenging task,
our study shows that the solution to the problem
is likely to be domain- and task-specific. In par-
ticular, metrics that did well on capturing factual
accuracy did not necessarily capture critical aspects
in clinical note generation such as hallucinations
and key medical fact omissions. Our experiments
also show that language-model based metrics and
metric ensembles can outperform SOTA N-gram
based measures such as ROUGE when reference

summaries are not biased. The extensive measure-
ments and new metrics evaluated in this paper are
valuable for guiding decisions on which metrics
will be most effective for researchers to use going
forward in their Automated Medical Note Genera-
tion scenarios.

Limitations

While our research and empirical results support
specific evaluation metrics for the task of clinical
note generation according to a given evaluation cri-
teria, more results, including testing on additional
datasets are needed to further validate these find-
ings. Our manual annotations followed clear and
structured guidelines, but could still contain some
level of annotator bias and have an average Pearson
inter-annotator-agreement of 0.67 (Tables 7 and 8).
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A Inter-Annotator Agreements (IAA)

annotations kappa f1 f1(tol=1) f1(tol=2) pearson
crit-ommissions 0.29 0.48 0.65 0.75 0.75
hallucinations 0.46 0.73 0.87 0.92 0.97
correct-facts 0.12 0.13 0.30 0.40 0.79
incorrect-facts 0.58 0.73 0.90 1.00 0.89

Table 7: Averaged pairwise IAA for the annotation of
20 transcript-section pairs from the CONSULT-FACTS
dataset.

annotations kappa f1 f1(tol=1) f1(tol=2) pearson
crit-ommissions 0.26 0.34 0.66 0.85 0.81
hallucinations 0.36 0.76 0.96 0.98 0.34
correct-facts 0.07 0.16 0.60 0.82 0.76
incorrect-facts 0.06 0.64 0.79 0.90 0.07

Table 8: Averaged pairwise IAA for the annotation of 34
summary-note pairs from the MEDIQA-RRS dataset.

B Finetuning-based Metric: Weight
scheme

error_type original weight normalized weight
critical 3 1
non-critical 1 1

3

spelling/grammar 1
4

1
12

Table 9: Error score weights used in production for
evaluating produced notes during a QA review. The
normalized versions of the weights are used in our cal-
culations so that the number of errors will not exceed
over 1 per sentence unless there is more than 1 critical
error.
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