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Abstract—Code-generating large language models (LLMs) are
transforming programming. Their capability to generate multi-
step solutions provides even non-programmers a mechanism
to harness the power of coding. Non-programmers often use
spreadsheets to manage tabular data, as they offer an intuitive
understanding of data manipulation and formula outcomes. Con-
sidering that LLMs can generate complex, potentially incorrect
code, our focus is on enabling user trust in the accuracy of
LLM-generated code. We present COLDECO, the first end-user
inspection tool for comprehending code produced by LLMs for
tabular data tasks.

COLDECO integrates two new features for inspection with
a grid-based interface. First, users can decompose a generated
solution into intermediate helper columns to understand how the
problem is solved step by step. Second, users can interact with a
filtered table of summary rows, which highlight interesting cases
in the program. We evaluate our tool using a within-subjects
user study (n=24) where participants are asked to verify the
correctness of programs generated by an LLM. We found that
while all features are independently useful, participants preferred
them in combination. Users especially noted the usefulness of
helper columns, but wanted more transparency in how summary
rows are generated to assist with understanding and trusting
them. Users also highlighted the application of COLDECO in
collaborative settings for explaining and understanding existing
formulas.

I. INTRODUCTION

In the past two years, large language models (LLMs) [1],
[2], [3], [4] have emerged as a practical tool for synthesizing
code from natural language. Their commercialization in assis-
tive features such as GitHub Copilot [5], [6] is transforming
programming for professional programmers. Still, these tools
rely on the expertise of professional programmers to evaluate
the (often incorrect) output of the model. The promised value
in these tools is only realised through the interactive evaluation
and repair of such generated fragments by an expert pro-
grammer. However, due to their potential for empowerment,
the question arises: how do we design tools specifically to
help less skilled users understand and debug AI-generated
programs?

A. Background: AI for end-user programming

Without a formal education in programming, most indi-
viduals are unfamiliar with and have difficulties with the
abstract concepts such as variables, functions, parameters, etc.,

† Work done while at Microsoft Research.

that make up the notional machine with which a program-
mer understands how a program functions [7]. Spreadsheets
provide mechanisms for individuals unfamiliar with these
concepts to have a direct and concrete understanding of their
data and transformations on it (such as sums, etc.) due,
among other things, to their simplified models of control flow
and naming [8], [9], [10], [11]. Spreadsheets can provide
a graduated experience that allows a range of individuals,
from non-programmers to professional programmers, to solve
problems using the tools with which they are most comfortable
[12], [13]. Our research investigates the application of AI in
synthesizing code solutions for end-user programmers, people
like the many spreadsheet users who need to code as part of
their work but who are not professional programmers [14].

There have been many successful attempts to empower
spreadsheet users to define computations without having to
learn a formal programming language. The most widely de-
ployed example is FLASHFILL, a programming-by-example
string transformation feature that ships commercially [15].
More recently, commercial spreadsheets have introduced AI-
powered features for data analytics by synthesizing pivot tables
or charts via automatic recommenders or natural language
queries [16], [17]. These tools give rise to a new challenge:
How do we enable end users to evaluate the correctness
of machine-generated computations without inspecting the
underlying code?

The only recent work we are aware of that targets this chal-
lenge for AI-powered spreadsheet programming is grounded
abstraction matching (GAM), a new interaction style, which
explains AI-generated code to end users in natural lan-
guage [18]. While GAM helps the user confirm that the
model’s understanding of the problem matches their intent, it
does not necessarily help them discover and diagnose errors,
when the intent leads to unexpected behavior on the given
data.

B. This paper: COLDECO, an inspection tool for end users

To assist end-user programmers with discovering and di-
agnosing errors in AI-generated code, COLDECO augments
natural-language descriptions in the style of GAM with two
complementary features, illustrated in Fig. 1.

First, users can decompose a generated solution into inter-
mediate helper columns [19] to understand how the problem is
solved step by step (see Sec. II-D). Creating helper columns
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Fig. 1: Initial view (top). Decomposing “Abbreviation” (middle). Decomposing “text concatenation” (bottom).

is a common spreadsheet practice for manually simplifying
complex formulas. By automating helper column creation, we
encourage users to explore the concrete impact of different
parts of the code on their data.

Second, users can view a filtered table of summary
rows, which highlights interesting cases in the program (see
Sec. II-C). We introduce an analysis that captures all the
unique behaviors that the code displays on the user’s data,
allowing them to quickly understand the effect of different
paths through the code.

In general, a debugging experience involves both finding the
source of the error (diagnosis) and fixing the error (repair). In
COLDECO, we apply the familiar concepts of helper columns,
grouping, and filtering in spreadsheets to assist the diagnostic
aspect of debugging; we leave considerations of repair for
future work (see Sec. VII).

Our paper makes the following contributions:

• We present COLDECO, the first end-user inspection tool
for comprehending code produced by LLMs for tabular
data tasks. COLDECO is an Excel add-in that provides
three interrelated interactive components: (1) a decompo-
sition of the solution into intermediate values which are
added back to the table in the form of helper columns,
(2) summary rows highlighting distinct behaviors in the
solution, and (3) a description of the solution expressed
in natural language.

• We evaluate this approach with a user study (n = 24) of
spreadsheet users of varying expertise completing several
debugging tasks. We find that users were able to inspect
the results of code generated by an LLM and to find
faults when this code was incorrect. Participants regard
all three components as useful. Spreadsheet users also



indicated that COLDECO may provide value in collab-
oration by affording users the ability to explain code
solutions to colleagues, and better understand complex
formulas themselves. We received design feedback for
future intelligent user interfaces for end-user debugging
of LLMs.

II. COLDECO, BY EXAMPLE

A data analyst named Kim is cleaning up a spreadsheet of
responses to an online form. As a part of their task, they want
to create a column of people’s initials to use as a part of a
unique identifier. Kim has experience with Excel, including
using some formulas, but they are not very comfortable with
string manipulation functions. So, rather than write a formula
themself, they decide to use an LLM to generate the solution
and verify it using COLDECO.

A. Generating the solution

Kim is using a spreadsheet environment that integrates a
query box to create new columns using natural language.
Kim writes their instruction: Create a column “Abbreviation”
concatenating the first character of each part of the name,
and the spreadsheet queries the LLM to generate code that
will compute a new calculated column. The calculated column
is added to the spreadsheet and COLDECO is automatically
opened as a side pane (Fig. 1, top). By convention, additional
calculated columns are formatted in green. A cursory glance at
the first few rows in the table seems to confirm that the output
is reasonable, but Kim would like to make sure the solution
is correct, so they turn to COLDECO’s inspection features to
understand how the output was generated.

B. A first inspection

The COLDECO pane has two views, Inspect Columns (1a)
and Inspect Rows (1b). The first view provides information
about the calculated columns (here: “Abbreviation”), includ-
ing a description of the calculation generated using natural
language templates (1a). The description reveals that the
calculation is taking the first letter from each of the “First
Name”, “Middle Name”, and “Last Name” columns, and
appears sensible to Kim.

The Inspect Rows view clusters the rows from the input table
by their behavior in the calculation and depicts one example—
a summary row—from each cluster (1b). Kim notices there
are two clusters, and while the second cluster, with nine
rows, behaves correctly, the first cluster, with two rows,
is missing the output in the “Abbreviation” column. What
initially appeared to be a correct solution is not producing
the right output on some of the rows.

C. Analyzing the summary rows

Kim makes a further inspection of the summary rows to
understand the problem. The Inspect Rows view (1b) only
depicts a subset of the columns from the original table,
including the output column (“Abbreviation”) and the columns
referenced by the calculation (“First Name”, “Middle Name”,

and “Last Name”). Since this view only shows the columns
that affect the output, Kim can more easily see that the empty
output seems to be related to the empty middle names.

D. Inspecting the helper columns

To confirm their hypothesis, Kim looks back at the In-
spect Columns view, and clicks Expand Abbreviation Helper
Columns to break down the output into its helper columns
(Fig. 1, middle).

This brings about the tree view (2a), which visualizes the
structure of the computation. The tree view shows that the
output is comprised of two helper columns, one combining
the first letter of “First Name” and “Middle Name”, and
the other just getting the first letter of “Last Name”. The
names of helper columns are generated using natural language
templates similarly to column descriptions. By looking at the
values in the table (2b), Kim sees that the “1st letter of Last
Name” column is correct for all rows, but for those without
a middle name, the “text concatenation” column is showing
a red EMPTY, indicating that something went wrong there.
COLDECO automatically highlights cells that contain errors,
where EMPTY is analogous to Excel’s #VALUE!.

Investigating further, Kim selects the “text concatenation”
column, and clicks Expand once more (Fig. 1, bottom). This
creates two new helper columns, for the first letter of the first
and middle names respectively. Both the Inspect Columns and
Inspect Rows views are synchronized with the grid, such that
selecting a column in one of them will update the other views.
Kim selects the “text concatenation” column to update the
summary rows (3a).

With the intermediate values visible, Kim sees that indeed
the program correctly computes the first letter of the first and
last names. But for rows without a middle name, computing
the first letter fails, and that error propagates, causing the
output to be empty as well.

III. RELATED WORK

To the best of our knowledge, COLDECO is the first end-
user inspection tool for debugging LLM-generated code for
data-centric tasks.

The only other work we are aware of with the goal of
helping spreadsheet users harness the power of LLMs is
grounded abstraction matching (GAM) [18]. GAM generates
natural-language descriptions of LLM-generated programs,
which enable end users to both confirm the model’s under-
standing of their request and to iteratively refine the request
if needed. While GAM and COLDECO have a similar target
audience, and in fact, our tool incorporates natural-language
descriptions similar to those in GAM, the main focus of
COLDECO is on two novel mechanisms—helper columns and
row summaries—that enable the user to concretely see the
effect of the generated code on their data. Apart from GAM,
the two most relevant lines of work are those on (1) inspecting
synthesized code, and (2) debugging tools for spreadsheets.



A. Inspecting LLM-Generated Code

There is a growing body of work studying how programmers
interact with LLM-powered coding assistants [20], [6], [21],
[22], [23], [24], [25], [26], and, in particular, how they evaluate
and debug LLM-generated code. These studies show that
programmers spend a significant proportion of their time
inspecting generated code [22], [24] and often have trouble un-
derstanding [21] and debugging [22] such code, or evaluating
its correctness [26]. Moreover, both programmers [22], [26]
and data scientists [25] use multiple sources of information
when evaluating AI-generated code, including inspecting the
code itself as well as executing the code and inspecting its
behavior on concrete inputs. While these studies do not focus
on end users, they generally motivate the need for better
tool support for understanding and debugging LLM-generated
code; in the context of end-user programming there is an
additional challenge that the user has no option to inspect the
code.

B. Code Inspection in Program Synthesis

Research on more traditional (search-based) program syn-
thesis has explored multiple ways to help users inspect and
disambiguate generated programs, for example, by displaying
intermediate values [27] or generating informative exam-
ples [28], [29]; unlike COLDECO, these tools assume that
the programmer can always fall back on examining the code.
A separate line of research focuses on finding relevant data
[30], [31], [32] akin to summary rows. These use different
techniques, and are complementary to COLDECO.

A more closely related work to ours is FLASHPROG [33],
which introduces user interactions for disambiguating multiple
synthesized solutions for end-user tasks. Like COLDECO,
FLASHPROG aims to improve user confidence in the synthesis
result without seeing the code, but it is closely tied to the
underlying synthesis algorithm and does not support decom-
posing solutions.

C. Debugging Tools for Spreadsheets

The two core features of COLDECO, helper columns and
summary rows, are inspired by previous work in end-user
programming and spreadsheet research. Automatically created
helper columns have been used before to debug user-written
formulas [34] or inspect the behavior of code “foraged” from
the web [35]. The main difference between these and COLD-
ECO is our interaction model, where the user interactively
decomposes the program via the tree view. Our summary
rows take inspiration from templates [36], LISH [37], gradual
structuring [38], object spreadsheets [39], and calculation
view [40]. Each of these addresses the challenge of compre-
hending and manipulating a large dataset by abstracting it into
a smaller structure, which can be a single exemplar row or
formula. COLDECO finds a new application for these ideas—
evaluating and debugging AI-generated code.

IV. COLDECO: DESIGN AND IMPLEMENTATION

In this section we give more detail about the tool’s imple-
mentation and describe the technical approach underpinning
the two core features of COLDECO—helper columns and
summary rows. Throughout this section we use the same
running example as in Sec. II (Fig. 1).

A. Implementation

We implement COLDECO as an Excel taskpane add-in,
written in React. While the design of COLDECO is agnostic
to the way the code is generated and even the underlying
programming language (as users do not see the code), for our
implementation we use the Python pandas API1 and obtain
the code by querying the OpenAI Codex model [1]2. For our
running example, the code produced from the user query is:

df["Abbreviation"] = df["First Name"].str[0] \
+ df["Middle Name"].str[0] \
+ df["Last Name"].str[0]

Here df is a dataframe representing the entire table; the
assignment above adds a new column "Abbreviation" to
the dataframe; the values in the new column are computed
row-wise from values of three existing columns (the iteration
over the rows is implicit in this case, but in more complex
programs it becomes explicit).

A server running Pyodide3 evaluates the Python code and
returns the updated dataframe df to the COLDECO client,
which projects the dataframe into the grid.

B. Decomposition into helper columns

Recall from Sec. II that a COLDECO user can interact with
the tree view to iteratively decompose the computation into
helper columns. The core technical concept underpinning this
feature is the column decomposition algorithm, which breaks
down a complex column assignment into multiple simpler
assignments, akin to A-Normal Form transformation [41]. In
our case, one step of column decomposition for the program
above yields:

df["$fresh1"] = df["First Name"].str[0] \
+ df["Middle Name"].str[0]

df["$fresh2"] = df["Last Name"].str[0]
df["Abbreviation"] = df["$fresh1"] \
+ df["$fresh2"]

You can see how the original right-hand side rhs of the form
(e1 + e2) + e3 was split into its immediate sub-expressions,
e1 + e2 and e3, each of which became a helper column. The
decomposition is a little more involved when rhs explicitly
iterates over rows using the pandas’ apply function, as in the
following example:

df["B"] = df.apply(lambda x: \
"gt10" if x["A"] > 10 else "leq10", axis=1)

1https://pandas.pydata.org/
2 Codex was discontinued after our user study. However COLDECO can

use any code-generating LLM.
3https://pyodide.org/

https://pandas.pydata.org/
https://pyodide.org/


In this case, our algorithm decomposes the body of the lambda
abstraction, and then re-wraps each sub-expression into a
separate lambda and apply.

Decomposition is only defined when rhs is non-atomic,
i.e. it contains at least one sub-expression whose output
is a non-constant column, not already present in the table.
For example, the expression df["Last Name"].str[0] is
atomic, because none of its sub-expressions satisfy our criteria:
df is not a column, "Last Name" and 0 are constants, and
df["Last Name"] is already present.

After the program has been decomposed into multiple
assignments, COLDECO post-processes them to replace fresh
column names with descriptive names, computed based on the
expression and the original column names. It then constructs
the tree view by building a dependency tree over the column
assignments. Within the tree view, the button to Expand a
column is only enabled when the currently selected column is
non-atomic. The tree view allows users to hide helper columns,
reversing the decomposition; we implement this by caching the
original expression and restoring it when required.

C. Summary rows

When an input table is large, it can be difficult to verify
the program’s output against the user intent. Summary rows
facilitate such verification by highlighting a small number of
rows that represent unique program behaviors.

The core idea behind summary rows is to abstract each
row into a vector of tags and then cluster the rows by their
tag vector. The tags are computed for every value in the row
and reflect whether this value: is NaN4, is "", is True, is
positive, or is one of the enumeration values, where a column
is considered to be an enumeration if it has at most three
distinct string values. For example, in row 9 of Fig. 1, the value
NaN in “text concatenation” is abstracted into the singleton tag
[isNaN], while the value "S" in its neighboring column is
abstracted into an empty tag.

To compute the tag vector of a row, we string together the
value tags from all of its columns. To this end, we consider
the fully decomposed set of columns (as in Fig. 1 (bottom)),
independently of the current state of the tree view. This has
the benefit that rows get clustered not only based on the input
and output values of the computation, but also the intermediate
values. In our example, clustering the rows by their tag vectors
results in two clusters: one includes rows 9 and 12, where the
“Middle Name” column is tagged with [isEmpty] and three
of the derived columns are tagged with [isNaN], and the rest
of the rows where all the tags in the vector are empty.

Once the rows have been clustered, COLDECO constructs
the Inspect Rows view by picking one row per cluster, and ad-
ditionally displaying the size of each cluster. As we mentioned
in Sec. II, COLDECO also restricts the columns depicted in this
view to those that participate in the computation.

4NaN is the pandas error value, displayed as EMPTY in COLDECO.

V. USER STUDY

We conducted an hour-long within-subjects study with 24
participants to answer the following research questions:
RQ1 Do COLDECO’s features enable users to correctly diag-

nose generated code outputs in spreadsheets?
RQ2 How does decomposing the output into helper columns

affect users’ ability to diagnose the output?
RQ3 What are users’ perception of the usefulness of each of

the features for inspecting COLDECO’s output?

A. Participants

For this study, we recruited 24 participants, 10 women
and 14 men, across 12 professions. 19 participants reported
having “a lot of experience” with spreadsheet software, but
all had at least some experience. All participants also had
some experience writing spreadsheet formulas, with 8 using
“a variety of different functions” and the others only using
“a few basic functions such as SUM and AVERAGE”. For
traditional programming languages, 18 participants were at
least “moderately experienced” programmers, with the others
knowing only enough for “small infrequent tasks” or with little
to no experience.

B. Tasks

Each participant was asked to solve 4 tasks inspired by the
WREX study [42], and Excel questions on StackOverflow5.
Each task includes a table of data6, a task description, and a
pre-written query for COLDECO7:
A1) Given a table of purchase data, create a column contain-

ing the total amount paid after discounts and reimburse-
ments for each entry.

A2) Given a table of TV shows, create a column containing
“Yes” if a show’s popularity is ≥ 1, 000 or it has a vote
average of ≥ 8.0 with at least 10,000 votes.

B1) Given a table of event dates and locations, create a
column containing the duration of each event in hours.

B2) Given a table of books, create a column which rounds the
price of each book such that the last digit of the rounded
price is the nearest 4, 5, or 9.

The query given for A1 and B1 resulted in a correct solution,
while A2 and B2 had bugs affecting a small set of the rows.
We grouped the tasks into two pairs (A1, A2) and (B1, B2)
of approximately the same difficulty (A1 and B1 are simpler
and A2 and B2 are more complex).

For each task, participants were asked to use a pre-written
query to generate an output, and use COLDECO’s inspection
features to diagnose if the output matches the task’s descrip-
tion. To finish the task, they were asked if the output is correct
(their “diagnosis”), their confidence in their diagnosis, and (if
they diagnosed it as incorrect) what query they would try next
to get a correct output.

5https://stackoverflow.com/questions/tagged/excel-formula
6Taken from [42], [43], [44] or created for the study.
7You can find the the study material in the technical report [45].

https://stackoverflow.com/questions/tagged/excel-formula


Since the focus of the study is validating COLDECO’s
output, not completing tasks, we controlled for the variability
in input queries by providing users with the query to use, and
did not ask them to try to get to a correct output. Asking them
about the query they would try next enabled us to confirm that
participants diagnosed the correct cause for incorrect outputs.

C. Study protocol

We study two configurations of COLDECO, HC and No-HC,
which differ in the availability of the helper columns feature
(the No-HC version does not have the Expand button in the
Inspect Columns view). We chose to isolate the effects of the
helper columns in particular, since COLDECO has multiple in-
teracting features and column decomposition is the most novel
aspect. We did not compare against a traditional “control”
condition, since we were not aware of any comparable tools,
and we believe that access to COLDECO’s features would
likely be trivially better than having access to no debugging
tools at all.

We had four randomly-assigned groups of 6 participants,
based on the condition they were assigned to first (HC-first vs.
No-HC-first) and the task pair (A-first vs. B-first).

The study was conducted remotely via video conferencing,
with participants controlling COLDECO on the investigator’s
machine. Each study session began with a tutorial of the tool
(using the example covered in Sec. II), followed by a warm-
up where users were asked to repeat the tutorial steps and
ask any questions. They then performed the first pair of tasks,
followed by a mid-study survey, the second pair of tasks and
the post-study survey, ending with a semi-structured interview.

Users had at most 7 minutes to perform each task. If
any task exceeded that limit, the investigator informed the
participant that they were out of time, and moved to the next
task or survey. Participants were encouraged to think-aloud
throughout the study.

The participants who saw the No-HC condition first were
given the column decomposition portion of the tutorial after
the mid-study survey, while those in HC were simply informed
that they will not have access to the Expand button for the sec-
ond pair of tasks. Each group only answered questions about
column decomposition in the survey immediately following
their use of the feature.

VI. RESULTS

Users completed task A1 with a mean time of 4.37 minutes
(SD=1.42), A2 in 4.63 minutes (SD=1.46), B1 in 3.38 minutes
(SD=1.40) and B2 in 4.67 minutes (SD=1.23), excluding time-
outs. Since this was a think-aloud study, we do not compare
times across conditions.

A. Correctness and confidence

Users across both conditions performed well (Fig. 2) and
were confident (Fig. 3) on the simpler tasks, but they did
not perform as well in A2 and B2. We attribute this to time
pressure, where users were not able to inspect the outputs with
the same level of detail, and it is possible that the additional
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cognitive load caused by the more complicated tasks impacted
users’ performance. Given these results we answer RQ1 with
a tentative yes: without the artificial time constraint imposed
by the study, users are able to correctly diagnose generated
code, though future studies are needed to confirm that this
generalizes to longer and more complex tasks.

B. The effect of column decomposition

Fig. 2 shows a lower performance on A2 for the HC group—
six incorrect diagnoses vs. three for No-HC—although this
difference was not statistically significant (Fisher’s Exact Test).
The significantly lower confidence (Wilcoxon Rank Sum Test,
p = 0.046) for A2 in this group (Fig. 3), and the fact that we
don’t see this effect in B2, suggests that this is not due to
decomposition misleading users. Rather, we hypothesize that
it is due to the program used in A2: it was a chain of if-
else statements, with a bug in the final case. Users needed to
decompose the program four times before reaching the values
they were interested in. So the complexity of the interaction,
combined with relatively little experience with the tool may
have overwhelmed and frustrated users.

So to answer RQ2, we did not find evidence of significant
improvements resulting from the presence of helper columns
based only on the quantitative results. We believe, however,
this is due to the limitations in our study design (the combina-
tion of time pressure and the complexity of the task); indeed,
our qualitative evaluation of helper columns, discussed below,
is much more positive.

C. Survey results

Fig. 4 presents participants’ answers to the mid- and post-
study surveys. There was no significant difference between
the conditions, so we report the responses to shared questions
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Fig. 4: The results from the surveys. For each question, participants were asked to select their agreement with the statement on
a five-level Likert scale. Note that participants in each condition only answered questions about decomposition in the survey
immediately following their use of the feature, so the last 2 rows show 12 responses each.
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Fig. 5: The number of participants who ranked each feature
in a particular position. Some ranked two or all three features
equally.

in aggregate. In the post-study survey, users rated both the
natural-language descriptions (M = 4.50, SD = 0.722) and
summary rows (M = 4.625, SD = 0.576) highly. We also found
a significant improvement in the ratings for summary rows
between the mid- and post-study surveys (Wilcoxon Signed
Rank test, p = 0.016). As we discuss in VI-E3, this suggests
a learning effect for this feature, which we found to be harder
to learn than others.

Since participants only had access to column decomposition
in half of the study, we included questions about that feature
only in the survey immediately following that half (the mid-
study survey for HC-first, the post-study survey for No-HC-
first). Despite the lower performance noted above, participants
rated decomposition highly, for inspecting both the values (M
= 4.5, SD = 0.798) and the descriptions (M = 4.33, SD =
0.651) of helper columns.

D. Ranking the features

As a part of the post-study interview, we asked participants
to rank the three features (see Fig. 5). We found that there
was a diversity of preferences for the features, with no clear
preference shared by all. Two participants, P21 and P23,
ranked decomposition and natural-language descriptions in
combination as their first choice. P1 similarly ranked them
together, but in last place. P4 considered all features equally
useful. The summary rows tended to be ranked lower than
others.

Given the ranking and survey results, we can answer RQ3:
participants found all three features useful, and there was no
clear preference for any one feature. However, the summary
rows feature was ranked lower than others, which we attribute
to its steeper learning curve.

E. Qualitative analysis

We transcribed the semi-structured interviews and partici-
pants’ comments, and the first author performed an inductive

thematic analysis of the transcript (through open-coding) [46].
Here, we discuss notable themes from the analysis, and how
they pertain to the results above.

1) Decomposition affords better transparency and analysis:
Participants were positive about decomposition, and many
commented on its utility during the survey and while ranking
the features. Several participants stated that decomposition
afforded them a better understanding of the steps involved in
the output (P7, 14, 17, 19, 23), with P19 referring to it as a
“show-your-work button”, and P23 saying that decomposition
“makes it less [...] like a black box”. Others (P15, 19, 21, 22)
noted its role in finding the precise cause of an error, saying
that it helps “drill the formula down” (P22) and “pinpoint
exactly which part of the prompt is not working well” (P15).

2) COLDECO for collaboration: Participants were excited
to use COLDECO for collaboration with their colleagues. P11
and P15 noted that the helper columns would help them
explain their work to someone else. P6 and P19 commented
that natural-language descriptions would help them understand
complex formulas written by others. And P6 and P15 con-
sidered using natural-language descriptions to automatically
document their spreadsheets.

3) Difficulties with summary rows: We found that users
tended to struggle with forming a usable mental model of
the summary rows, instead preferring to manually inspect the
values in the grid. P6 mentioned that “I don’t really understand
it, so I wanted to look at the table myself”, and P20 stated
“I still don’t know what it means.” Users’ comments indicate
that this is not due to the nature of the information presented
in the summary rows view, but rather that lack of transparency
makes it hard to understand how it works and how it can be
useful.

Confirming the learning effect noted in Sec. VI-C, some
users mentioned that they needed practice to use summary
rows effectively. P2 noted that “I feel like once I start using
it I might get a grasp of what’s happening there”, and P14
only used it for their last task, saying “I think I [didn’t]
understand [summary rows] before this [...] Maybe I got used
to it, because it’s my fourth time using this program.”

Others mentioned that more transparency would help their
understanding. P4 suggested that “it would be helpful in
[summary rows], when it’s showing different categories, to
specify what the differences are”, and similarly P5 wanted “a
drop-down that would give you a description”. P3, P7 and P21



called for the ability to click on groups to see more example
rows for that group, while P21 suggested using a different
color to distinguish each behavior.

The usefulness of the information presented in the summary
rows view is further confirmed by users who did form a usable
mental model of the view, and noted its effectiveness in finding
errors, especially in combination with other features. P12
found it very helpful “because it brings the different outcomes
and behaviors to the front of the screen very quickly.” And P16
and P22 mentioned that it would be the first feature they would
use, as it lets them quickly check for multiple or incorrect
behaviors.

4) Decomposition design suggestions: Alongside the
broadly positive response, some participants noted certain
limitations with the current design of column decomposition
and suggested improvements (P4, 12, 17, 19, 24). The main
issue was that, with the more complex tasks, the number of
times the output could be decomposed grew, resulting in a
large number of helper columns and a more complex tree view.

For instance, P24 noted that “As I kept expanding, I kept
seeing the other columns for the other cases [...] so it got
confusing which ones were related to just [...] ones I was
actually interested in at that time”. As a solution to this, P19
mentioned wanting the ability to selectively expand subexpres-
sions, imagining a design in which they could “highlight part
of the formula that I’m interested in and say ‘Show me this
as a helper column” ’.

F. Threats to validity

The most notable threat to internal validity of our study is
the time limit for each task, which led to some participants
timing out, particularly for the more complex tasks A2 and B2.
However, users were quite effective at using the tool despite
the time limit, which suggests that given more time, users’
effectiveness and perceptions may improve. Another threat to
internal validity is Participant Response Bias [47]. Following
recommendations from [48], we tried to mitigate inflation
in subjective ratings and qualitative feedback by presenting
multiple designs within COLDECO to the participants.

Our most significant threat to external validity is that a
majority of our participants had moderate-to-high program-
ming experience. Our participants nevertheless present an
important subset of spreadsheet users, as they have a variety of
professions and formula experience. Another threat to external
validity is that the tasks and data may not represent Excel’s
real-world use cases. To address this, we used real questions
from StackOverflow to inform our tasks, and used real-world
data where applicable.

VII. DISCUSSION

COLDECO was built to help us understand how to help
users diagnose faults in AI-generated code solutions for tabular
data problems. Our study identified the following areas for
improvement.

Handling complicated tasks. Users found that for a more
complex task, the number of helper columns shown could

become overwhelming. An improvement would provide a
program slicing [49] capability that could prune the helper
columns to only show immediately relevant columns to the
calculation of a particular value.

Explaining summary rows. Some users did not understand
the meaning or purpose of the row summaries. Based on
this feedback, improvements include better documentation,
generating natural language explanations of the groupings, or
including automatically generated insights about core differ-
ences between the groupings.

Handling different kinds of input and output data. Our
prototype supports diagnosing errors for a limited, but impor-
tant, subset of Excel tables (single flat column-major tables).
Because code-generating AI can produce code solutions for
a wider variety of contexts, it is important to consider how
the approaches we outline generalize. Similarly we focused
on code that generates columns of results but more general
outputs, such as single values and new tables, must be con-
sidered.

VIII. CONCLUSION

In the near future, LLMs will be used both by professional
programmers and non-professional users to write code. Giving
end users confidence and trust in the code that AI systems
generate is one of the most important design challenges in
empowering millions more to program.

We present COLDECO, a new spreadsheet user experience
designed to give users confidence that the code being generated
by the LLM is correct. To the best of our knowledge, COLD-
ECO is the first end-user inspection tool for comprehending
code produced by LLMs for tabular data tasks. COLDECO
provides summary rows, which highlight collections of rows
that exhibit distinct behaviors in the code, and helper columns,
which map the results of sub-computations back on the table.

We evaluate COLDECO using a within-subjects user study
(n = 24) where participants are asked to verify the correct-
ness of programs generated by a language model. In both
quantitative and qualitative measures, our subjects found row
summaries and helper columns were valuable in understanding
the AI-generated code solutions. We found that while all three
features are independently useful, participants preferred them
in combination. Users especially noted the usefulness of helper
columns and natural language explanations, but wanted more
transparency in how summary rows are generated to assist with
understanding and trusting them.

Topics for future work include understanding the appli-
cation of COLDECO in collaborative settings for explaining
and understanding existing formulas. This aspect of using
COLDECO was highlighted by our users and further inves-
tigation is needed. While COLDECO focused on detecting and
diagnosing potential errors, a natural and important extension
of this capability is the ability to repair errors once they are
found. Integrating repair into the COLDECO experience is an
important topic for further study.
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