
FxD: a functional debugger
for dysfunctional spreadsheets

Ian Drosos1, Nicholas Wilson1, Andrew D. Gordon12, Sruti Srinivasa Ragavan3, Jack Williams1

1 Microsoft Research, Cambridge, UK; 2 University of Edinburgh, UK; 3 Indian Institute of Technology, Kanpur, India
1 {t-iandrosos, nicholas.wilson, adg, jack.williams}@microsoft.com; 3 srutis@cse.iitk.ac.in

Abstract—Recent enhancements to the spreadsheet formula
language and intelligent spreadsheet interfaces allow spreadsheet
users to build more complex spreadsheets in systematic ways (e.g.,
via functional abstractions). However, users have been slow to
adopt such features, partly due to the absence of corresponding
improvements in tools such as editors and debuggers.

In this paper, we present FXD, a novel spreadsheet debugging
interface, which provides structured information needed for
spreadsheet users to debug formulas in systematic ways through
affordances such as the ability to step into the execution of
dependencies and provide contextual information to users based
on the current context.

An in-vitro, within-subject (n=12) experiment revealed that,
even though using FXD did not lead to faster debugging,
participants reported qualitative improvements (e.g., feelings
of efficiency and capability) when debugging with it. Further,
participants were more satisfied with the amount of information
provided by FXD and felt that it would enhance their existing
debugging workflows. Our results have implications for the design
of debuggers for spreadsheets and for functional programming
languages in general.

Index Terms—spreadsheets, debugging, end-user program-
ming, functional programming

I. INTRODUCTION

Spreadsheets are one of the most widely used programming
languages [1], [2]. Spreadsheet users are end-user program-
mers who program using the spreadsheet formula language, a
functional programming language.

As with any programming activity, programming in spread-
sheets also involves activities such as debugging, testing,
maintenance and design [3]. This reasoning lies at the root
of a large body of work in end-user programming and end-
user software engineering; examples include fault isolation [4],
spreadsheet refactoring [5] and spreadsheet comprehension
[6]. Several language extensions have also been introduced
over the years to help users manage complexity via abstrac-
tions. For example, arrays [7] and custom data types [8]
provide new data structures to store and access information,
and sheet-defined functions [9] and LAMBDA [10] allow
functional abstractions.

Unfortunately, these language improvements have not been
accompanied by improvement in spreadsheet development
tools in commercial spreadsheets. If any, such tool improve-
ments are predominantly focused on authoring spreadsheets
(e.g., suggesting formulas) and overlook other equally im-
portant activities such as debugging or testing. Indeed, a
recent study of spreadsheet users found users pointing out

the need for better spreadsheet development tools, including
better syntax highlighting in editors, better debuggers, and
even package management systems [2]. Multiple studies in
the past have also indicated these limitations, particularly the
challenges of debugging spreadsheets [11]–[13].

Building on these past findings, we set out to build a
debugger for spreadsheet formulas. We call it FXD. The idea
of debugging spreadsheets is by no means new, and nor is
ours the first spreadsheet debugger; all commercial spreadsheet
packages come with some debugger capabilities. Still, users
face various challenges debugging, and the existing tools have
remained largely unchanged in decades and user research
on spreadsheet debugging is sparse. Therefore, we asked the
question: what would a spreadsheet debugger look like, if we
took a principled, user-centric approach to design one?

To answer the above question, we reviewed the literature on
spreadsheet debugging, as well as debuggers in the functional
programming paradigm (Section II). Based on this review:

• We implement FXD, which embodies a new interaction
style for debugging spreadsheet formulas: it provides
live debugging and a feature-rich set of navigation tools
for users to inspect formulas by exploring the steps in
formula execution, discerning connections between steps
through contextual coloring, and by inspecting data and
formula context (Section III).

• We evaluate FXD through a user study: we found that
FXD provides the right amount of information for users
to debug spreadsheet issues, made participants feel more
efficient and capable, integrates with the spreadsheet
user’s debugging workflow, reduced the need for users to
turn to web searches when comprehending unfamiliar and
complex formulas, and even assisted them in authoring
new formulas. We collected feedback on FXD features to
improve them for future debuggers (Sections V and VI).

II. RELATED WORK

Debugging research is too vast to describe in this section;
[14] offers a detailed review of the literature. Here, we discuss
only those works relevant to spreadsheet debugging.

A. Spreadsheet errors and their management

Spreadsheets are widely used [15] but continue to be
notoriously error-prone [16], [17]; this has motivated a large
body of research on spreadsheet errors.



1) Spreadsheet error incidence and persistence: Early stud-
ies in the area sought to qualify, categorize and quantify
spreadsheet errors [16]–[19]. In summary, these studies have
consistently found that over 90% of operational spreadsheets
audited in various domains and contexts contained errors, and
that they can sometimes have catastrophic consequences [20].
By way of understanding the underlying cause for these errors,
there are also several taxonomies of spreadsheet errors [17]–
[19]. Studies also reveal that spreadsheet users’ abilities to
find errors in their or others’ spreadsheets are alarmingly
low [21], [22], and that several factors (e.g., presentation of
spreadsheets, user expertise, collaboration) affect their error
finding performance [23]–[26]. Inspired by such findings, there
are several efforts to manage spreadsheet errors.

2) Automated error prevention and detection techniques:
One body of work aims to automatically detect, correct, and
prevent various classes of spreadsheet errors which includes
detecting and correcting unit errors in formulas [27], [28], or
missing data [29] to detect errors and recommend fixes. Some
others only detect errors and flag them to users; examples
are CheckCell and ExceLint that detect anomalous cells in
ranges [30], [31]. Finally, there are several error prevention
efforts, mostly in the form of enabling users to adopt solid
engineering practices. Approaches include writing assertions,
specifications and test cases, refactoring, and documentation
[5], [32]–[37].

B. Empirical studies of spreadsheet debugging

Debugging is defined as the detection, location, and elim-
ination of errors in programs [38]. Among these three sub-
activities in debugging, most works described above only
focus on error detection. Users then, manually or aided by
debuggers, locate and fix errors, and often verify the fix and
add a test case to prevent the recurrence of the bug.

Following this definition, Brown and Gould [39], and sub-
sequently Hendry and Green [40], observed that spreadsheet
users, when creating spreadsheets, adopted a variety of mech-
anisms to aid future debugging. For example, they broke down
long calculations into multiple cells, so that the comprehension
of formulas as well as inspecting intermediate results are
convenient. In another study, Kankuzi and Sajaniemi [41]
studied the mental models of spreadsheet users and found
both domain-related and spreadsheet-related concepts (e.g.,
cell references, functions) in participant verbalizations during
debugging tasks. Both these studies indicate the need to
facilitate finding both domain-related and specific spreadsheet-
related information during debugging.

Studies by Grigoreanu et al. [11], Ruthruff and Burnett
[42] Chen and Chan [43], and Ragavan et al. [44] explicitly
list information needs of spreadsheet users, including for
debugging, and highlight the challenges for users in obtaining
this information. We drew heavily from all these studies when
designing FXD, with a specific focus on alleviating the barriers
and providing the salient pieces of information needed for
comprehending and debugging formulas.

C. Tools for spreadsheet debugging

However, ours is not the first tool for spreadsheet debugging;
many other researchers have attacked the problem. The most
common approach is fault localization where a combination of
program slicing and constraint satisfaction (here, constraints
are the expected and actual values of cells) is used to identify
potentially erroneous cells. The technique has been used
in goal-based debugging [45], interval-based fault isolation
[46], mutation-based debugging [47], and constraint-based
debugging [48]. In [49], Exquisite uses an AI-based approach.
The commercial audit tool PerfectXL [50] is based on the
PhD research of Hermans [51]. In general, the output of
all these tools is a set of possible cells that are potentially
erroneous. The user then investigates the recommendations
and implements the fix. An exception is [45], where the user
is also offered potential fixes rather than just the potential bug
location.

Our work is complementary and distinct from these au-
tomated debugging approaches. Specifically, we do not take
an automated approach to debugging: this follows [52]’s
finding that spreadsheet users tend to over-rely on automated
debugging tools and suffer productivity losses (such as when
the tool is limited or offers incorrect suggests). Instead, FXD
presents to users relevant information that will guide users’
systematic debugging. The belief is that such aids will help
end user programmers cultivate essential debugging skills [53].

D. Debugging functional programs

Spreadsheets are code [1], and spreadsheet programs written
in the form of formulas are functional programs. We draw
from the prior works on debugging functional programs to
guide our design. In particular, we used trace-based debugging,
where a user can transparently see the steps in the evaluation
of a functional program, or its individual statements [54]. A
challenge in trace debugging is that the traces can be too long
and too broad, for long (e.g., too many computations in a for-
mula) and nested expressions (e.g., formula refers to another
formula, function invokes another function), respectively. We
drew upon recent work by John Whitington [55] to simplify
program traces, to manage both the depth and the breadth
of the traces, as we will describe later. Other approaches
to debugging functional programs include the use of REPL,
forward and backward tracing (observing computation steps
from output to expression and vice versa, respectively) and
various approaches for stepping through calculations; we refer
the reader to [56] for a summary of prior research in the area,
in particular for program tracing and provenance [57], [58].

III. FXD DESIGN AND IMPLEMENTATION

A. Design Goals

Drawing from Eisenstadt’s principles for debuggers [59]
and the limitations of prior work [56], we aim to meet the
following design goals in FXD:

G1 Allow full functionality at all times,



Fig. 1. FXD in action. Image 1 shows the full debugger window. Images 2-4 show aspects of the debugger in use.

TABLE I
INFORMATION NEEDS DURING FORMULA DEBUGGING.

User need Source In FXD?
Formula evaluation to check correctness [44], [56], [60] YES

Debug the source of an error [44] YES
Why is it this value not what I expected? [44], [60] YES
What is different between two formulas? [44] PARTIAL
What are the precedents of this formula? [44], [60] YES

What are the dependents of this cell? [44], [60], [61] NO

G2 Allow inspection of any evaluable expression and not
just the variables, where variables are formulas in cells,

G3 Provide a variety of navigation tools at different levels
of granularity,

G4 Allow live debugging, without having to re-initialize
the debugger on program edits,

G5 Provide information users need when debugging
spreadsheet behaviors (here formulas, Table I), and

G6 Minimize cognitive loads, especially with complex for-
mulas and long calculation chains.

B. Realization of design goals

To realize the design goals, we implement FXD with four
central features, with each feature being directly addressed in
our evaluation (Section IV). Figure 1 presents FXD and these
features in-use, and we now describe each feature in turn.

1) ALWAYS-ON DEBUGGING: The FXD pane presents an
editable formula at the top, with the corresponding execution
steps displayed below (Figure 1.1). The execution steps are
automatically visible to the user, without initialization G1 .
Additionally, the execution steps reactively update as the
user edits the formula G4 . As a user modifies potentially

problematic code they can immediately inspect the results,
aiding fault localization and verification.

2) FORMULA TRACING: FXD shows the steps in the eval-
uation of the formula being debugged; this is called tracing
in the functional debugging literature [54]. We considered
two design options: 1) show one execution step at a time
(similar to step-through debugging), or 2) show all steps at
once. The former is less efficient, while the latter can lead
to information overload. We selected the latter to allow the
user to quickly navigate to a step they are interested in G3 .
To lower the cognitive burden of complex formulas due to
this information overload, FXD does not present every atomic
evaluation step G6 [56], [62]. Instead, a single step in
FXD can evaluate multiple expressions, either by chaining
evaluation of operators of equal precedence, or by evaluating
expressions in parallel subtrees. Further, FXD will collapse
the evaluation of precedent formulas, indicated by a triangle,
and expanding the triangle will reveal the formula trace as a
recursive card (Figure 1.3).

3) SUB-FORMULA COLORING: To deal with the informa-
tion overload that arises from showing all steps in the trace, as
well as evaluating multiple expressions in a single step, FXD
provides additional affordances for users to inspect the affected
expression at each step of the trace G6 . When hovering
over a step, FXD will highlight the evaluated expressions
in the step and use the same color to indicate the result;
each expression is assigned a different color (Figure 1.2
& 4). This paradigm borrows from reference highlighting,
commonly used in spreadsheets. The highlighting introduced
through hovering can be “pinned” by selecting the arrow in
the left margin. When there are many simultaneous reductions
in a step it can be difficult to relate a particular expression



to its value, even with coloring. FXD will underline the
original expression when hovering over an intermediate value,
as shown in Figure 1.4.

4) INFORMATION INSPECTOR: FXD allows users to in-
spect all precedents of the formula or expression they are
debugging G2 . Additionally, FXD provides a range of af-
fordances that offer debugging information to the user G5 .

As discussed, precedent formulas can be inspected by ex-
panding the trace card. Furthermore, FXD integrates reference
provenance using “pills”. A value that is derived from another
cell is annotated with the cell reference, as shown in Figure 1.2
and the pill for 12, obtained by evaluating G3.

Ranges are an integral part of formulas and FXD im-
plements a range preview, inspired by spreadsheet bub-
bles [63]. When hovering over a range a preview of the grid
and surrounding context is shown to the user (Figure 1.3).

Fig. 2. FXD indicates
subformulas that evalu-
ate to an error.

Range previews are aware of the execu-
tion context; when the range appears as
the table argument to a lookup function,
the lookup column is labeled in the
preview.

FXD also supports a variety of
tooltips that describe functions and their
parameters, or allow the inspection of
array values which are normally trun-
cated in the trace. Finally, when a for-
mula evaluates to an error code, FXD
indicates the step in which the error first occurs (Figure 2).

C. FXD implementation

We implement FXD as a JavaScript web add-in for Mi-
crosoft Excel. The interface is implemented using React
and the debugger communicates with the spreadsheet using
office-js. Formula evaluation is implemented using an in-
strumented interpreter, written in JavaScript. Every subformula
in the program is assigned a unique label, and the interpreter
populates a map from labels to values as it evaluates. The
debugging interface uses this map and the abstract syntax
tree (AST) to construct the steps shown to the user. Steps
are allocated based on distance from leaves in the tree, for
example, in Figure 1 the first step replaces the precedent cells
with their values. In some cases, multiple levels in the tree are
combined, such as sequences of additions.

D. FXD limitations

As FXD is a research prototype, there are certain technical
limitations encountered during our evaluation.

Excel formulas are localized; however in FXD they are
only presented in English, adding cognitive overhead for users
who write formulas in other languages. FXD has tooltips for
inspecting array values and ranges, however these tooltips are
large for complex values. A further limitation with arrays
is that many spreadsheet operations are vectorized such that
they are automatically applied pointwise to elements in the
array. Whilst FXD supports inspecting the input and output
arrays to vectorized operations, there is no specific support for

inspecting a particular point-wise operation. In Section VI we
discuss other limitations discovered by participants associated
with our design goals and features.

IV. EVALUATION: IN-LAB COMPARATIVE STUDY

To determine the effectiveness of the design of FXD we ran
an in-lab comparative study to answer (1) if the features of
FXD were useful for assisting users in debugging formulas, (2)
if FXD provided adequate information to users to do so, and
(3) if FXD fit within existing user workflows for debugging.

A. Participants

We recruited Excel users (n=12, 4 women, 0 non-binary,
8 men) via a social media posting on LinkedIn and email
to spreadsheet users from past studies. They self-reported
usage of at least 1 version of Microsoft Excel. All participants
reported a lot of experience with spreadsheets, but with varying
levels of usage (4 basic usage, 3 some advanced features, 5
many advanced features). The most commonly reported usage
of spreadsheets was tracking (e.g., budgeting) and analyzing
data. Finally, participants had varying levels of programming
experience (4 having never programmed, 4 ranging between
basic through advanced experience, and 4 programming pro-
fessionally now or in the past).

B. Tasks

We considered two existing datasets, named A and B. For
each, we prepared a spreadsheet containing descriptions of
three tasks on the data. We seeded each task with a faulty
formula. To obtain each faulty formula, we first prepared a
formula to complete each task correctly, and then inserted one
or more bugs. The type of formulas and bugs selected were
sourced from existing posts on the Microsoft Tech Community
forum [64], where the original poster presented a formula
causing unexpected results and forum helpers provided verified
fixes. We also took spreadsheet challenges posted online by
spreadsheet influencers, which raised a problem that many
viewers solved with their own formulas which had potential
issues. We then adapted the root cause of the bug to our
new datasets. The formulas involved advanced functions like
VLOOKUP, FILTER, LET, IF, and typically computed a whole
column (that is, the formula applies to each row in a table),
but no LAMBDA functions were used.

We asked participants to localize the faults in each of the
faulty formulas in the spreadsheets. If time remained, we asked
them to fix the issue by modifying the formula.

Dataset A contains information on vehicles relocated in the
Chicago, IL area.1 We designed three tasks using this dataset:

A1 Depending on the license Plate number, determine if
a vehicle can enter on even or odd days (e.g., a plate
ending in 1 can enter on odd days since 1 is odd).

A2 For a specific Plate number, get the correct State
Code from the secondary table.

1https://www.kaggle.com/datasets/chicago/chicago-relocated-vehicles

https://www.kaggle.com/datasets/chicago/chicago-relocated-vehicles


A3 For cars Relocated to and from the same street,
was the car relocated to more than 10 street numbers
away (e.g., 1 Main St. to 9 Main St. is FALSE)?

Dataset B contains property rental data in San Francisco. 2

We designed three tasks using this dataset:
B1 Find acceptable houses based on Bedrooms [at

least 1], Bathroom to Bedroom ratio [over 0.5],
Property Type [Apartments only], and Room
Type [Entire home/apt only].

B2 Based on budget and planned stay, which places can
you rent based on Price and Minimum nights
required? Then get the 4 rentals that are the most
northerly, southernly, easterly, and westerly places.

B3 For each Property Type in the table, calculate each
average price.

C. Protocol

Participants were assigned A and B datasets through a
counterbalanced design, such that half the participants received
A then B, and the other half received B then A. Within these
groups, participants were further balanced into two groups
that determined if the first set of tasks would be completed
with FXD (1 - FXD first) or only using default Excel (2 -
Excel first). In summary, we had four evenly distributed sets
of participants: {A first, B first} × {FXD first, Excel first}.

Participants completed three tasks in their first condition.
They had 7 minutes per task to read the task, explore the
spreadsheet, and debug the formula. If the participant believed
they found the cause of the issue, they explained the cause
to the experimenter who confirmed if they were correct. If
they failed to complete the task within the limit, the task was
recorded as incorrect. If any time was left, the participant was
asked to fix the formula to meet the parameters of the task.

At the end of each task, we asked participants to complete
a questionnaire to rate aspects of their experience with FXD
or with Excel, based on the condition. After participants
completed three tasks in their first condition, they would
switch conditions and complete the remaining three tasks with
the other dataset using the same protocol.

Before participants used FXD to complete their set of tasks,
they completed a short tutorial introducing them to FXD. After
all tasks were completed, we presented a final questionnaire
and interviewed them about their experience debugging the
formulas with both FXD and Excel.

D. Questionnaires and interview

After each task, participants rated how often they felt
efficient, capable, confused, and frustrated while debugging.
In the FXD condition, participants rated their agreement on
if each of the 4 features of FXD was helpful in debugging
the formula found in the task. They then rated if it was easy
to use FXD or Excel and find bugs based on their current
condition. Participants also rated the amount of information
shown during the task by FXD and Excel.

2https://www.kaggle.com/datasets/karthikbhandary2/property-rentals

Fig. 3. Participant ratings for the amount of information shown to debug the
task in each condition.

After all tasks were complete, they were presented with a
final questionnaire that asked how likely they were to use FXD
in the future to debug their spreadsheets and how likely they
were to recommend FXD to co-workers. Additionally, they
selected spreadsheet tasks they believed FXD could help with
during their normal workflow.

Finally, participants were interviewed about their debugging
experience with Excel and FXD. This interview covered topics
of how FXD would fit within their daily workflow with spread-
sheets, improvements FXD could provide their workflow, and
feedback on improvements for FXD and Excel.

E. Study limitations

FXD was evaluated against a current default installation of
Excel, without other debugging tools or add-ons that may have
assisted participants in debugging their spreadsheets. Two of
our participants noted that they use custom debugging tools in
their normal debugging workflow but were unable to leverage
them in the study. However, participants were able to use web
search for unfamiliar formulas, which is a common strategy
our participants employed. Participants noted that the time
limit of seven minutes per task made it difficult to both debug
and learn to leverage FXD’s features. All participants reported
they had a lot of experience with Excel, so our findings
cannot be applied to novice debugging. Finally, participants
used Microsoft Teams’ screen sharing feature to control the
experimenter’s Excel application to complete tasks and use
FXD, introducing input delay while debugging each task.

V. QUANTITATIVE RESULTS

A. Task completion and timing

Fisher’s exact test did not find a significant difference
between using FXD and Excel for task completion (where
completion is finding and describing the fault to the experi-
menter), nor did it find a significant difference in individual
task performance. Overall, participants in both FXD and Excel
conditions completed 21/36 tasks. Further, Fisher’s exact test
did not find a significant difference between conditions for
fixing the formulas, with participants in the FXD condition
having only 1 more task fixed than the Excel condition. A
T-test did not find a significant difference between the time
taken for completed tasks between conditions.

https://www.kaggle.com/datasets/karthikbhandary2/property-rentals


Fig. 4. Participant ratings for ease of use (left) and debugging (right) in each
condition.

Fig. 5. Participants ratings for agreement that each feature of FXD was helpful
for debugging each task in the FXD condition.

B. Amount of information shown by FXD and Excel

Participants rated the amount of information shown for
each task by FXD (Fig. 3) with a median of “Just the right
amount” (3, sd= 0.53) vs “Slightly too little” (2, sd= 0.73)
for Excel. A Wilcoxon signed-rank test identified a significant
difference between these conditions (S=895, p=0.0017). This
might mean that FXD’s features provides users with the level
of information needed to debug issues in spreadsheets, which
participants elaborate on in Section VI.

C. Ease of use and finding bugs with FXD and Excel

Participants in both conditions “Agreed” (median= 3, [FXD
avg= 3.19, sd= 0.86], [Excel avg= 3.06, sd= 0.75]) that it was
easy to use FXD and Excel during the tasks and “Agreed”
(median= 3, [FXD avg= 2.89, sd= 0.78], [Excel avg= 2.64,
sd= 0.90]) that it was easy to find bugs in each condition (Fig.
4). A Wilcoxon signed-rank test did not identify a significant
difference between conditions for these categories.

D. FXD’s helpfulness for debugging

In the FXD condition participants were asked to rate each
feature’s helpfulness for debugging for each task by rating
their agreement to the statement “I found this feature helpful
during my debugging task” (Fig. 5). Participants reported a
median of “Strongly agree” (4, sd= 0.61) for ALWAYS-ON DE-
BUGGING and INFORMATION INSPECTOR, between “Agree”
and “Strongly agree” (3.5, sd= 0.76) for FORMULA TRACING,
and “Agree” (3, sd= 0.74) for SUB-FORMULA COLORING.

Participants were asked if FXD would be helpful for various
debugging and comprehension tasks they see in their normal
workflows. 12/12 participants said FXD is helpful for fixing
errors in spreadsheets, 10/12 said that FXD is helpful for com-
prehending spreadsheets and formulas received from others,

Fig. 6. Participant reported affect for felt efficiency (left) and capability (right)
after each task for both conditions.

10/12 said that FXD is helpful for comprehending their own
spreadsheets they had written in the past, and 11/12 said that
FXD is helpful for writing new formulas. Participants wrote
in a free-text option that they think FXD would be useful
for complex ‘Lambda’ formula development, learning new
formula syntax, and reading documentation for functions.

E. Participant affect while debugging

Participants rated how efficient, capable, frustrated, and
confused they felt while using FXD and Excel to debug each
task (Fig. 6). Participants rated they felt more often efficient
with FXD (median= 4 (Often), sd= 1.13) vs Excel (median=
3 (Sometimes), sd= 1.02) and more often capable with FXD
(median= 4 (Often)) vs Excel (median= 3.5 (between Some-
times and Often)). However, participants rated similar levels
of confusion (median= 2 (Rarely)) and frustration (median=
2 (Rarely)) between conditions. A Wilcoxon signed-rank test
failed to identify a significant difference between each condi-
tion and reported frequency of affect.

F. Likely use and recommendation of FXD

As a measure of user satisfaction we asked participants
how likely they were to use and recommend FXD if a
productionized version of the tool was released to the public.
4 participants said they were “Likely” (3) to use FXD and 8
said they were “Very likely” (4) to use FXD. The same results
occurred for whether participants would also recommend FXD
to co-workers who worked with spreadsheets.

VI. QUALITATIVE FEEDBACK

Through think-alouds during the tasks and interviews, we
collected impressions and feedback on the features of FXD
and how FXD fits within debugging workflows.

A. FXD features feedback

Participants spoke about the usefulness of the features
provided by FXD (descriptions of each found in Section III)
and gave feedback on how to improve the user experience,
with P9 saying FXD’s features were “really helpful” and that
using FXD was “very intuitive”.

ALWAYS-ON DEBUGGING (III-B1): Participants noted the
usefulness of this feature for authoring formulas. P6 said that if
you used FXD to write formulas and inspected the debugging
steps shown, “we probably don’t need to debug it, because



you would have written it in the correct manner the first time
anyway.” Participants offered feedback on how to improve
this feature. Some participants wanted to edit values within
the steps instead of on the spreadsheet or in the formula
editor above the FORMULA TRACING steps (P1, 4). This could
“make life easier, rather than moving between two different
interfaces” for users during the debugging process (P4). P7
wanted to debug certain parts of a formula, rather than the
entire cell’s contents, since it could “make it easier to focus
on bits of the formula that you’re working on”. P7 imagined
an interaction of highlighting part of the formula, which would
be evaluated in steps and shown in FXD.

FORMULA TRACING (III-B2): Our participants saw this
feature as helpful to find what went wrong in each formula. P4
said that this feature enables them to “see what value is coming
in through the intermediate steps and why I’m not getting
the right output”. P7 thought that having preceding steps to
compare with the current step “makes it easy to connect the
dots”. P11 stated that these steps help visualize the error for
users by marking exactly what step created the error.

However, participants thought that these steps can cause
“information overload” (P1) for some formulas using ‘LET’,
which can leave users feeling “daunted by the debugger” (P7).
This issue occurs because each ‘LET’ binding gets a step in
FXD, thus formulas with many declared variables introduce
many steps. P8 said that when you have a logically complex
formula, the steps might be “just too long’ which “might make
it very hard to compare across the steps”. One solution that
participants imagined was being able to view the data at a
higher level of abstraction (P1, 7) by allowing steps to be
“collapsible” (P1). A related affordance participants (P1, 7, 8,
11) described was to allow stepping through the steps one at
a time, instead of all at once.

SUB-FORMULA COLORING (III-B3): P8 said that for
many of the cases they had seen in the study this feature was
“the most helpful”. P11 noted during the study that when faced
with a more complex formula, this feature gets “very useful”
for navigation. P11 elaborated that these types of visualizations
are “helpful for the programmer to keep track, because it’s a
lot of working memory that you need to hold and this is very
cognitively demanding” and stated that “these kind of small
visual cues to keep track is really helpful” for longer formulas.
Feedback on this feature related to extending the highlighting
beyond the formula steps. For example, P3 wanted to see the
highlighting within the grid itself similar to how the current
Excel formula bar does. P7 wanted the editable formula above
the execution steps to get the same highlighting as you explore
the steps so you can connect elements in each step with the
original formula being debugged.

INFORMATION INSPECTOR (III-B4): Participants appre-
ciated the ability to preview ranges with this feature. P11 said
that large spreadsheets can require a lot of scrolling “up and
down, left and right”, but that FXD can help as “you can see
in-context the other data around that cell. In that sense, you
don’t need to scroll”. Others also described INFORMATION
INSPECTOR as minimizing context switches and navigations

between the spreadsheet and the formula section (P8), or
between the spreadsheet and web search (P11).

Participants also gave feedback on how to improve this
feature. For the table previews provided, P5 said they wanted
the choice to have table headings instead of column letters in
the preview to see the column context. P1 wanted the array
preview to be expandable in case they wanted to see it “in
more detail”. Some participants wanted to see the data types
expected for a specific reference or formula parameters since
it could help users who might not know why a specific value
is not working with their formula. Some participants said that
the INFORMATION INSPECTOR could also enable navigation
to the spreadsheet by being taken to the column or cells they
click in the inspector, which would help users quickly jump to
a cell to edit it (P1) or bring them to the correct spreadsheet
in multi-sheet workbooks (P5).

B. Debugging workflows

Participants spoke about their current debugging workflows
in Excel and how the debugger might improve them.

P7 starts their debugging workflow by first “eyeballing the
formula” at a higher level and seeing if there are obvious
issues “like missing dollar signs” (P7). However, a strategy
participants reported and performed during the Excel condition
is to break down complex formulas step-by-step manually to
try to comprehend what was going wrong with the formula
(P5, 8, 10, 12). P8 would “write formulas all over the place
and try to just make sure each step is correct and then put
them together.”, and that with FXD and FORMULA TRACING,
“you help me do this process”.

Participants then discussed how they would use FXD as part
of their spreadsheet debugging workflow, which P3 said was
representative of their current workflow - “this (FORMULA
TRACING) is the first part that I noticed and I’m already
thinking awesome, that’s what I’m doing in my head anyways”
(P3). All participants were generally positive about adopting
FXD into their workflow, with P2 noting that FXD “is a
game changer”. Participants thought FXD would be “very
integrated” with their workflow (P9) and even replace other
features in Excel, with P6 saying they would switch off “the
formula bar on the top” in favor of FXD.

Participants stated that FXD was useful for comprehending
formulas (P1, 2, 5, 7, 10-12), particularly during collaboration
or sharing of spreadsheets. P1 said that they would recommend
FXD to others since “most people have a lot of difficulty in
understanding their formulas, I think it really gives a view into
how the formula is working that people can learn from.” P12
said FXD was useful for spreadsheets received from others
since “it could be useful to have an interface that also explains
the formulas you’re not familiar with.” Others (P1, 9, 11) also
echoed the same sentiment, mentioning that FXD lets one
“explore what somebody else’s spreadsheet is doing” (P1) and
gives “really good scaffolding to understand other’s formulas”
(P7). P7 also expected that FXD could be useful in helping
them understand past formulas since they “probably will have
forgotten” what they did after time away from that spreadsheet.



FXD provided affordances that participants said they would
use to debug complex formulas and errors that might occur
with them (P1, 5, 7, 9-11), which can help end-user program-
mers “try to do the task without needing programming, but
also try to eliminate the error in complicated syntax” (P11). P1
stated that for debugging complex formulas like a ‘LAMBDA’
function, “there just aren’t very good tools available” and that
they would “love to have a better, more built-in way to do
that sort of thing”. Even simple features like underlining an
evaluation step in red (similar to text editing environments
marking misspelled words) when it evaluated into an error
was helpful for large and complex formulas.

FXD was also seen as useful for creating and editing formu-
las (P5-7). P7 noted that FXD allowed them to make sure their
newly created formula “does the steps in the right way that I
was intending”. P6 said that FXD facilitated more lightweight
edits, since the user could “edit the formula in the editor
without having to write back to the grid until you’re confident
with the answer”, thus serving as a “test environment” for
formulas that are “very calculation intensive”.

However, participants also reported the need for more
time to learn and get comfortable, and even attributed their
performance on some tasks to this unfamiliarity (P1, 2, 7, 10,
11). For example, P1 said “I feel like I’m at a disadvantage
because I’m still kind of new to the tool...but I think it would
have (helped).” This might mean that careful consideration
to the first-use tutorial is needed to educate users on how to
leverage FXD’s features to debug.

VII. DISCUSSION: END-USER DEBUGGER NEEDS

Participant feedback described several important design
principles for debuggers aimed at end-users that future de-
buggers should consider.

While most participants believed FXD showed useful in-
formation, several of our participants warned of information
overload that could occur for more complex formulas they saw
in the study. For example, task A1 contained a LET formula
that led to some participants struggling with the amount of
trace information shown in FXD. Participants expressed a need
to start at a higher abstraction level first and then do a deeper
dive into the details of a formula when needed. Presenting
large formula execution traces on the onset of debugging
a formula, or any functional program, might overwhelm a
user. Thus, we believe end-user debuggers must consider the
complexity of the formula being debugged and ease users into
the debugging process to prevent information overload. One
ability to assist in navigating larger traces is the ability to
pin execution steps. FXD’s affordance for pinning steps was
seen as helpful to assist in preventing users from “losing their
place” when scrolling through longer execution traces if they
found an interesting step but wanted to continue to explore
further steps while debugging.

Our participants also noted a need for explainability within
formula debuggers. While FXD provides general context and
a short natural language explanation of functions being de-
bugged in a formula, more can be done to meet this need. This

includes helping users understand what terminology used in
parameters might mean. Other participants wanted to be told
what types of values were expected in certain functions, to
help them quickly hone in on issues like when a number is
expected but a string is given, which can cause errors.

Our participants wanted a seamless connection between the
debugger and the spreadsheet. Some participants wanted edits
of values within the debugger steps to impact the spreadsheet
itself, rather than just fixing the formula in the formula edit
portion of FXD. However, this freedom can impact down-
stream formulas that depend on the result of the formula being
debugged. These downstream effects must be made clear to
users so they can be confident that their changes to one formula
do not have unforeseen consequences. They also wanted the
ability to click elements within FXD and be brought to the
location of that element in the spreadsheet, instead of just
peeking at the context which the INFORMATION INSPECTOR
feature affords. This would also assist in navigating more
complex spreadsheet situations, for example workbooks with
multiple sheets that cross-reference each other. Users need
highly integrated debuggers that fit within their spreadsheet
workflows and bring them the flexibility to explore and modify
the steps of the formula wherever they desire.

Finally, there is a user need to audit formulas written
by non-humans, as some participants wanted AI-assistance
in finding and fixing bugs they found in their spreadsheets.
However, AI-generated code is not without bugs itself. Even
as AI-generated formulas become commonplace, debuggers
can still play a role in the auditing and verifying of generated
formulas, especially as these new AI-affordances allow users
to generate complex formulas that are difficult to comprehend
without extra information.

VIII. CONCLUSION

Spreadsheet users need to be able to debug formulas to fix
issues within spreadsheets they have written or have received
from external sources. Existing affordances in Excel do not
provide the level of information to do this satisfactorily for
these users. Thus, we identified and designed 4 features for
formula debugging in spreadsheets and implemented them
as FXD, which adheres to design goals that provide live
debugging and a feature-rich set of navigation tools to enable
formula inspection. We evaluated FXD through an in-lab user
study and found it provided a sufficient amount of information
for users to debug spreadsheet issues, made participants feel
more efficient and capable, and fit with in the spreadsheet
user’s workflow for debugging formulas. The feedback re-
ceived from our participants shows a need for spreadsheet
debuggers that provide the right amount of information to
debug issues and provide adequate amounts of formula ex-
planability, but do so without causing information overload
to the user. Our findings are useful for the implementing of
end-user spreadsheet debugging interactions and may even
inform designs for understanding, auditing, and debugging AI-
generated formulas.



REFERENCES

[1] F. Hermans, B. Jansen, S. Roy, E. Aivaloglou, A. Swidan, and D. Hoe-
pelman, “Spreadsheets are code: An overview of software engineering
approaches applied to spreadsheets,” in FOSE@SANER. IEEE Com-
puter Society, 2016, pp. 56–65.

[2] A. Sarkar, S. S. Ragavan, J. Williams, and A. D. Gordon, “End-user
encounters with lambda abstraction in spreadsheets: Apollo’s bow or
achilles’ heel?” in 2022 IEEE Symposium on Visual Languages and
Human-Centric Computing (VL/HCC), 2022, pp. 1–11.

[3] A. J. Ko, R. Abraham, L. Beckwith, A. Blackwell, M. Burnett,
M. Erwig, C. Scaffidi, J. Lawrance, H. Lieberman, B. Myers, M. B.
Rosson, G. Rothermel, M. Shaw, and S. Wiedenbeck, “The state of the
art in end-user software engineering,” ACM Comput. Surv., vol. 43, no. 3,
apr 2011. [Online]. Available: https://doi.org/10.1145/1922649.1922658

[4] J. Ruthruff, E. Creswick, M. Burnett, C. Cook, S. Prabhakararao,
M. Fisher, and M. Main, “End-user software visualizations for fault
localization,” in Proceedings of the 2003 ACM Symposium on Software
Visualization, ser. SoftVis ’03. New York, NY, USA: Association
for Computing Machinery, 2003, p. 123–132. [Online]. Available:
https://doi.org/10.1145/774833.774851

[5] F. Hermans, M. Pinzger, and A. Deursen, “Detecting and refactoring
code smells in spreadsheet formulas,” Empirical Softw. Engg.,
vol. 20, no. 2, p. 549–575, apr 2015. [Online]. Available: https:
//doi.org/10.1007/s10664-013-9296-2

[6] S. Srinivasa Ragavan, A. Sarkar, and A. D. Gordon, “Spreadsheet
comprehension: Guesswork, giving up and going back to the author,”
in Proceedings of the 2021 CHI Conference on Human Factors
in Computing Systems, ser. CHI ’21. New York, NY, USA:
Association for Computing Machinery, 2021. [Online]. Available:
https://doi.org/10.1145/3411764.3445634

[7] Microsoft, “Create an array formula,” 2022, accessed: 2023-05-
09. [Online]. Available: https://support.microsoft.com/en-gb/office/
create-an-array-formula-e43e12e0-afc6-4a12-bc7f-48361075954d

[8] ——, “Create a data type (power query),” 2022, accessed: 2023-
05-09. [Online]. Available: https://support.microsoft.com/en-us/office/
create-a-data-type-power-query-a465a3b7-3d37-4eb1-a59c-bd3163315308

[9] S. P. Jones, A. Blackwell, and M. Burnett, “A user-centred approach
to functions in excel,” SIGPLAN Not., vol. 38, no. 9, p. 165–176, aug
2003. [Online]. Available: https://doi.org/10.1145/944746.944721

[10] Microsoft, “Announcing LAMBDA: Turn Excel formulas into
custom functions,” 2022, accessed: 2023-05-09. [Online].
Available: https://techcommunity.microsoft.com/t5/excel-blog/
announcing-lambda-turn-excel-formulas-into-custom-functions/ba-p/
1925546

[11] V. Grigoreanu, M. Burnett, S. Wiedenbeck, J. Cao, K. Rector, and
I. Kwan, “End-user debugging strategies: A sensemaking perspective,”
ACM Transactions on Computer-Human Interaction (TOCHI), vol. 19,
no. 1, pp. 1–28, 2012.

[12] S. Srinivasa Ragavan, A. Sarkar, and A. D. Gordon, “Spreadsheet
comprehension: Guesswork, giving up and going back to the author,”
in Proceedings of the 2021 CHI Conference on Human Factors in
Computing Systems, 2021, pp. 1–21.

[13] C. Chambers and C. Scaffidi, “Struggling to excel: A field study of
challenges faced by spreadsheet users,” in 2010 IEEE Symposium on
Visual Languages and Human-Centric Computing. IEEE, 2010, pp.
187–194.

[14] R. Caballero, A. Riesco, and J. Silva, “A survey of algorithmic debug-
ging,” ACM Computing Surveys (CSUR), vol. 50, no. 4, pp. 1–35, 2017.

[15] B. A. Nardi, A small matter of programming: perspectives on end user
computing. MIT press, 1993.

[16] R. R. Panko, “Spreadsheet errors: What we know. what we think we
can do,” arXiv preprint arXiv:0802.3457, 2008.

[17] E. Dobell, S. Herold, and J. Buckley, “Spreadsheet error types and their
prevalence in a healthcare context,” Journal of Organizational and End
User Computing (JOEUC), vol. 30, no. 2, pp. 20–42, 2018.

[18] R. R. Panko and S. Aurigemma, “Revising the Panko–Halverson taxon-
omy of spreadsheet errors,” Decision Support Systems, vol. 49, no. 2,
pp. 235–244, 2010.

[19] K. Rajalingham, D. R. Chadwick, and B. Knight, “Classification of
spreadsheet errors,” arXiv preprint arXiv:0805.4224, 2008.

[20] P. O’Beirne, F. Hermans, T. Cheng, and M. P. Campbell, “Spreadsheet
horror stories,” 2022, accessed: 2023-11-05. [Online]. Available:
https://eusprig.org/research-info/horror-stories/

[21] D. F. Galletta, D. Abraham, M. El Louadi, W. Lekse, Y. A. Pollalis,
and J. L. Sampler, “An empirical study of spreadsheet error-finding
performance,” Accounting, Management and Information Technologies,
vol. 3, no. 2, pp. 79–95, 1993.

[22] R. R. Panko and R. H. Sprague Jr, “Hitting the wall: errors in developing
and code inspecting a simple spreadsheet model,” Decision Support
Systems, vol. 22, no. 4, pp. 337–353, 1998.

[23] B. J. Reithel, D. L. Nichols, and R. K. Robinson, “An experimental
investigation of the effects of size, format, and errors on spreadsheet re-
liability perception,” Journal of Computer Information Systems, vol. 36,
no. 3, pp. 54–64, 1996.

[24] D. F. Galletta, K. S. Hartzel, S. E. Johnson, J. L. Joseph, and S. Rustagi,
“Spreadsheet presentation and error detection: An experimental study,”
Journal of Management Information Systems, vol. 13, no. 3, pp. 45–63,
1996.

[25] T. Chintakovid, S. Wiedenbeck, M. Burnett, and V. Grigoreanu, “Pair
collaboration in end-user debugging,” in Visual Languages and Human-
Centric Computing (VL/HCC’06). IEEE, 2006, pp. 3–10.

[26] R. McKeever, K. McDaid, and B. Bishop, “Can named ranges improve
the debugging performance of novice spreadsheet users?” in PPIG, 2009,
p. 15.

[27] C. Chambers and M. Erwig, “Automatic detection of dimension errors
in spreadsheets,” Journal of Visual Languages & Computing, vol. 20,
no. 4, pp. 269–283, 2009.

[28] J. Williams, C. Negreanu, A. D. Gordon, and A. Sarkar, “Understanding
and inferring units in spreadsheets,” in 2020 IEEE Symposium on Visual
Languages and Human-Centric Computing (VL/HCC). IEEE, 2020, pp.
1–9.

[29] C. Negreanu, A. Karaoglu, J. Williams, S. Chen, D. Fabian, A. Gordon,
and C.-Y. Lin, “Rows from many sources: Enriching row completions
from wikidata with a pre-trained language model,” in Companion
Proceedings of the Web Conference 2022, 2022, pp. 1272–1280.

[30] D. W. Barowy, D. Gochev, and E. D. Berger, “Checkcell: Data debugging
for spreadsheets,” ACM SIGPLAN Notices, vol. 49, no. 10, pp. 507–523,
2014.

[31] D. W. Barowy, E. D. Berger, and B. Zorn, “ExceLint: automatically
finding spreadsheet formula errors,” Proceedings of the ACM on Pro-
gramming Languages, vol. 2, no. OOPSLA, pp. 1–26, 2018.

[32] J.-C. Bals, F. Christ, G. Engels, and M. Erwig, “Classsheets-model-
based, object-oriented design of spreadsheet applications.” J. Object
Technol., vol. 6, no. 9, pp. 383–398, 2007.

[33] R. Abraham, M. Erwig, S. Kollmansberger, and E. Seifert, “Visual
specifications of correct spreadsheets,” in 2005 IEEE Symposium on
Visual Languages and Human-Centric Computing (VL/HCC’05). IEEE,
2005, pp. 189–196.

[34] M. Burnett, C. Cook, O. Pendse, G. Rothermel, J. Summet, and C. Wal-
lace, “End-user software engineering with assertions in the spreadsheet
paradigm,” in 25th International Conference on Software Engineering,
2003. Proceedings. IEEE, 2003, pp. 93–103.

[35] S. Badame and D. Dig, “Refactoring meets spreadsheet formulas,” in
2012 28th IEEE International Conference on Software Maintenance
(ICSM). IEEE, 2012, pp. 399–409.

[36] M. Fisher, M. Cao, G. Rothermel, C. R. Cook, and M. M. Burnett,
“Automated test case generation for spreadsheets,” in Proceedings of
the 24th International Conference on Software Engineering, 2002, pp.
141–153.

[37] D. Canteiro and J. Cunha, “Spreadsheetdoc: An excel add-in for docu-
menting spreadsheets,” in Proceedings of the 6th National Symposium
of Informatics, 2015.

[38] IEEE, “ISO/IEC/IEEE international standard - systems and software
engineering–vocabulary,” ISO/IEC/IEEE 24765:2017(E), pp. 1–541,
2017.

[39] P. S. Brown and J. D. Gould, “An experimental study of people creating
spreadsheets,” ACM Transactions on Information Systems (TOIS), vol. 5,
no. 3, pp. 258–272, 1987.

[40] D. G. Hendry and T. R. Green, “Creating, comprehending and explaining
spreadsheets: a cognitive interpretation of what discretionary users think
of the spreadsheet model,” International Journal of Human-Computer
Studies, vol. 40, no. 6, pp. 1033–1065, 1994.

[41] B. Kankuzi and J. Sajaniemi, “A mental model perspective for tool
development and paradigm shift in spreadsheets,” International Journal
of Human-Computer Studies, vol. 86, pp. 149–163, 2016.

https://doi.org/10.1145/1922649.1922658
https://doi.org/10.1145/774833.774851
https://doi.org/10.1007/s10664-013-9296-2
https://doi.org/10.1007/s10664-013-9296-2
https://doi.org/10.1145/3411764.3445634
https://support.microsoft.com/en-gb/office/create-an-array-formula-e43e12e0-afc6-4a12-bc7f-48361075954d
https://support.microsoft.com/en-gb/office/create-an-array-formula-e43e12e0-afc6-4a12-bc7f-48361075954d
https://support.microsoft.com/en-us/office/create-a-data-type-power-query-a465a3b7-3d37-4eb1-a59c-bd3163315308
https://support.microsoft.com/en-us/office/create-a-data-type-power-query-a465a3b7-3d37-4eb1-a59c-bd3163315308
https://doi.org/10.1145/944746.944721
https://techcommunity.microsoft.com/t5/excel-blog/announcing-lambda-turn-excel-formulas-into-custom-functions/ba-p/1925546
https://techcommunity.microsoft.com/t5/excel-blog/announcing-lambda-turn-excel-formulas-into-custom-functions/ba-p/1925546
https://techcommunity.microsoft.com/t5/excel-blog/announcing-lambda-turn-excel-formulas-into-custom-functions/ba-p/1925546
https://eusprig.org/research-info/horror-stories/


[42] J. R. Ruthruff and M. Burnett, “Six challenges in supporting end-user
debugging,” ACM SIGSOFT Software Engineering Notes, vol. 30, no. 4,
pp. 1–6, 2005.

[43] Y. Chen and H. C. Chan, “Visual checking of spreadsheets,” arXiv
preprint arXiv:0805.2189, 2008.

[44] S. Srinivasa Ragavan, A. Sarkar, and A. D. Gordon, “Spreadsheet
comprehension: Guesswork, giving up and going back to the author,”
in Proceedings of the 2021 CHI Conference on Human Factors
in Computing Systems, ser. CHI ’21. New York, NY, USA:
Association for Computing Machinery, 2021. [Online]. Available:
https://doi.org/10.1145/3411764.3445634

[45] R. Abraham and M. Erwig, “Goaldebug: A spreadsheet debugger for
end users,” in 29th International Conference on Software Engineering
(ICSE’07). IEEE, 2007, pp. 251–260.

[46] Y. Ayalew and R. Mittermeir, “Spreadsheet debugging,” arXiv preprint
arXiv:0801.4280, 2008.

[47] B. Hofer and F. Wotawa, “Mutation-based spreadsheet debugging,” in
2013 IEEE International Symposium on Software Reliability Engineer-
ing Workshops (ISSREW). IEEE, 2013, pp. 132–137.

[48] R. Abreu, A. Riboira, and F. Wotawa, “Constraint-based debugging of
spreadsheets.” in CIbSE. Citeseer, 2012, pp. 1–14.

[49] T. Schmitz and D. Jannach, “An AI-based interactive tool for spreadsheet
debugging,” in 2017 IEEE Symposium on Visual Languages and Human-
Centric Computing (VL/HCC). IEEE, 2017, pp. 333–334.

[50] S. Schalkwijk, F. Hermans, M. van der Ven, and H. Duits, “Auditing
spreadsheets: With or without a tool?” in Proc. 16th EuSpRIG Conf.
Spreadsheet Risk Management, 2015, pp. 29–46. [Online]. Available:
https://arxiv.org/abs/1603.02261

[51] F. Hermans, “Analyzing and visualizing spreadsheets,” Ph.D. disserta-
tion, Delft University of Technology, 2012.

[52] A. Mukhtar, B. Hofer, D. Jannach, and F. Wotawa, “Spreadsheet
debugging: The perils of tool over-reliance,” Journal of Systems and
Software, vol. 184, p. 111119, 2022.

[53] T. Lowe, “Debugging: The key to unlocking the mind of a novice
programmer?” in 2019 IEEE Frontiers in Education Conference (FIE),
2019, pp. 1–9.

[54] S. Kamin, “A debugging environment for functional programming in
Centaur,” Ph.D. dissertation, INRIA, 1990.

[55] J. Whitington and T. Ridge, “Direct interpretation of functional programs
for debugging,” arXiv preprint arXiv:1905.06545, 2019.

[56] J. Whitington, “Debugging functional programs by inter-
pretation,” Ph.D. dissertation, University of Leicester, 2020.
[Online]. Available: https://figshare.le.ac.uk/articles/thesis/Debugging
Functional Programs by Interpretation/12696617

[57] R. Perera, U. A. Acar, J. Cheney, and P. B. Levy, “Functional programs
that explain their work,” SIGPLAN Not., vol. 47, no. 9, p. 365–376, sep
2012. [Online]. Available: https://doi.org/10.1145/2398856.2364579

[58] U. A. Acar, A. Ahmed, J. Cheney, and R. Perera, “A core calculus for
provenance,” J. Comput. Secur., vol. 21, no. 6, p. 919–969, nov 2013.

[59] M. Eisenstadt, “My hairiest bug war stories,” Commun. ACM,
vol. 40, no. 4, pp. 30–37, 1997. [Online]. Available: https:
//doi.org/10.1145/248448.248456

[60] A. Kohlhase, M. Kohlhase, and A. S. Guseva, “Context in spreadsheet
comprehension,” in SEMS@ICSE, 2015.

[61] C. Kissinger, M. Burnett, S. Stumpf, N. Subrahmaniyan, L. Beckwith,
S. Yang, and M. B. Rosson, “Supporting end-user debugging: What
do users want to know?” in Proceedings of the Working Conference
on Advanced Visual Interfaces, ser. AVI ’06. New York, NY, USA:
Association for Computing Machinery, 2006, p. 135–142. [Online].
Available: https://doi.org/10.1145/1133265.1133293

[62] D. Bajaj, M. Erwig, and D. Fedorin, “A visual notation for
succinct program traces,” Journal of Computer Languages, vol. 75,
p. 101199, 2023. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S2590118423000096

[63] N. Kakulawaram and J. Zamfirescu-Pereira, “Spreadsheet bubbles:
Showing contextually relevant data during formula editing,” Master’s
thesis, EECS Department, University of California, Berkeley,
May 2021. [Online]. Available: http://www2.eecs.berkeley.edu/Pubs/
TechRpts/2021/EECS-2021-145.html

[64] Microsoft, “Microsoft tech community,” 2022, accessed: 2022-08-01.
[Online]. Available: https://techcommunity.microsoft.com/

https://doi.org/10.1145/3411764.3445634
https://arxiv.org/abs/1603.02261
https://figshare.le.ac.uk/articles/thesis/Debugging_Functional_Programs_by_Interpretation/12696617
https://figshare.le.ac.uk/articles/thesis/Debugging_Functional_Programs_by_Interpretation/12696617
https://doi.org/10.1145/2398856.2364579
https://doi.org/10.1145/248448.248456
https://doi.org/10.1145/248448.248456
https://doi.org/10.1145/1133265.1133293
https://www.sciencedirect.com/science/article/pii/S2590118423000096
https://www.sciencedirect.com/science/article/pii/S2590118423000096
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2021/EECS-2021-145.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2021/EECS-2021-145.html
https://techcommunity.microsoft.com/

	Introduction
	Related work
	Spreadsheet errors and their management
	Spreadsheet error incidence and persistence
	Automated error prevention and detection techniques

	Empirical studies of spreadsheet debugging
	Tools for spreadsheet debugging
	Debugging functional programs

	FxD Design and Implementation
	Design Goals
	Realization of design goals
	Always-on debugging
	Formula tracing
	Sub-formula coloring
	Information inspector

	FxD implementation
	FxD limitations

	Evaluation: In-lab comparative study
	Participants
	Tasks
	Protocol
	Questionnaires and interview
	Study limitations

	Quantitative Results
	Task completion and timing
	Amount of information shown by FxD and Excel
	Ease of use and finding bugs with FxD and Excel
	FxD's helpfulness for debugging
	Participant affect while debugging
	Likely use and recommendation of FxD

	Qualitative Feedback
	FxD features feedback
	Debugging workflows

	Discussion: End-user debugger needs
	Conclusion
	References

