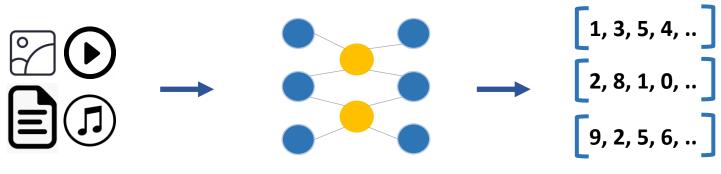
SPFresh: Incremental In-Place Update for Billion-Scale Vector Search

Yuming Xu¹ Hengyu Liang¹ Jin Li³ Shuotao Xu² Qi Chen² Qianxi Zhang² Cheng Li¹ Ziyue Yang² Fan Yang² Peng Cheng² Mao Yang²

¹USTC ²Microsoft Research Asia ³Harvard University

Vectors: the key data type in AI era



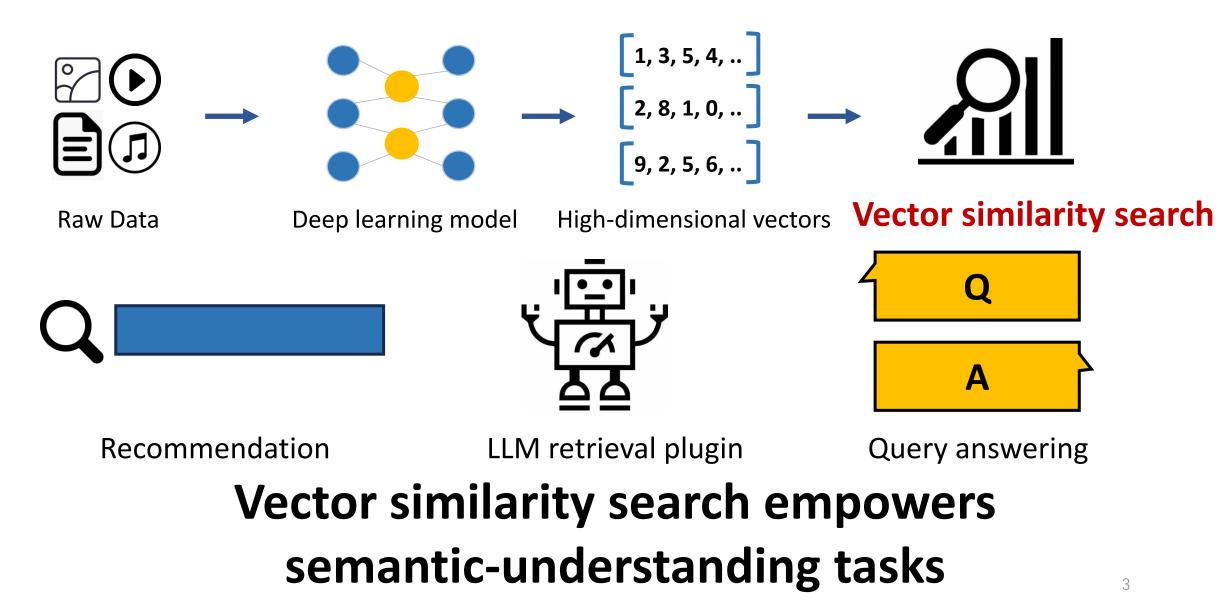
Raw Data

Deep learning model High-dimensional vectors

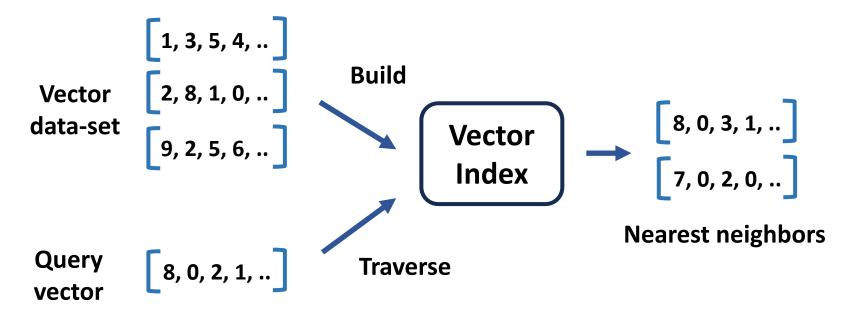
E.g. images, videos, texts..

High-dimensional Space (distance between vectors represents raw data similarity)

Vectors: the key data type in AI era



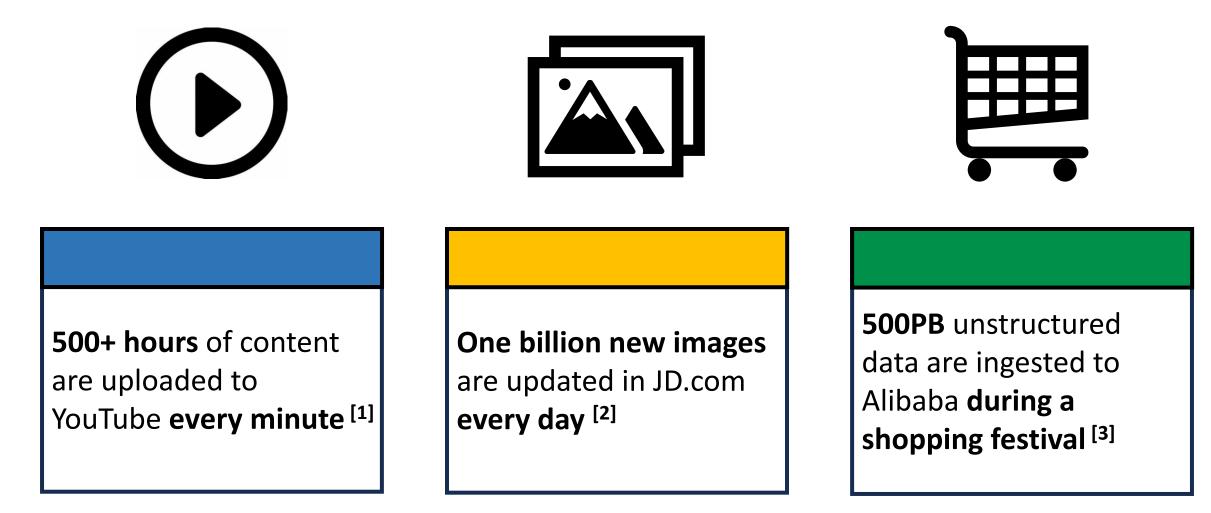
Vector index: the key component for search



Vector index allows low-latency, qualitative approximate vector search

- Exact search in a high-dimensional space is unscalable
- Trade in small search accuracy for much lower search latency
- Works well for billion-scale data-set

Applications requires frequent update to index

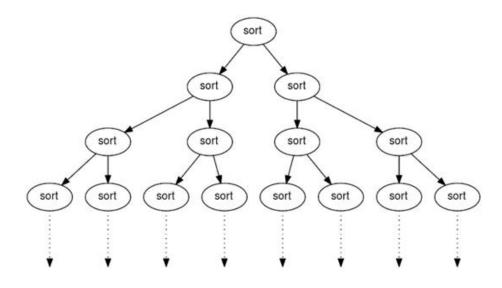


[1] Youtube. https://blog.youtube/press/

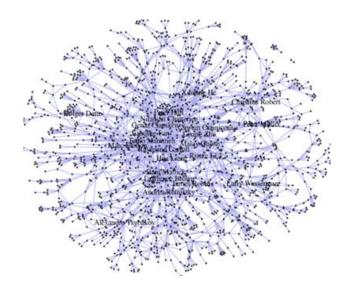
[2] Li et al. The Design and Implementation of a Real Time Visual Search System on JD E-Commerce Platform. (Middleware'18)[3] Wei et al. AnalyticDB-V: A Hybrid Analytical Engine towards Query Fusion for Structured and Unstructured Data. (VLDB'20)

Vector index: complex abstraction

- Proximity in high dimension is hard to organize
- Inefficient vector index affects the query accuracy



Scalar index Based on scalar value order

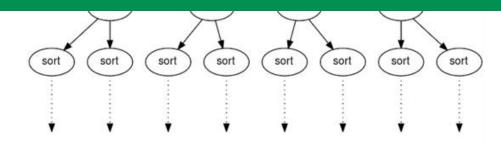


Vector index Based on proximity in a high dimensional space

Vector index: complex abstraction

- Proximity in high dimension is hard to organize
- Inefficient vector index affects the query accuracy

High-dimensional vector index is hard to update

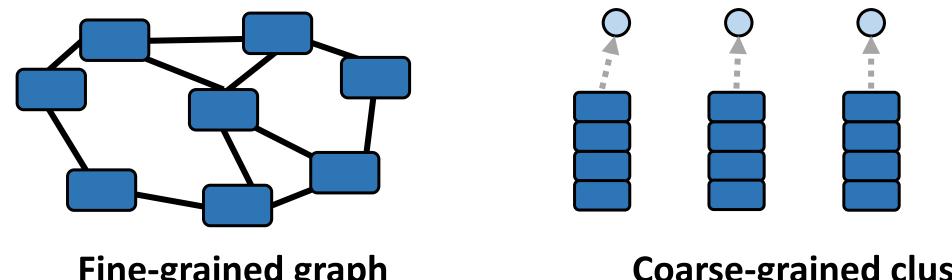


Scalar index Based on scalar value order

12.00

Vector index Based on proximity in a high dimensional space

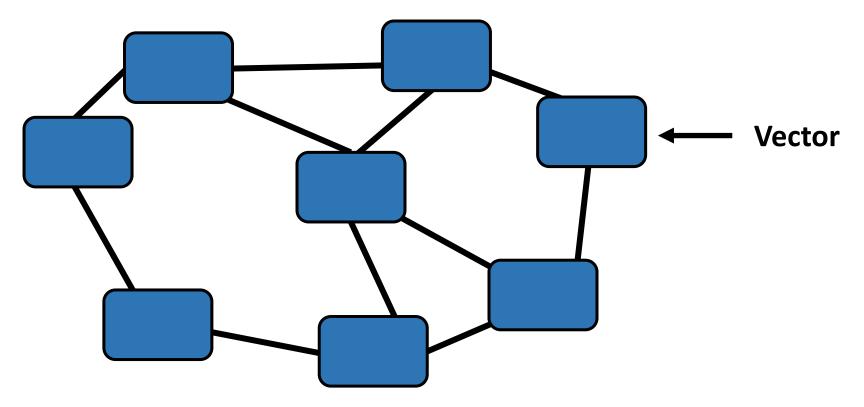
• For billion-scale vector scenario, vector index can be categorized into



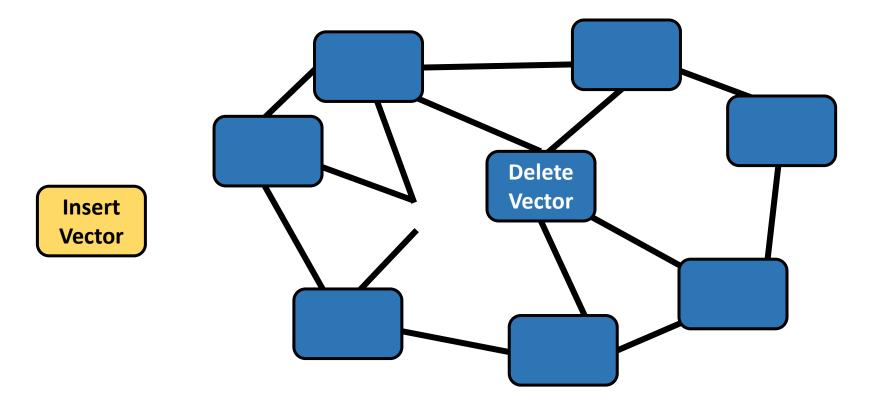
Fine-grained graph vector index

Coarse-grained cluster vector index

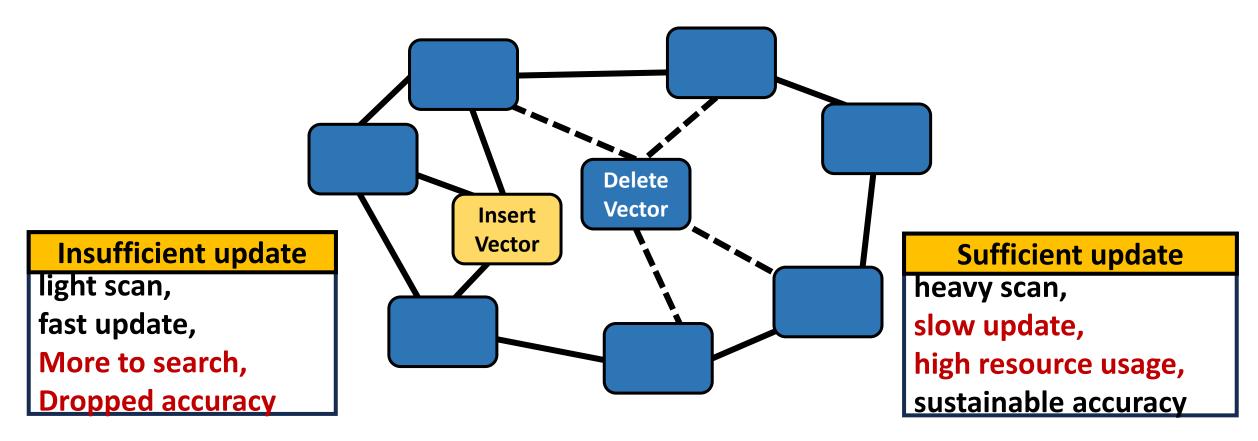
- Fine-grained graph-based vector indices
 - Connect vectors with short distance



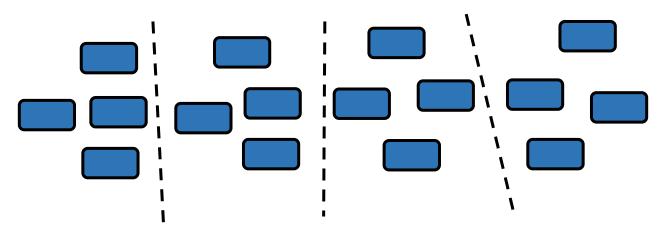
Updating fine-grained graph is challenging!



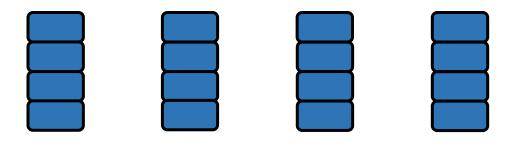
Updating fine-grained graph is challenging!



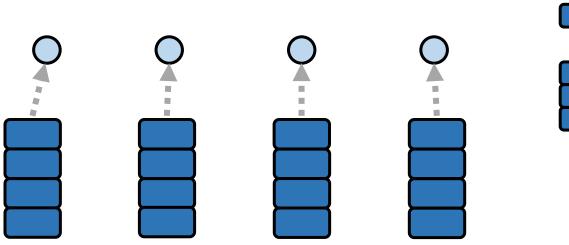
- Coarse-grained cluster-based vector indices
 - Collect vectors in close proximity into the same partition



- Coarse-grained cluster-based vector indices
 - Collect vectors in close proximity into the same partition



- Coarse-grained cluster-based vector indices
 - Collect vectors in close proximity into the same partition
 - The centroid of partition represents vectors in the partition

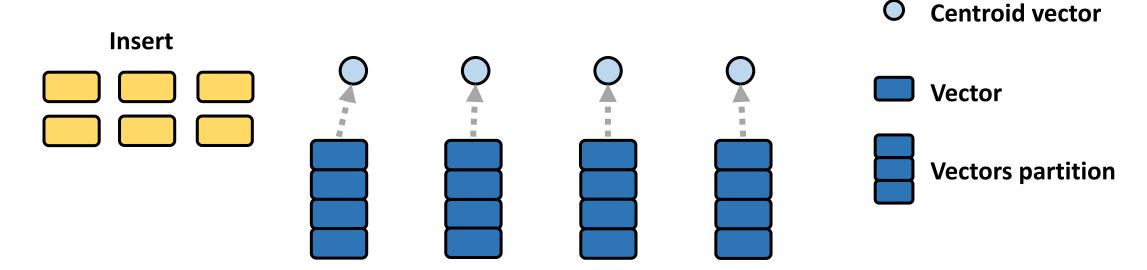


Centroid vector

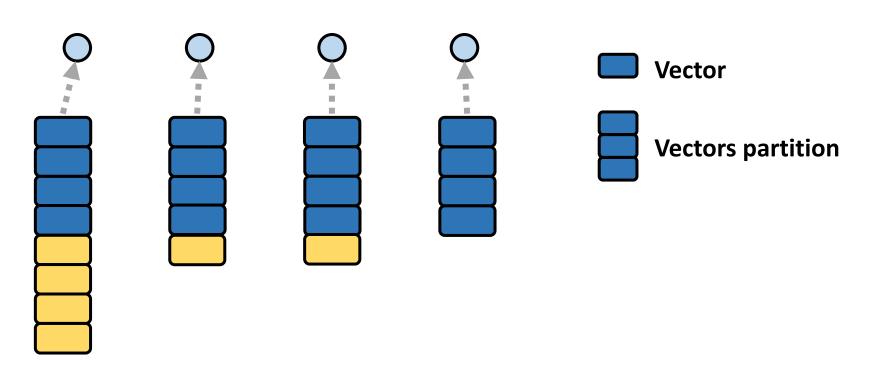
Vectors partition

Vector

• Inserts/deletes only modify the corresponding partitions



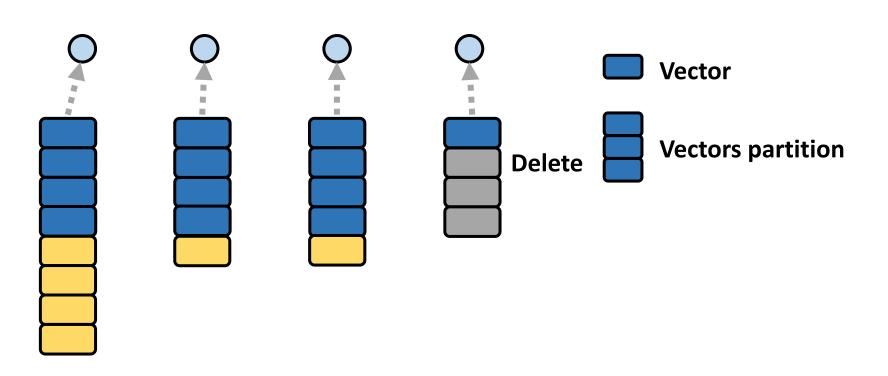
• Inserts/deletes only modify the corresponding partitions



Ο

Centroid vector

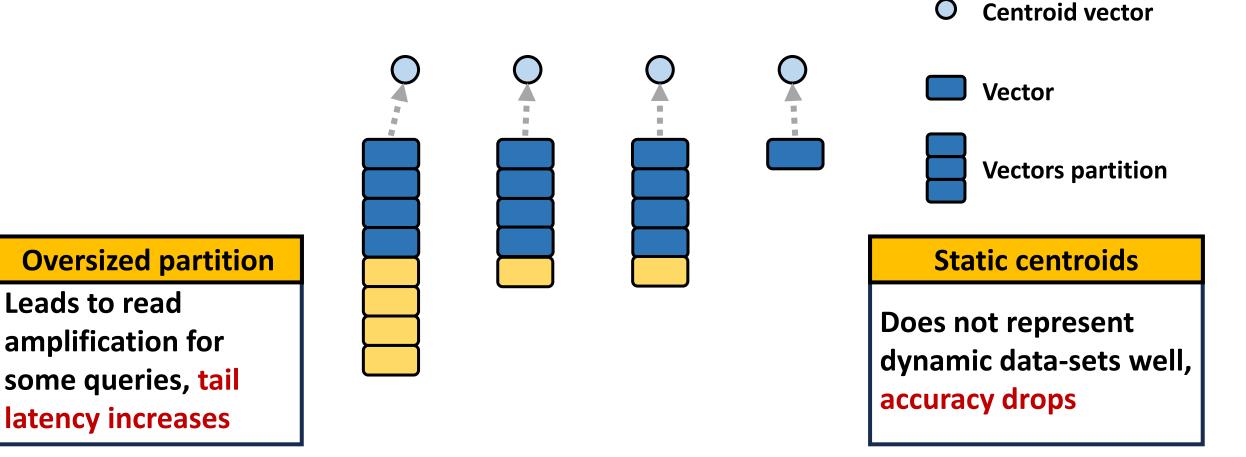
• Inserts/deletes only modify the corresponding partitions



Ο

Centroid vector

• Inserts/deletes only modify the corresponding partitions



Strawman solution for update

- Periodic global index rebuild
 - + Refresh performance & accuracy immediately after rebuild

Strawman solution for update

- Periodic global index rebuild
 - + Refresh performance & accuracy immediately after rebuild
 - **Deteriorating** performance & accuracy between rebuilds
 - Global rebuild is prohibitively expensive

	Memory	CPU	Time
DiskANN ^[1]	1100 GB	32 Cores	2 days
	64 GB	16 Cores	5 days
SPANN ^[2]	260 GB	45 Cores	4 days

Billion-scale rebuild cost

[1] Subramanya et al. DiskANN: Fast Accurate Billion-Point Nearest Neighbor Search on a Single Node. (NeurIPS 2019)[2] Chen et al. SPANN: Highly efficient Billion-scale Approximate Nearest Neighbor Search. (NeurIPS 2021)

Strawman solution for update

- Periodic global index rebuild
 - + Refresh performance & accuracy immediately after rebuild

Is it possible to update vector index without expensive global rebuild?

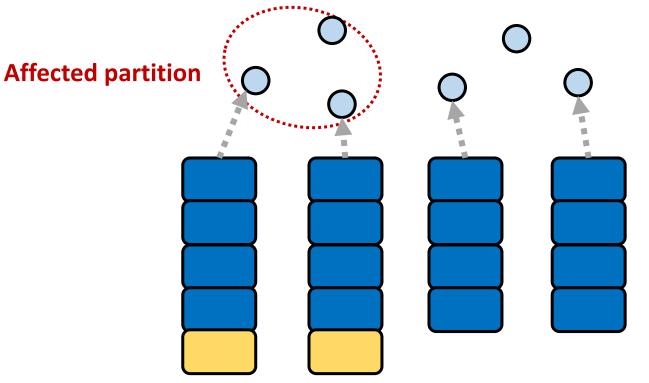
	64 GB	16 Cores	5 days
SPANN ^[2]	260 GB	45 Cores	4 days

Billion-scale rebuild cost

[1] Subramanya et al. DiskANN: Fast Accurate Billion-Point Nearest Neighbor Search on a Single Node. (NeurIPS 2019)[2] Chen et al. SPANN: Highly efficient Billion-scale Approximate Nearest Neighbor Search. (NeurIPS 2021)

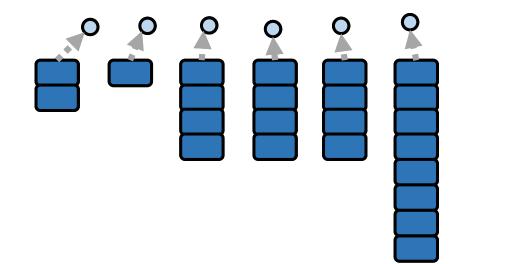
Recap: coarse-grained cluster-based index

- A silver lining towards fast vector updates
 - Small updates to a well-balanced index possibly incur local changes



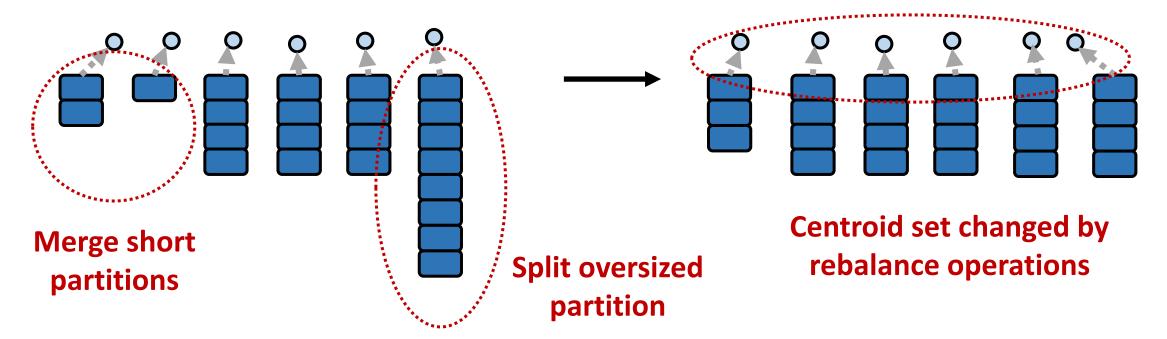
Idea: balance locally and incrementally

Split & merge



Split & merge

- Partition size imbalance \rightarrow balance the partitions **locally**
- Static centroids → adapt shifting distribution incrementally

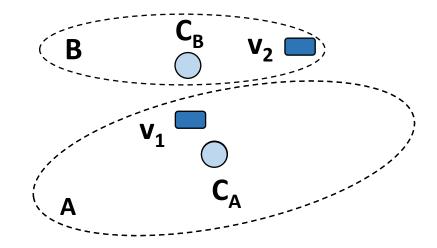


But such operations break the property of vector index

NPA: the key invariant for vector index

• NPA (nearest partition assignment)

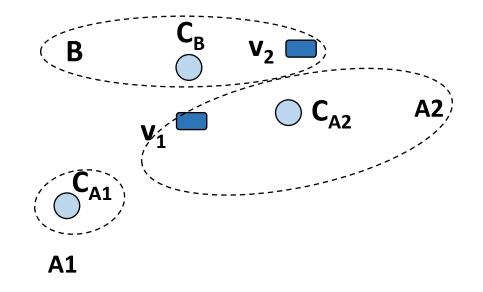
• Each vector should be put into the nearest partition



Split & merge violates NPA

• NPA (nearest partition assignment)

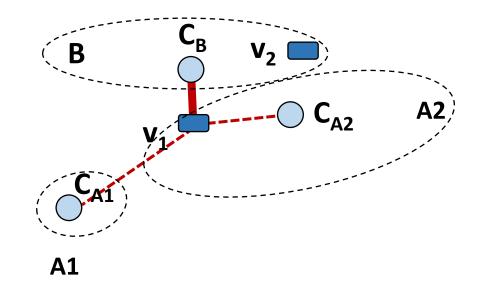
• Each vector should be put into the nearest partition



Split & merge violates NPA

• NPA (nearest partition assignment)

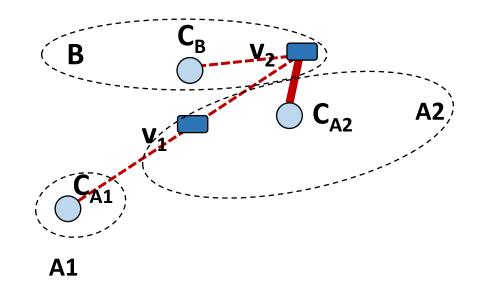
- Each vector should be put into the nearest partition
- For v₁ in **split partition**, the closest centroid is **changed to C_B**



Split & merge violates NPA

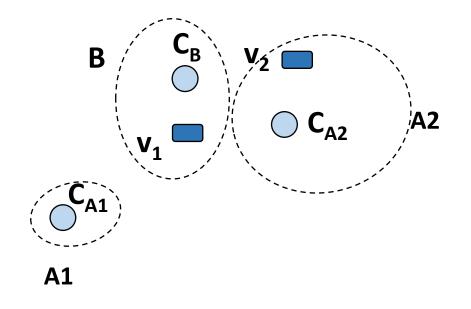
• NPA (nearest partition assignment)

- Each vector should be put into the nearest partition
- For v₂ in **unsplit partition**, the closest centroid is **changed to C_{A2}**



Reassigns are required to maintain NPA

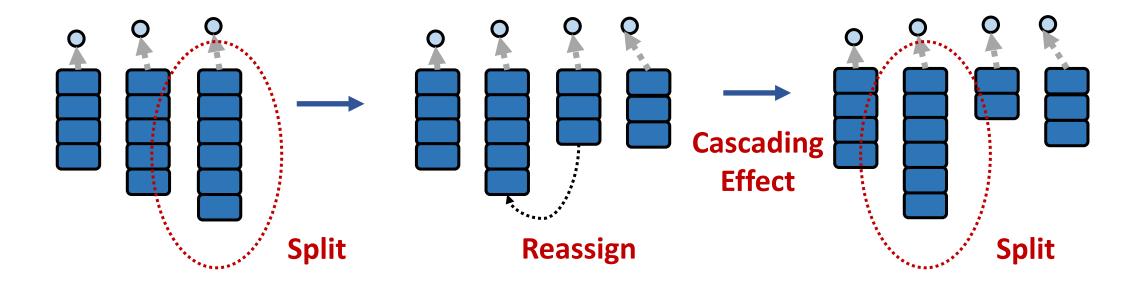
- But reassigning all vectors is expensive
 - Based on former cases, we derive **necessary conditions** to identify violations
 - Violation: closest partition != current partition



Section3.3 for detailed description of conditions

Cascading operations

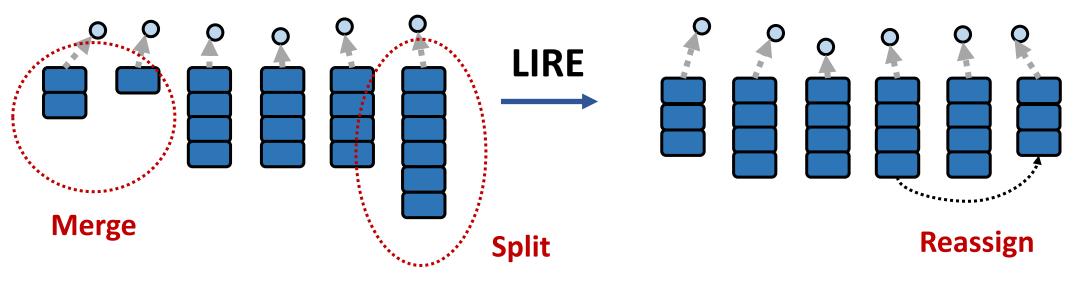
- Reassign may cause cascading split & merge
 - Incremental rebalance progress will converge
 - Reassignment ensures every vector receives closest centroid



Section3.4 for formal proof

LIRE Protocol

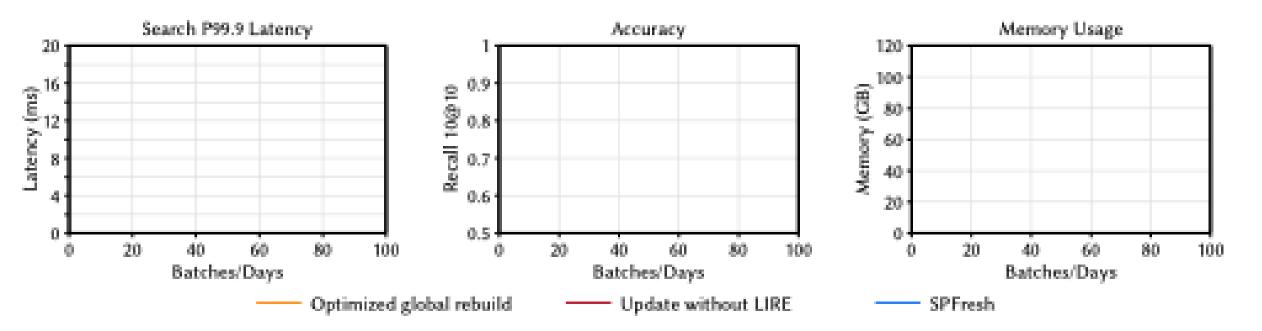
- LIRE: Lightweight Incremental RE-balancing
 - Keeps the size of every partition in balance
 - Captures the change of data distribution
 - Avoids global rebuild



For more details, please refer to the paper!

Evaluation overview

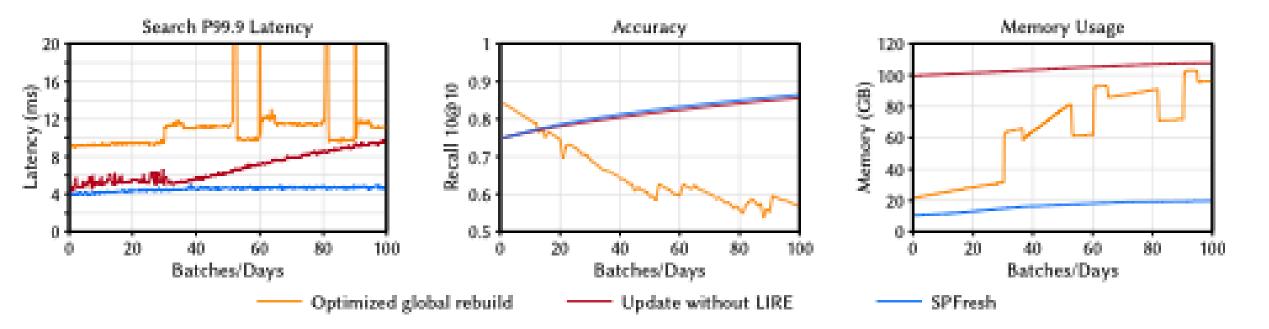
• Simulates a realistic vector update scenario with 1% daily update*



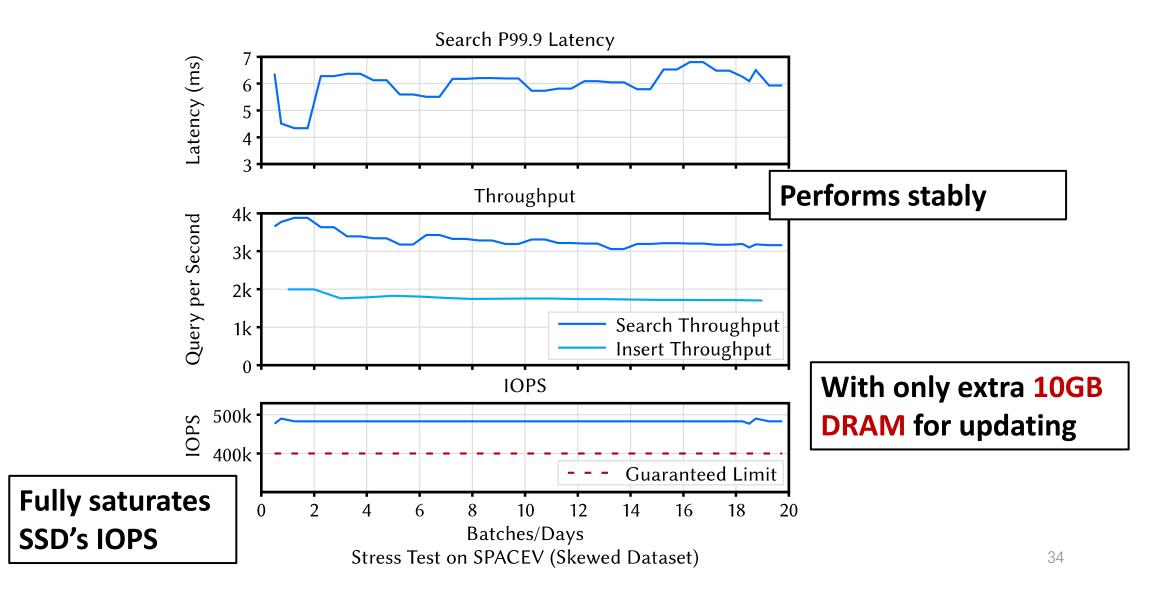
* Li et al. The Design and Implementation of a Real Time Visual Search System on JD E-Commerce Platform. (Middleware'18)

SPFresh performs well at update scenario

- Overall, SPFresh maintains 2.41X lower P99.9 latency than baselines.
- SPFresh keeps in high accuracy, handles dynamic scenario
- SPFresh achieves as low as **5.30X** memory usage than baselines



SPFresh scales to billion-level scenario



Takeaway from SPFresh

- We introduce SPFresh, a system that supports in-place update for billion-scale vector search.
- LIRE allows to locally and incrementally rebalance the data partitions.
- SPFresh can incorporate continuous updates with **low resources** while maintaining **high search accuracy**.
- SPFresh serves in billion-scale update scenario with just single machine.

Thanks!

