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ABSTRACT 
We introduce a mixed-reality, interactive approach for continu-
ally learning to recognize an open-ended set of objects in a user’s 
surrounding environment. The proposed approach leverages the 
multimodal sensing, interaction, and rendering afordances of a 
mixed-reality headset, and enables users to label nearby objects via 
speech, gaze, and gestures. Image views of each labeled object are 
automatically captured from varying viewpoints over time, as the 
user goes about their everyday tasks. The labels provided by the 
user can be propagated forward and backwards in time and paired 
with the collected views to update an object recognition model, 
in order to continually adapt it to the user’s specifc objects and 
environment. We review key challenges for the proposed interac-
tive continual learning approach, present details of an end-to-end 
system implementation, and report on results and lessons learned 
from an initial, exploratory case study using the system. 

CCS CONCEPTS 
• Computing methodologies → Object recognition; • Human-
centered computing → Mixed / augmented reality. 
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1 INTRODUCTION 
The work we report in this paper is part of a broader research efort 
on interactive methods that can enable computing systems to learn 
continually about physical objects in the world. Our long-term 
goals are two-fold. First, we seek to build intelligent systems that 
can fuidly collaborate with people in physically situated settings. 
Second, we seek fundamental principles for learning continually 
from multimodal streaming data. 

Recognizing objects in images has been a long-term, canoni-
cal challenge in computer vision. In the last decade, fast-paced 
progress on object detection and recognition has been fueled by 
large datasets and deep neural network methods. More recently, 
interest has grown within the research community in egocentric 
vision tasks [6], as well as in zero-shot [17], few-shot [12], and con-
tinual learning [23]. These settings and capabilities frame important 
theoretical and practical research directions and promise to support 
a broad spectrum of applications, including robotic manipulation, 
situated interaction, and mixed-reality systems for task guidance, 
training, healthcare, education, and entertainment. 

However, despite advances on benchmark datasets, developing 
practical applications that can operate robustly in the open world 
remains a challenging task. One of the biggest barriers to robust 
object recognition in the wild is that the quality and distribution of 
images encountered in a real-world deployment often difers greatly 
from the distribution of images with which a system was trained. 
Object recognition models embedded in open-world applications 
must deal with dynamic and diverse viewpoints, including changes 
in proximity, illumination, resolution, motion blur, and shifting 
relationships and occlusions among fxed and movable objects. The 
typical development process for building such models involves 
starting with a pretrained platform model followed by a fne-tuning 
procedure that requires collecting data in the feld and then labeling 
it. This iterative process is time-intensive and costly. 

In this paper, we introduce a mixed-reality, interactive approach 
for continually learning to recognize an open-ended set of objects in 
a user’s surrounding environment. We leverage the afordances of 
egocentric sensing, interaction, and rendering in mixed reality, and 
present a system implementation that works as follows: As a user 
engages in tasks while wearing a mixed-reality headset, objects in 
the user’s feld of view are detected and highlighted with a holo-
graphic bounding box (see Figure 1, top left). The user may provide 
labels for these objects by gazing toward an object and saying, e.g., 
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Figure 1: A mixed-reality system for interactive continual learning. Top left: A mixed-reality interface with gaze, speech, and 
gesture recognition capabilities is used to label objects in the world. Top right: The system uses egocentric color and depth 
cameras to detect and track objects in 3D world coordinates. Bottom: The system continually captures views of objects over 
time from diferent angles and uses them to adapt an object recognition model. 

“This is my cutting board.” The system tracks the 3D world position 
and orientation of the objects and of the camera (Figure 1, top right) 
and continuously collects views of these objects from diferent an-
gles as the user goes about their regular activities (Figure 1, bottom). 
These views are used to predict object identities, and also to adapt 
a recognition model in order to improve performance over time on 
the set of objects encountered by the user. 

While the basic ideas behind the approach can be described in a 
few sentences, building a system that can perform this task well in 
the open world hinges on answering several challenging questions, 
including: How does the system track object locations over time? 
Which objects should the system highlight and ask the user to 
label? Which object views should be used for inference or model 
adaptation? How well do current state-of-the-art vision models 
perform in this setting? How can we boost recognition robustness? 

We describe initial steps that we have taken towards addressing 
some of these challenges. Specifcally, we make the following con-
tributions: (1) we introduce a multimodal, interactive methodology 
for continuously learning to recognize objects online and onsite, 
in a mixed-reality setting, (2) we construct and describe a concrete 
implementation of the proposed approach, (3) we perform an initial, 
exploratory case study with this system, and (4) we discuss lessons 
learned and insights gathered. 

2 RELATED WORK 
We begin with a brief review of relevant related work in object 
recognition and object teaching. 

2.1 Object Recognition 
The computer vision community has introduced methods for de-
tecting, tracking, and classifying objects in 3D, extending from the 
larger body of research on 2D methods. Several approaches make 
use of prespecifed CAD models with known meshes and labels. 

Such work includes DenseFusion [22], a deep learning approach 
that combines RGB and depth to predict the 6D pose of objects. 
Other studies have employed voxel-based representations for 3D 
shapes with density distributions computed on a 3D grid. Wu et al. 
[24] train a convolutional DNN over such a representation, while 
Maturana and Scherer [13] directly train a 3D convolutional neural 
network to classify objects from voxels. 

Rather than working from a voxelized representation, PointNet 
applies DNNs to operate directly on 3D point clouds, and can be 
used for object classifcation, segmentation, and semantic parsing 
[15]. This work was later extended to VoteNet, which combines a 
Hough voting strategy with a DNN [14]. SE(3)-Transformer [5] also 
performs object classifcation from 3D point clouds over a closed 
set of known objects, using an equivariant attention network to 
gain robustness in the presence of rotations and translations. In 
general, researchers have found that directly extending 2D CNNs 
into three dimensions is challenging. Instead, they have had greater 
success for recognition with multiview 2D CNNs [16, 20]. 

Important algorithmic developments have also been recently 
made in the areas of few-shot, class-incremental and continual learn-
ing [1, 3, 18, 21, 26]. However, most work to date in this space 
is evaluated on pre-existing, static datasets (CIFAR-100, CUB-200, 
miniImageNet, etc.), by partitioning them in various confgurations. 
Recent work [23] has raised the important challenge of devising 
new metrics for evaluating continual learning with the goal of 
higher validity for real scenarios, focusing on questions such as 
overall model performance, the degree to which the model can 
transfer new knowledge, and its ability to resist catastrophic forget-
ting. Other eforts are starting to bring attention to other real-world 
challenges that often do not appear in existing datasets, such as the 
need to handle motion blur, occlusions, clutter, and so on [11, 19]. 

Finally, another important recent development is the construc-
tion of large, multimodal platform models like Florence [25], CLIP 
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Figure 2: Architectural overview of the implemented system. 

[17] and GLIP [10] that jointly reason over images and language, 
and are adaptable to many downstream tasks related to object 
recognition. These models are trained on massive datasets of visual 
concepts via supervision signals from natural language text. 

In the work we report below, we take a multimodal, integrative 
approach, and build and experiment with data from an end-to-end, 
deployed system that leverages the CLIP model [17] to learn about 
objects online and onsite. While we do not introduce novel algorith-
mic contributions in object recognition or continual learning, the 
end-to-end system developed and the experiments conducted high-
light several important lessons and outline real-world challenges, 
including 3D segmentation, handling motion blur and occlusions 
from hands and cluttered scenes, detection of new versus previously 
seen objects, and evaluation metrics. 

2.2 Object Teaching 
Teachable object recognition is a relatively recent area of work fo-
cused on enabling people to customize an object recognizer by 
capturing training examples of relevant objects, and training a rec-
ognizer on the fy to recognize the objects in new scenarios. The 
approach has been applied to accessibility solutions for blind and 
low vision people [7, 9]. The ORBIT dataset [12] of videos taken by 
blind and low-vision users is aimed at building models used in few-
shot learning. The training data includes examples representing 
imbalance and quality observed in real-world settings, including 
problems with framing and image blur. LabelAR [8] is a similar 
efort on teaching recognizers about new objects geared towards 
augmented reality applications. 

Our work is diferent from previous eforts in that we pursue a 
methodology that enables a user to teach the system about objects 
in-stream with other activities, and enables it to continually learn 
in the background, as the users go about their regular tasks. 

3 OVERVIEW 
Our high-level goal is to enable an object recognition system to 
continually learn to recognize an open-ended set of objects onsite, in 
a user’s environment. The key idea behind the approach is to obtain 

training data—including object views and object labels—continually, 
in stream with other user activities, and to use the data to adapt a 
recognition model online. We investigate this approach in a mixed-

reality setting and leverage the multimodal sensing and interaction 
afordances of a mixed-reality headset to create an object teaching 
interface that allows the end-user to provide object labels in stream 
with their other activities. 

The proposed approach relies on three core capabilities: (1) 3D 
object detection and tracking, (2) interactive object teaching, and (3) 
online learning over extracted object views. We use the depth sen-
sor from the mixed-reality headset to detect and track the poses and 
locations of objects in the user’s environment. The system can auto-
matically highlight detected objects via a holographic 3D bounding 
box representing the 3D segmentation of the object, which the 
user can manually correct via hand gestures if necessary. The 3D 
bounding boxes are projected into the device’s color camera image 
to obtain 2D cropped views of each object. In addition, the user 
can provide object labels by gazing toward a particular object and 
speaking its name, e.g., “That’s my salt shaker.” As we shall discuss 
later, we leverage inferences about object permanence to propagate 
the user-provided labels forwards and backwards in time. The labels 
are therefore linked to multiple object views collected over time 
and can be used to improve the recognition model over time. 

We implemented the proposed approach as a distributed mixed-

reality application on the HoloLens 2, augmented with a dedicated 
desktop computer to bypass current computational limitations. The 
implementation is built on Platform for Situated Intelligence [4], 
an open-source framework for multimodal integrative-AI systems, 
which also provides infrastructure for accessing streaming sensor 
data and rendering holograms on HoloLens 2 [2]. 

Our application consists of two processes that communicate 
over a network connection, as shown in Figure 2. The User Inter-
face process runs on the headset and transmits a wide array of 
multimodal sensor streams from the headset to the desktop server, 
including depth images (5Hz, 320×288 pixels), color images (depth-
synchronized at 5Hz, 896×504 pixels), camera poses (5Hz), camera 
intrinsics (5Hz), audio, and user state data such as the 3D gaze direc-
tion (~30Hz) and hand tracking information (~30Hz, 26 joint poses). 
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Figure 3: Interactive approach to defning tracking regions. Left: Tracking region is created with a double-pinch gesture; region 
is displayed in mixed reality as a rectangular yellow hologram. Center: Size of the tracking region modifed by pinching and 
moving one of its corners. Right: Position of the tracking region confrmed by push of virtual [+] button. 

The User Interface also emits streams of information about the 
user’s manual corrections to the object bounding-box holograms. 
A consistent world coordinate system is achieved by persisting a 
spatial anchor1 

to the device when the application runs for the frst 
time. This anchor allows for all spatial information to be expressed 
in the same global frame of reference. 

The Object Learning process runs on the desktop server and 
includes components for 3D object tracking, for extracting 2D object 
views, and for object recognition and learning. An Object Selector 
component computes which of the tracked objects to highlight 
based on the user’s gaze, and streams back the relevant information 
to the User Interface, which shows the hologram bounding box 
around the object. Finally, audio is processed via a voice activity 
detector and a cloud speech recognizer to extract object labels and 
associate them with the currently selected object. 

In the next three sections, we describe the major components of 
the system in more detail: object detection and tracking, interactive 
object teaching, and object recognition and learning. 

4 OBJECT DETECTION AND TRACKING 
We rely on a simple depth-based approach for detecting and track-
ing objects in a number of predefned tracking regions and use 
interactive techniques to enable users to perform onsite corrections 
of the object segmentations. The detection and tracking algorithm 
is based on the captured depth images. These images are converted 
to point-cloud representations, which are used to update a voxel 
occupancy grid in each predefned tracking region. Objects are 
detected based on a connected-components algorithm that runs 
over the voxel occupancy grid. We present more details on each of 
these subcomponents in the remainder of this section. 

4.1 Tracking Regions 
For computational efciency, we only track objects in a set of cuboid 
tracking regions, defned by the user via hand gestures. Specifcally, 
when the user performs a double-pinch gesture (see Figure 3 left), 
the system creates a new rectangular tracking region in the hori-
zontal plane, centered on the location of the gesture, and extending 
upwards for 0.5 meters. The base of the tracking region is displayed 
as a hologram, visible as a yellow rectangle in Figure 3. The user 
can change the dimensions and orientation of the region by pinch-
ing and moving its corners to resize (see Figure 3 center) or its 
1
https://docs.microsoft.com/en-us/windows/mixed-reality/design/spatial-anchors 

edges to rotate. The user confrms the desired size and placement 
of the tracking region by pressing the [+] button in the center of 
the region (see Figure 3 right). Multiple tracking regions can be 
defned in this fashion. 

4.2 Voxel Occupancy Grid 
To construct the voxel occupancy grid, we begin by converting the 
depth images into a point-cloud representation in world coordinates. 
We use the hand-tracking information provided by the device to 
exclude the points corresponding to the user’s hands and arms. 
Specifcally, we project the 3D hand joint positions returned by 
the hand tracker into the depth image and mask the hands by 
performing a neighbor traversal of the depth image pixels. We start 
at the pixel position of the closest joint (lowest depth value), and 
traverse the depth image in all directions until we fnd a signifcant 
increase (>10 cm) in the depth of the neighboring pixel, which 
typically corresponds to the edge of the user’s hand or arm. 

We use the computed point clouds to maintain and update a 3D 
voxel occupancy grid in each predefned tracking region. At each 
voxel, we maintain two diferent counters: a weight counter, which 
is used to determine voxel occupancy, and a delete counter, which 
is used to determine when the voxel will be deleted. 

The update to the occupancy grid is done in two steps. First, 
the system uses the incoming point cloud at time � to compute a 
new, instant occupancy grid, and then fuses this instant grid with 
the previous occupancy grid from time � − 1. When estimating 
the instant occupancy grid, the weight counter for a voxel is set 
to 1 if the point cloud contains at least a point inside that voxel, 
and the angle between the mesh surface normal and the direction 
looking towards the voxel center is less than a specifed threshold 
(60

◦
)—when this angle is larger, the angle from which the voxel is 

being viewed is grazing the surface, and the likelihood of errors 
in the point cloud is increased. When fusing the information from 
the previous and instant occupancy grids, if a voxel has positive 
weight in both the previous and instant grids, the weight counters 
are added. If a voxel previously present is not found in the instant 
occupancy grid, and the voxel center is between the camera and 
the depth mesh, the delete counter is incremented. When the delete 
counter reaches a threshold (3), the voxel is removed. 
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Figure 4: User interaction for teaching the location and label of a new object. A: System’s view of the world with voxel-based 
object segmentation and gaze direction (orange ray). B: Mixed-reality view with (incorrect) object prediction. C: User edits the 
object’s bounding box. D: User labels the object via speech “This is a jar with parsley.” E: User confrms the label and position. 

4.3 Segmentation and Tracking 
The computed voxel occupancy grid is used to perform object seg-
mentation. First, we determine the connected components in the 
occupied voxel space (a voxel is considered occupied if its weight 
counter >3). For each connected component, we assign an object ID 
based on the largest overlap with known objects from the previous 
time step. If no overlap is found, the voxels in the new component 
are assigned a new object ID. In this assignment process, we exclude 
all voxels in bounding boxes that have been manually edited and 
confrmed by the user (see Section 5)—all occupied voxels inside a 
manually edited box are assigned to its corresponding object ID. 

Finally, to determine the position of objects, we compute bound-
ing boxes by determining the minimum rectangular hull that covers 
all voxels with a given ID in the horizontal plane. In the vertical 
dimension, the bounding box limits are set based on the vertical 
span of these voxels. To avoid jitter, we also compute an updated 
bounding box based on the object orientation from the previous 
frame. If the size diference between the minimum-rectangular-hull 
bounding box and the previous-orientation bounding box is not 
large, we use the bounding box based on the previous orientation. 

The method described above is able to detect new objects added 
to the scene. To construct valid object views over time, we also need 
to reason about when objects are removed from a given location. 
We detect removals with a simple heuristic that counts the number 
of occupied voxels in the object bounding box and compares that 
number against the maximum value observed so far. If the ratio 
drops below 0.5, the object and its bounding box are removed from 
the tracking state. 

5 INTERACTIVE OBJECT TEACHING 
We now turn to the interactive approach for teaching the system 
about objects. A core aspect of the approach is to enable the user to 
teach the system about new objects as they go about everyday activ-
ities. The teaching process should therefore require minimal efort 
and should not signifcantly distract the user from their primary 
tasks. An important consideration in the design space of interac-
tive teaching is whether the interactions are system-initiated, user-
initiated, or mixed-initiative: Does the system ask the user about 
specifc objects, is the user in control of which objects to teach the 
system about, or should a mix of both strategies be employed? In 
the longer-term, we envision system-initiated and mixed-initiative 
solutions, guided by active learning and utility considerations, con-
sidering factors such as the estimated expected value of the label, 
the user’s attention, and cost of engagement. For now, the cur-
rent implementation employs a gaze-based, user-initiated approach 
which keeps the user in control and minimizes visual distractions. 

Specifcally, we implemented a mixed-reality interface that uses 
gaze, gesture, and speech to allow the user to provide object la-
bels through interaction, and to manually correct the 3D object 
bounding boxes generated by the object detector (described in the 
previous section). The system computes which object the user is 
gazing towards by intersecting the gaze direction with the com-

puted bounding boxes (see Figure 4 A). The bounding box for the 
object deemed in focus is rendered as a wire-frame hologram (see 
Figure 4 B). If a prediction from the recognition model is available 
for this object, the prediction is rendered as a text label followed by 
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Figure 5: Diferent image views for a “salt container.” Left to right: image view afected by motion blur; image view afected by 
occlusion from another object; image view afected by hand occlusion; clear image view. 

a question mark, hovering above the bounding box and oriented 
towards the user (see Figure 4 B). 

The interface enables the user to correct the detected object 
bounding box with simple gestures when necessary. Pinching and 
moving one of the corners resizes the bounding box (see Figure 
4 C), and pinching and moving the middle of an edge rotates the 
bounding box around its vertical axis. The corrected location of 
the bounding box is continuously streamed back to the automatic 
object detector and tracker (see Figure 2) and is leveraged in the 
tracking process, as described in subsection 4.3. 

If a prediction about the object is not yet available or if the 
prediction is incorrect, the user can provide a label for the object 
via a simple spoken phrase like “This is a/an/my <object name>.” The 
system performs speech recognition using a cloud-based speech 
service and the resulting object label is extracted and displayed 
above the object without a question mark (see Figure 4 D). The 
visual feedback allows the user to also detect potential speech 
recognition errors. If a speech recognition error occurs, the user 
can repeat the label to correct it. 

Once a prediction or a user-generated label is available, a [+] 
button appears on top of the object (see Figure 4 D). When the user 
pushes this button (see Figure 4 E), the object location and identity 
is confrmed, and this explicit signal is used to generate labels for 
both continual learning and performance evaluation. 

While the gaze-based selection mechanism is natural to use, 
the approach can become problematic when the user is actively 
engaged in another task, as the holograms that appear on the object 
(wireframe box and text label) can distract from the task at hand. To 
alleviate potential distractions, we implemented a “teaching mode” 
which can be enabled or disabled by the user via simple speech 
commands: “Turn on/of teaching mode.” The object bounding boxes 
and predicted labels, along with the ability to teach new labels, are 
available only when the teaching mode is active. However, even 
when the teaching mode is disabled, the system continues to collect 
images in the background for previously labeled objects that are in 
view at any given time. 

6 OBJECT RECOGNITION AND LEARNING 
To learn about objects, the system pairs labels taught by the user 
with a set of views of each object that are continuously collected by 
the system in the background. We begin by discussing the mecha-

nism for generating these object views in the next subsection. Then, 

in Subsection 6.2, we review the object recognition models and 
learning algorithms explored in the current study. 

6.1 Generating Object Views 
Object views are generated by cropping the color camera image 
around the location of the object. Specifcally, the corners of the 
object’s 3D bounding box are frst projected into the pixel space of 
the color camera. We then compute the rectangle that encompasses 
these points and expand its dimensions by 10%. If the resulting 
rectangle overlaps with the camera’s feld-of-view by at least 80%, 
it is used to crop an object view from the full camera image. 

The system continuously collects object views while the user 
is going about their tasks in the world. As a result, the quality of 
such views can vary signifcantly. During early development and 
testing, we identifed two important issues with captured images. 
First, because the user’s head—and by extension the head-mounted 
camera—is often in motion, many images sufer from motion blur, 
as illustrated in the frst image in Figure 5. Second, views can be 
obstructed by other objects in cluttered scenes or by the user’s 
hands, as shown the second and third image in Figure 5. 

To rectify these issues, we flter the object views based on thresh-
olds tuned from initial prototyping. To alleviate blur, we compute 
the linear and angular head speed, and select only object views 
acquired when these values are below 0.25 m/s and 0.25 rad/s re-
spectively. To address occlusions, we eliminate an object’s view 
if it is signifcantly overlapped by the view of another object in 
front of it, or by the user’s hands. To compute hand occlusions, we 
compute a rectangle from the projection of the hand joints in the 
color camera space. For the right hand, this rectangle spans from 
the top-leftmost hand joint to the bottom-right corner of the image, 
and for the left hand it spans from the top-rightmost joint to the 
bottom-left corner of the image. 

6.2 Models for Object Recognition 
The object views collected by the system can be used both for object 
recognition and for the continual improvement of recognition mod-

els. We experiment with two methods, both of which leverage CLIP 
[17]—a pretrained, multimodal (vision-language) model. CLIP is 
trained on a large dataset of (�����, ����) pairs [17], and supports 
zero-shot recognition. 
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Figure 6: View of events, objects, and label propagation in interactive continual learning. Cropped frames (open circles) are 
segmented from the raw color image stream (flled circles). Detected objects (rectangles) are labeled by users at labeling points 
(asterisks). Labels are propagated forward and backward in time. Model update time-points are highlighted (M1-M5). 

In zero-shot mode, CLIP supports queries of the form (����� , 
[�1, �2, ..., �� ]), where �� can be any English-language string, and 
it produces an output probability distribution over the given set 
of strings. We use the model in this zero-shot mode, and query 
it with the names of all known object types taught by the user 
so far, plus an empty string that we use to model any previously 
unseen object type. When the system runs for the frst time, the 
set of object types contains only the empty string token. When 
a new label is introduced by the user, the set of object types is 
expanded accordingly. The number of object types that the system 
knows about (and uses to query the CLIP model with) therefore 
increases over time. The zero-shot capabilities of CLIP enable the 
construction of a system that can recognize increasing numbers of 
objects over time. In the experiments reported below, we explore an 
initial assessment of the robustness of the zero-shot model approach 
in an open-world, streaming, egocentric computer vision scenario. 

Although the use of the fxed, pretrained CLIP model in zero-
shot mode is amenable to a growing set of class labels, it does 
not involve any actual learning from new data collected by the 
user. As a second approach, we also implemented a learning-based 
technique on top of CLIP. Specifcally, we use CLIP’s visual encoder 
to generate encodings for the object views and use the encodings as 
input to a multinomial logistic regression model trained to classify 
the set of known object types. We note that this learning technique 
does not refne the CLIP model itself; rather, it employs a logistic 
regression layer on top of the model. 

7 EXPERIMENTS 
We conducted an exploratory case study with the implemented 
system, aimed at investigating the feasibility of the overall proposed 
approach, and at identifying challenges and areas of improvement 
for the current implementation. 

In the case study, two of the paper’s authors used the system 
over a period spanning 19 days at Site 1 and 8 days at Site 2 (total 
durations of 9h 32min and 4h 28min respectively), while performing 
routine tasks in their kitchens, such as cooking, food preparation, 

cleaning, organizing, and unloading grocery bags. Each user frst de-
fned fve tracking regions in diferent parts of their kitchens. In sub-
sequent sessions, the users interspersed object-teaching episodes 
with other activities in the kitchen at will—the set of objects and 
activities were not predefned or scripted, and the system was used 
as part of daily activities. Throughout the case study, the system 
used the ViT-B/16 version of the CLIP model in zero-shot mode to 
produce and render predictions based on the object views that were 
fltered as described in Section 6.1. While this exploratory study has 
some clear limitations (i.e., only two participants, who both have 
knowledge of the system’s internal functioning and limitations), 
we believe it is sufcient to provide an initial assessment of the 
proposed approach, reveal important challenges to be resolved, and 
highlight interesting research opportunities for the community. 

There were 82 object types introduced at Site 1, and 47 at Site 
2. However, analysis of the collected dataset revealed that some 
of these object types were synonyms, i.e., the user provided two 
or more diferent labels for the same object at diferent points in 
time. For example, an object that was labeled as “box of tomato 
sauce” was labeled at a later time as “box of tomato paste.” Label 
synonyms can arise from the natural ambiguity in language and 
object taxonomies, as well as from speech recognition errors (i.e., 
the user at Site 1 mistakenly confrmed an object misrecognized as 
“open gloves” rather than “oven gloves”) and represent just one of 
many challenges for object recognition in the real-world. The data 
from Site 1 included 8 synonyms (resulting in 74 unique types), and 
no synonyms were identifed at Site 2. 

We used the collected data to assess the performance of CLIP in 
zero-shot mode and with the basic learning technique described 
above. Before reporting the results in Sections 7.2 and 7.3 below, we 
begin with some preliminaries regarding the mechanics of training 
and incremental evaluation for interactive continual learning. 

7.1 Evaluating Interactive Continual Learning 
Well-established metrics for object detection and recognition have 
played an important role in evolving the state-of-the-art in the 
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Table 1: Evaluation results for CLIP in zero-shot mode, with and without fltering views for motion blur and occlusion. 

Dataset # Object Types 
Site 1 / Site 2 

# Object Instances 
Site 1 / Site 2 

# Object Views 
Site 1 / Site 2 

Frame Accuracy 
Site 1 / Site 2 

Aggregate Accuracy 
Site 1 / Site 2 

Filtered 
Unfltered 

69 / 47 
74 / 47 

350 / 282 
427 / 332 

26,402 / 15,095 
121,421 / 55,657 

49.3% / 50.4% 
36.5% / 41.7% 

51.4% / 57.8% 
38.7% / 46.3% 

computer vision community. The continual, interactive learning 
setting brings new challenges, not only in terms of principles and 
models, but also in the design of metrics and evaluation [23]. Useful 
metrics should not only provide the means for reporting progress, 
but also refect the experience a user has with the system. 

To relay the complexities involved in training and evaluation 
for continual interactive learning scenarios, we direct the reader’s 
attention to Figure 6, which illustrates data captured by our sys-
tem over time, across two hypothetical consecutive runs of the 
application, denoted as Session 1 and Session 2. The gray dots at 
the top represent the color image frames for which object tracking 
information is available. Note that frames may be missing, as the 
object tracker component may drop frames if it is not able to keep 
up with the incoming streams. 

The rectangles in Figure 6 represent instances of situated-objects, 
by which we mean an object existing at a given location, as detected 
by the system. For instance, the system frst detects object 1 at time 
�5 at a given location, and detects that object 1 is no longer at 
that location after �23. Note that this representation only refects 
the system’s automatic detection result—the object may have in 
reality existed at that location prior to �5, and may have moved to 
a new location before or after �23. The circles inside the situated-
object rectangles represent image views of the objects, cropped 
from the corresponding color image frame at that time point. As 
discussed in Section 6.1, some of these views (represented with a 
crossed circle) are fltered out because of motion blur or detected 
occlusions. Another event of importance is the arrival of labeled 
data via interaction, in this case when the user presses the virtual 
[+] button on top of the object. We refer to this action as the labeling 
point, marked by the asterisk above each object in Figure 6. Given a 
user-provided label, the system can propagate the label backwards 
and forward in time, increasing the quantity of labeled training 
data for continual learning. 

In the next two sections, we assess the performance of the zero-
shot use of CLIP and of the learning approach based on CLIP encod-
ings purely on the task of object recognition, factoring out potential 
errors introduced by the 3D object detector, i.e., assuming correct 
object bounding-box information is available. Specifcally, we use 
as an evaluation set the data for each object from the labeling point 
forward, which we refer to as the confrmed region—shown in gray 
in Figure 6. Throughout the confrmed region, we trust that the 
object bounding box is accurate, as the user confrmed it explicitly 
at the labeling point (perhaps after editing it). We consider the label 
provided by the user as ground truth for this confrmed region2. 

2
During initial experimentation, we found that the system could robustly identify 
when objects disappear from a location. However, a formal study of the reliability of 
these automatically generated labels is left for future work. 

We report two types of performance metrics: frame accuracy 
and aggregate accuracy. The frst metric is computed by measuring 
the percentage of correctly classifed object views (frames). For the 
second metric, we aggregate the predictions into object instances 
to generate an instance accuracy, which is then averaged across 
all instances of a given class into a class accuracy, which in turn is 
averaged into the fnal aggregate accuracy metric. We believe the 
second metric is less afected by the distribution and duration of 
objects in the data, i.e., frame accuracy might be infuenced (up or 
down) by a single object whose existence spans a large duration. 

When we run zero-shot inference or train the logistic regres-
sion model with CLIP encodings, we keep all the object classes 
introduced at run time (including the synonym variants), as this 
set refects what the live system encountered. However, we do not 
penalize the models in evaluation when they predict a synonym 
for a given class. In addition, two object instances (one at each site) 
where inadvertently confrmed by the users incorrectly. We keep 
their data for training—again refecting the noisy nature of data 
collected by a live system—but eliminate them from the evaluation 
since these labels do not accurately refect the ground truth. 

7.2 Results for CLIP in Zero-Shot Mode 
We now turn our attention to the performance of the CLIP zero-
shot approach. Recall that with this approach, there is no actual 
adaptation of the CLIP model itself. Nonetheless, the predictions 
are computed incrementally, and the set of classes evolves over 
time: if a label provided by the user at a labeling point has not been 
previously encountered, it is added to the set of classes from that 
point forward. The evaluation is conducted by comparing all of 
the incrementally obtained predictions against labels for all object 
views in the confrmed regions. 

The frst row in Table 1 shows the total number of object types, 
instances, and views (data points) available in the evaluation set, 
and the model performance in terms of the frame and aggregate 
accuracy, at each site. The results indicate that, while the model 
is able to often recognize the objects introduced by the users in a 
zero-shot fashion, a signifcant gap in accuracy remains. To assess 
the importance of the proposed object view fltering approach, 
we conducted an experiment in which we did not flter out the 
views with motion blur and occlusion. As the second row in Table 
1 shows, without fltering, the number of object views increases 
signifcantly and performance decreases by roughly 10% (note also 
that fve object types at Site 1 had been completely removed due to 
fltering). This result highlights the importance of selecting high 
quality views. In Section 8, we return to this topic and discuss future 
directions for the selection of object views. 
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Table 2: Recognition accuracy for learning with CLIP encodings, propagating labels forward in time vs both forward and 
backward, and considering all object instances vs instances for which the object type has been seen at least once before. 

Label Propagation Instances 
Frame Accuracy 
Site 1 Site 2 

Aggregate Accuracy 
Site 1 Site 2 

Forward All 78.4% 75.2% 44.8% 51.6% 
Forward Seen 95.8% 96.4% 85.7% 90.9% 

Forward and Backward All 77.7% 74.7% 46.2% 53.0% 
Forward and Backward Seen 94.9% 95.9% 88.2% 94.1% 

7.3 Results for Learning with CLIP Encodings 
In a second evaluation experiment, we assessed the learning method 
described in Section 6.2. We simulate the construction of an adapted 
model by traversing the data chronologically and training a multi-

nomial logistic regression layer on top of the image encodings 
generated by the CLIP model. Specifcally, a new multinomial lo-
gistic regression model is trained upon reaching the endpoint of 
each situated object instance. In the illustrative example shown in 
Figure 6, the model M1 is constructed at time �23 (with the views 
from object 1), M2 at time �28 (with the views from objects 1, 2 and 
3), M3 at �108 (with the views from object 1, 2, 3, and 4), and so 
forth. When evaluating, the latest model is used going forward for 
all incoming object views, until a new model is generated at the 
next update point. For example, model M1 from Figure 6 is used 
for the image views for objects 2 and 3 between times �24 and �28. 
This process simulates in essence an experience with the model 
at runtime, where the current model is used on upcoming object 
views, while ensuring that we do not evaluate a model on views 
belonging to the same situated object instance on which we trained. 

The frst row in Table 2 shows the frame and aggregate accuracy 
of the learned model at each site. While the frame accuracy has 
increased compared to the zero-shot setting, the aggregate accuracy 
metric is signifcantly lower in this case than the frame accuracy, 
i.e., 44.8% vs 78.4% at Site 1, and 51.6% vs 75.2% at Site 2. We believe 
the low aggregate accuracies are explained in part by the fact that 
the adapted model is a closed-world model. Because the model is 
updated at the end of situated object instances, it often encounters 
object types during evaluation that it has not seen before. We deter-
mined that 19 out of the 69 object types from Site 1 (after fltering 
and collapsing synonyms), and 13 out of 47 at Site 2, were single-
tons, i.e., they occurred in only one instance. For these objects, the 
performance of the logistic regression model is always zero—as the 
model does not even know that the class exists when it encounters 
the datapoints, signifcantly lowering the aggregate measure. 

To assess how well the model performs after it has seen an object 
type at least once, i.e., after it has a chance to learn about it, we 
eliminate from the evaluation the frst encounter with each object 
type. Evaluation results on instances for which the object type 
has been previously seen at least once are shown in the second 
row in Table 2. Indeed, in this case, both the frame and aggregate 
accuracies are signifcantly higher. 

Finally, we conducted another experiment in which we propa-
gated the labels for training not just forward over the confrmed 
region (where the user has confrmed the bounding box for the 

object), but also moving backwards in time, all the way to the detec-
tion point for each object, as illustrated schematically for object 1 
in Figure 6. By projecting the labels back in time, we gain additional 
training data for each instance, although the additional training 
views may come from periods when the segmentation was still 
poor (before the user had fnished editing the bounding box). The 
results are shown in the third and fourth row from Table 2. We 
observe a modest increase in aggregate accuracy over object types 
that have been previously seen. 

8 DISCUSSION AND FUTURE WORK 
The evaluation reported above indicates that, if the problem of accu-
rate object detection and tracking can be resolved, an of-the-shelf 
platform model like CLIP [17] holds promise for constructing a 
system that learns about objects online and onsite. Besides the eval-
uation of the CLIP model reported above, the case study revealed 
several important issues that need to be addressed on the path to 
developing a system that can continually learn to recognize objects 
in the open world. We briefy discuss these issues below. 

The proposed approach relies on the ability to detect and track 
objects in 3D space. In the current implementation, we used a 
heuristic voxel-based detection and tracking algorithm. We found 
that this algorithm works well when objects are large and clearly 
separated. However, it often fails when the scene is cluttered and 
includes many objects in close proximity. In these cases, multiple 
objects are often grouped together and identifed as one single large 
object. Additional challenging situations arise with small objects, 
and with shiny, refective, or transparent objects (which often go 
undetected in the depth camera). This makes it difcult to detect 
and label a wide spectrum of objects, for instance in the kitchen 
settings: refective utensils, transparent bottles, shiny pans, etc. 

The ability of the user to correct the automated object segmenta-

tions by resizing and rotating the bounding boxes compensates for 
some of the defciencies noted above. In most cases3, it is relatively 
easy for users to correct the object boundaries. The users adjusted 
the bounding boxes for 82% (Site 1) and 80% (Site 2) of the confrmed 
objects. We believe that improvements in the 3D object detection 
and tracking (e.g., using techniques that combine both depth and 
color-space information) can signifcantly improve the end-to-end 
performance and usability of the proposed approach. 

3
Sometimes the poor segmentation interferes with the gaze-based object selection 
algorithm, leading to rapid alternation between two incorrect bounding boxes when 
the user’s gaze is on a given object; in these cases it becomes difcult to pinch a corner 
or edge grasp-point 
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As the results from Table 1 indicate, carefully selecting which ob-
ject views to use for recognition matters. The current system selects 
views based on a pretuned motion blur threshold and occlusion 
parameters. In future work, we plan to more closely investigate the 
relationship between diferent image properties, such as motion 
blur, occlusion, and framing on the recognition performance of 
platform models like CLIP. Given the many challenges posed by 
real-world deployments, and the inevitable train-test distribution 
shifts, fnding ways to characterize and flter object views that lead 
to better recognition, or to better models when used in training, 
are important directions for future research. 

Finally, a number of challenges and opportunities were identifed 
with respect to the mixed-reality object teaching interface. The 
current implementation does not allow the user to change the 
label for an object or to edit its bounding box after the object had 
been confrmed by pushing the [+] button. This is problematic in 
several ways. For example, we identifed at least one case where 
the confrmation button was pressed accidentally as the user was 
trying to perform a pinching gesture to manipulate the object’s 
bounding box. In another case, a speech recognition error in the 
label went unnoticed by the user until after the object was confrmed 
and introduced an incorrect class name in the set of classes for the 
object recognition model. Future work should consider evolving the 
afordances of the teaching interface to allow for corrections, as well 
as dealing with synonyms for the labels assigned to objects. These 
real-world issues, in turn, raise interesting algorithmic questions 
for continual learning, such as how to construct incremental model 
updates not just in situations where new data arrives in stream, but 
also where old data and previous model updates need to be revised. 

9 CONCLUSION 
We focused on opportunities to leverage the multimodal sensing 
and interaction capabilities of mixed-reality devices to develop 
systems that continually learn about physical objects in the open 
world. We proposed an approach in which users can label objects 
in stream, over the course of their regular activities, and views of 
the objects can be collected in the background and paired with the 
labels to continually learn how to better recognize those same ob-
jects. We developed an end-to-end implementation of the proposed 
approach using the HoloLens 2 device, and reported results and 
lessons learned from an initial, exploratory case study. 

Overall, the results indicate that, in the presence of good segmen-

tations, and with careful selection of which object views to account 
for problems like motion blur and occlusion, platform computer 
vision models like CLIP [17] hold promise for developing systems 
that learn continually to recognize objects in a given environment. 
Developing and experimenting with a concrete system brought 
to the fore important questions about the defnition of training 
and test cases, and diferent methods for evaluating recognition 
performance in interactive continual learning settings. Directions 
for future work include propagation of user-specifed object seg-
mentations backward and forward in time from labeling events, 
reasoning about occlusions due to changing viewpoints and ob-
ject confgurations, online algorithms for selecting image views for 
inference and training, and the handling of unknown object types. 
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