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Abstract—In this paper, we propose a novel method to calculate
trainee performance scores in a flight simulator environment
using flight simulator logs. Our approach improves upon the
existing scoring system designed in the AFRL by better fitting
scores into the existing model of the training process.

I. INTRODUCTION

In this paper, we propose a new method to calculate trainee
performance scores in a flight simulator environment using
flight simulator logs. The training process consists of multiple
sessions of straight-line flight with two flavors: 1) a ”Straight
and Level” flight where the trainee should maintain constant
speed, altitude, and course; and 2) a ”Glideslope” flight where
the trainee should maintain straight-line flight towards the
beginning of the runway (i.e., course) with constant speed.
The duration of each session is around 2-3 minutes. The
performance of trainees in each session should be evaluated
and scored with a positive real number between 0 and 1 for
evaluation and optimization of the training process.

Our proposed approach improves upon the existing scor-
ing system designed by AFRL by better fitting scores into
the existing model of the training process. In the existing
scoring system, information is obtained from flight simulator
logs including normalized deviations from prescribed air-
speed σV norm, prescribed altitude σAnorm, prescribed course
σLnorm, and direction to the beginning of the runway σGnorm.
The performance score is computed as follows:

S =

∣∣∣∣∣ ((1−σV norm)+(1−σAnorm)+(1−σLnorm))
3

((1−σV norm)+(1−σAnorm)+(1−σGnorm))
3

(1)

In this equation, the upper line represents straight-and-level
flight, while the second line represents glide-slope flight.

The main problem of the current scoring system is that
it assigns negative scores when trainees are not experienced
enough to maintain the prescribed parameters. Internally, the
training system model [1] expects positive numbers and zeroes
all negative scores. Thus the usability of the current model is
limited for novice trainees.

The scoring process can be generalized as a weighted sum
of these four features:

S =

N∑
i=1

wiσi + w0 (2)

The four features above are task-dependent and suitable
for scoring straight-line flight only. However, three additional
features can be obtained from flight simulator logs: normalized

TABLE I
CORRELATION OF THE FEATURES WITH THE IDEAL SCORE.

Parameter Corr. coeff.
σV norm −0.6921
σAnorm −0.1827
σLnorm −0.7237
σGnorm −0.5855
σTnorm −0.1969
σXnorm −0.2509
σY norm −0.2235

deviations of the throttle σTnorm, and the normalized devia-
tions of the stick in two axes σXnorm and σY norm. These
features are less task-dependent and can be easily added to
the generalized scoring in equation (2).

II. PROPOSED SCORING ALGORITHM

We propose using ideal scores from the training process
model described in [1]. Each trainee is modeled with three
parameters: initial absolute skill, learning rate, and forgetting
factor. Every scenario is modeled with two parameters: sce-
nario difficulty and maximum achievable score. Variability of
human performance is modeled as Gaussian noise added to
the score. Based on scores from multiple subjects running
sessions with scenarios with variable difficulty, the parameters
above can be estimated, and ideal scores computed. We will
use these scores to find a better way to combine the four
features above. The correlation coefficients of these features
with the model scores are shown in Table I. While the first
three original features have relatively high correlation with
the modeled score, for the second group of three features, the
correlation is relatively low.

We propose treating the scoring as a regression machine
learning problem: from a set of features (the deviations from
the flight logs), compute the output value (the ideal scores).
The evaluation criterion can be the root mean squared error
(RMSE) of the interpolation. As a baseline, we will use esti-
mation using Equation 1. Several machine learning techniques
are under consideration:

• Linear regression, which is the straightforward estima-
tion of the weights in equation (2) using least squares
method [2].

• Support Vector Machine (SVM) in regression mode [3].
• Deep Neural Network (DNN) with a given number of

layers and nodes in each layer [4].



Fig. 1. Scores estimation using the original features as function of the
simulated scores and ELM estimator.

TABLE II
RMSE OF THE PROPOSED APPROACHES.

Algorithm Validation Test
Baseline 0.5128 0.5128
Linear 0.1668 0.1952
SVM 0.1942 0.2052
DNN 0.1890 0.1950
ELM 0.1030 0.1145

• Extreme Learning Machine (ELM) in regression mode,
which is a shallow and wide neural network with one
hidden layer and analytic solution for the training [5].

III. TRAINING PROCESSES, APPROACHES AND
STRATEGIES

To evaluate the proposed approach, we used data from 34
subjects who performed training on 11 scenarios with varying
difficulty levels. The dataset consists of 1290 sessions. From
the training process model [1], we retrieved 1290 ideal scores
that were used as labels.

Of these 34 subjects, seven had more than 90 scores. The
validation and testing datasets were selected from among
them, giving us 42 combinations for training, validation, and
testing datasets. The final RMSE for validation and testing
was computed as a weighted average of the RMSE in each
combination.

We consider three sets of features:
• The four initial features from Equation (1);
• The combination of these four plus the three task inde-

pendent features;
• Only the three task independent features.
The training of the regression DNN was limited to 150

epochs with forced stopping if the results on the validation
dataset did not improve for five epochs. The stochastic gradient
descent algorithm was used for training with an initial learning
rate of 0.001. The hyper-parameters of each approach (number
of layers, number of nodes, etc.) were optimized for each
regression strategy using the averaged RMSE on the validation
datasets. This resulted in 16 nodes in the ELM hidden layer
and three layers of 32 nodes for the regression DNN.

Fig. 2. Baseline, estimated, and simulated scores for one subject, ELM
estimator.

TABLE III
RMSE OF DNN AND ELM WITH VARIOUS FEATURE SETS.

Feature set Valid. DNN Test DNN Valid. ELM Test ELM
Original 0.1890 0.1950 0.1030 0.1145

Orig.+contr. 0.1619 0.2002 0.3200 0.5301
Controls 0.2328 0.2694 0.5322 0.3566

IV. RESULTS

The results from all approaches using the first feature set
are shown in Table II. Overall, all the regression algorithms
show better accuracy than the baseline. The best performing
algorithm with this feature set is the ELM, followed by the
DNN. Surprisingly, the linear regression model outperforms
the SVM. In Fig. 1, estimated scores are shown as a function
of idealized scores. Estimated scores are positioned around
simulated scores; there are no scores below zero. Fig. 2 shows
baseline scores, estimated scores and scores from the model. It
is clear that the estimated scores are closer to ideal scores from
the model and the problem of the large number of scores below
zero is resolved. Table III shows the accuracy on validation
and test data sets for the ELM and DNN for all three feature
sets. From these results it is clear that adding the three features
did not improve accuracy on the test set, so these features do
not carry enough information to be considered independently.
Also noticeable is that the DNN estimator, while less accurate
on first feature set, is more stable on different feature sets.
Further, the ELM cannot provide good solutions for the second
and third features sets, when the controls are added.
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