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ABSTRACT

On-device Deep Neural Network (DNN) inference consumes

significant computing resources and development efforts.

To alleviate that, we propose LUT-NN, the first system to

empower inference by table lookup, to reduce inference cost.

LUT-NN learns the typical features for each operator, named

centroid, and precompute the results for these centroids to

save in lookup tables. During inference, the results of the

closest centroids with the inputs can be read directly from the

table, as the approximated outputs without computations.

LUT-NN integrates two major novel techniques: (1) differ-

entiable centroid learning through backpropagation, which

adapts three levels of approximation to minimize the accu-

racy impact by centroids; (2) table lookup inference execu-

tion, which comprehensively considers different levels of
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parallelism, memory access reduction, and dedicated hard-

ware units for optimal performance. LUT-NN is evaluated on

multiple real tasks, covering image and speech recognition,

and nature language processing. Compared to related work,

LUT-NN improves accuracy by 66% to 92%, achieving similar

level with the original models. LUT-NN reduces the cost at

all dimensions, including FLOPs (≤ 16×), model size (≤ 7×),
latency (≤ 6.8×), memory (≤ 6.5×), and power (≤ 41.7%).
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1 INTRODUCTION

DNNs are widely used in mobile applications, offering users

unparalleled intelligent services. However, DNNs are com-

putation hungry workloads, mainly composed of linear com-

putation operators, heavily stressing the limited hardware

resources on mobile devices.

https://doi.org/10.1145/3570361.3613285
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As a result, huge efforts have been taken for efficient

and affordable DNN inference on mobile devices, such as

model compression [4, 19], sophisticated computing oper-

ator optimization [18, 41, 46, 55], tensor compilers for op-

erator generation [9, 39], and customized DNN accelera-

tors [34, 35, 57]. These methods require redesigning or re-

implementing model structures, computation operators, or

accelerators repeatedly for diverse deployment scenarios.

Different from these directions, this paper explores a new

possibility to replace computation operators of DNNs, for

reduced inference cost, as well as the tedious efforts of opera-

tor development. To achieve this, we first rethink the essence

of inference. Each layer of a DNN model is to output another

level of features given the input features. For example, the

front layers of an image recognition model output low-level

features (e.g., edges and lines), and subsequent layers output

high-level features (e.g., faces and objects). The fact is that

the features of different images for each layer have semantic

similarity. A vivid example is that though cats and horses

are different input images for a model, their ear features

result in similar output for the layer that extracts it. Same for

language tasks, similar words of different sentences could

have similar embeddings and output results.

Based on this similarity, the question is that whether the

typical features can be learned for each computation opera-

tor of DNNs, so that the output of these typical features can

represent the output of diverse features. If so, by precomput-

ing and saving the output of typical features, the output of

future inputs can be read directly without computation.

Towards answering this question, we propose LUT-NN, a

novel system to empower DNN inference by table lookup.

The system learns the typical features, named centroid, for
each linear computation operator, and precompute the re-

sults for these centroids to save in lookup tables. During

inference, the results of the closest centroids with the input

features can be read directly from the table as the approx-

imated output of this operator. The required computation

cost for inference is significantly reduced. Fig. 1 shows an

overview of LUT-NN using real data samples of a model.

LUT-NN integrates two major techniques: (1) differentiable

centroid learning through backpropagation, and (2) table-

lookup inference execution.

Maddness [5] initiates the centroid learning for matrix

multiplication (MM), leveraging the technique of Product

Quantization (PQ). PQ is an effective vector quantization al-

gorithm widely used for dataset compression [24, 33]. It com-

presses the dataset by clustering the vectors in the dataset

first, and then learning the centroids to represent vectors in

each cluster. By using PQ, Maddness learns the centroids

from the training dataset for a single-operator image classi-

fier, and precomputes the MM results for the centroids, as

the approximation for future input matrices.

However, as we will show in the paper, directly applying

Maddness to the computation operators of a DNN model

results in poor accuracy (80% accuracy drops for CIFAR-10).

A similar conclusion is also fromMcCarter et al. [44].We first

analyze the issue and expose the main reason for the poor

result is the different optimization goal of centroid learning for
PQ and DNNs. The goal of PQ is to learn the centroids that

can minimize the total error/distance between centroids and

vectors, while the goal of DNNs is to minimize the final loss

function. The two goals have no direct relationship. Without

considering the loss function, errors introduced by centroids

in Maddness are accumulated layer by layer, resulting in

poor accuracy, making the resulting DNN model unreliable

and undeployable in real-world applications.

Figure 1: LUT-NN transforms model linear-

computation layers to table lookup for inference.

Therefore, we identify the key factor for DNN centroid

learning is to pass the model loss to each operator through
backpropagation, and iteratively adjust the centroids by the

gradients to minimize the model loss. However, the chal-

lenge is that currently it is not possible to learn centroids

through backpropogation, since encoding a vector to the

closest centroid e.g., argmin or hashing inMaddness, is not

differentiable, and thus the gradients cannot be calculated.

To solve this challenge, we propose the novel differen-

tiable centroid learning technique for DNN. Through back-

propagation, it adapts three different levels of approximation

introduced by centroids to model inference by three methods,

and minimize the accuracy loss. (1) To enable gradient calcu-

lation and iteratively adjust centroids, LUT-NN uses soft-PQ
method. It uses the continuous approximation of argmax,
i.e., softmax, for backward pass. The forward pass still uses

argmin for model loss calculation, since argmin will be used
for inference. Soft-PQ can adapt the approximation intro-

duced by centroids to reduce accuracy loss. (2) Since the use

of softmax introduces approximation to argmin, LUT-NN
uses learned temperature method, to learn the hyperparam-

eter temperature of softmax for each operator, to tradeoff

accuracy loss and learning convergence. (3) Since the lookup



LUT-NN: Empower Efficient Neural Network Inference with Centroid Learning and Table Lookup ACM MobiCom ’23, October 2–6, 2023, Madrid, Spain

tables for precomputed results are the main cost for LUT-NN,

scalar quantization is used to reduce the table size. To adapt

the approximation introduced by this scalar quantization,

LUT-NN uses quantization-aware training, which uses quan-

tized tables in the forward pass and real-value tables in the

backward pass, to reduce accuracy loss. By the techniques

above, the centroids can be learned, which empowers table

lookup to replace the diverse DNN linear computations while

maintain similar-level of model accuracy.

LUT-NN achieves a high FLOPs reduction (up to 16×).
To run LUT-NN on resource-limited devices, we design and

implement the table lookup inference execution on com-

modity ARM and x86 CPUs. The challenge is that table

lookup is a new inference paradigm, and no direct support

from current systems and accelerators. Our design compre-

hensively considers different levels of hardware parallelism,

memory access reduction, and dedicated hardware units, to

fully utilize hardware resources. Specifically, we align the

size of codebook and lookup table to the width of SIMD

instructions for data-level parallelism, interleave the instruc-

tions of argmin reduction for instruction-level parallelism,

reside the codebook in an inner loop for cache locality, and

leverage the shuffle instruction for fast table access.

We evaluate LUT-NN on a range of tasks, including im-

age recognition tasks: CIFAR [37], GTSRB [50], SVHN [47],

and ImageNet [12]; speech recognition task: Google Speech

Command [56]; nature language processing (NLP) tasks:

GLUE [53] and a regression task: UTKFace [60] age pre-

diction, and cover both CNN and BERT models. For all these

tasks, compared to directly applying Maddness, LUT-NN

can improve the accuracy by 66% to 92%. The accuracy differ-

ence between LUT-NN and the original DNN models ranges

from +1.98% (Speech Command) to -2.42% (ImageNet).

For inference efficiency, LUT-NN can outperform baselines

in all dimensions. The selected baselines include both the

state-of-the-art hand-written inference system ONNX Run-

time [46], and also the well-tuned TVM [9] generated kernels

as the performance upper-bound of linear computations. The

detailed results include: FLOPs reduces 5.7× ∼ 16×; model

(or disk) size reduces 3.4× ∼ 7×; end-to-end inference latency
reduces 1.3× ∼ 6.8×; memory usage reduces 1.4× ∼ 6.5×;
and peak power reduces 15% ∼ 41.7%. The real speedup is

less than the FLOPs reduction due to the unfriendly support

for table lookup in hardware. A customized table-lookup unit

or accelerator could unleash the full potential of LUT-NN.

LUT-NN takes the first trial towards this new table-lookup

inference paradigm, which potentially much simplifies the in-

ference system and hardware design and improves efficiency.

To sum up, the key contributions of this paper are as follows.

The code is open sourced at https://github.com/lutnn.

• LUT-NN is the first to empower DNN inference by

table lookup to reduce inference cost.

• It can achieve similar level of model accuracy by the

novel differentiable centroid learning technique for

DNNs through backpropagation.

• It designs the new table lookup operation to enable

this new inference paradigm on commodity CPUs.

• We implement the learning and inference pipelines. Su-

perior results are shown on all evaluated dimensions.

2 BACKGROUND AND MOTIVATION

Each data sample in the training set can be assumed as a

vector. This section will first introduce the concept of vector

quantization and its efficient solution, PQ, and then show

the poor results of directly applying PQ to DNN inference.

2.1 Product Quantization: Background

Quantization has beenwell studied in information theory [20].

It reduces the cardinality of a dataset by using centroids to
represent the data samples. The set of centroids is called a

codebook. For vector quantization, the dataset is composed

of 𝐷-dimension vectors. The vector quantizer can encode

each vector to a centroid in the codebook.

To reduce the cost of vector quantization, PQ is proposed.

The essence of it is to decompose the high-dimensional vec-

tor space into the Cartesian product of sub-vector spaces and

then quantize these sub-vector spaces separately. As shown

in Fig. 2(a), it splits the 𝐷-dimension vector into 𝐶 distinct

𝑉 -dimension sub-vectors (𝐷 = 𝐶 · 𝑉 ). The sub-vectors are
quantized separately using 𝐶 codebooks. The quantization

result of the vector is the concatenation of the 𝐶 centroids.

Centroid learningWe now formulize the PQ process. To

quantize a 𝐷-dimension vector 𝑎 ∈ R𝐷 , PQ needs to learn

the centroids from a training dataset𝐴 ∈ R�̂�×𝐷
composed of

vectors with the same distribution as 𝑎. PQ first decomposes

the vectors in the dataset into 𝐶 distinct 𝑉 -dimension sub-

vectors, notated as 𝐴𝑐 ∈ R�̂�×𝑉
(marked in different colors in

Fig. 2). To make optimal quantization, the centroid learning

process is to find the 𝐾 centroids 𝑃𝑐 (i.e., the 𝑐𝑡ℎ codebook)

for 𝐴𝑐 by 𝑘-means [40], which can minimize the distance

sum of each sub-vector 𝐴𝑐𝑖 and its nearest centroid 𝑃𝑐
𝑘
, as

shown in Eq. 1.

arg min

𝑃

∑︁
𝑐

∑︁
𝑖

𝐴𝑐𝑖 − 𝑃𝑐𝑘2 (1)

Sub-vector encodingWith the learned centroids 𝑃 , for

an input vector 𝑎, PQ can encode it as the concatenation

of the nearest centroids for each sub-vector. The encoding

function for a sub-vector is shown in Eq. 2. By this vector

decomposition method, the centroids can represent 𝐾𝐶 dif-

ferent vectors by only 𝐾 ×𝐶 memory cost.

𝑔𝑐 (𝑎𝑐 ) = arg min

𝑘

𝑎𝑐 − 𝑃𝑐
𝑘

2
(2)

https://github.com/lutnn
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Hashing for acceleration with bigger error Learning

centroids is a NP-hard problem. Vanilla PQ uses 𝑘-means to

learn centroids and encode sub-vectors. 𝑘-means satisfies

Lloyd optimal conditions [33, 40] and can get a local optimal

quantization error. However, the 𝑘-means encoding costs

high to compute the Euclidean distance for each sub-vector

with each centroid, as shown in Eq. 2.

To reduce the encoding cost, some works propose hash-

ing methods to encode sub-vectors [5, 26], but at the cost
of higher quantization error. Hashing hashes a sub-vector

to one of the 𝐾 buckets. For example, maddness selects a

4-level balanced binary regression tree of the hashing func-

tion family, with each leaf as a hash bucket. A sub-vector is

encoded by traversing the tree from the root, and moving to

left or right child if the value of certain indices is above or

below a threshold.

This paper will evaluate both distance-based encoding and

hashing-based encoding methods.

Figure 2: Product Quantization for AMM. Each color

marks a sub-vector dataset.

2.2 PQ for AMM

PQ can be used for approximatedmatrixmultiplication (AMM) [5].

The essence is to approximate the matrix multiplication by

the centroids’ multiplication.

To formulize it, for matrix multiplication 𝐴 × 𝐵𝑇 , 𝑎 and 𝑏
are the rows of𝐴 and 𝐵 respectively. The centroid codebooks

for 𝐴 is 𝑃 . For a layer of DNN, 𝐴 can be the input feature

maps, and 𝐵 can be the weights (note that convolution can be

computed as matrix multiplication too). Since 𝐵 is constant,

the multiplication of all the centroids and 𝐵 can be precom-

puted to construct a lookup table, as shown in Fig. 2(b). The

table construction function for 𝑏𝑐 is shown in Eq. 3.

ℎ𝑐 (𝑏𝑐 ) = [𝑃𝑐
0
· 𝑏𝑐 , 𝑃𝑐

1
· 𝑏𝑐 , · · · , 𝑃𝑐𝐾−1 · 𝑏

𝑐 ] (3)

The matrix multiplication can then be approximated by

looking up and aggregating the results of the nearest cen-

troids in the precompute table, formulated in Eq. 4. Here

considers the 𝑔𝑐 (𝑎𝑐 ) function with 𝑜𝑛𝑒ℎ𝑜𝑡 representation for

𝑎𝑟𝑔𝑚𝑖𝑛, i.e., the nearest centroid is marked as 1 and others as

0, 𝑔𝑐 (𝑎𝑐 ) = 𝑜𝑛𝑒ℎ𝑜𝑡 (arg min

𝑘

𝑎𝑐 − 𝑃𝑐
𝑘

2) = (0, ..., 0, 1, 0, ..., 0).
𝑎 · 𝑏 =

∑︁
𝑐

𝑎𝑐𝑏𝑐 ≈
∑︁
𝑐

𝑔𝑐 (𝑎𝑐 ) · ℎ𝑐 (𝑏𝑐 ) (4)

(a) Vanilla PQ-based AMM (b) maddness AMM

Figure 3: Model accuracy keeps decreasing because

MSE keeps increasing, while more MMs (from the

last to the first) are replaced by PQ-based AMM, for

ResNet20 on CIFAR-10. maddness leads to more accu-

racy loss because using hashing for encoding.

2.3 Motivation: Poor results of PQ for DNN

Since DNN models are composed of MM, a direct thought is

that can we replace MM in a DNN model by the PQ-based

AMM. However, results show that directly applying it to a

DNN model leads to poor accuracy.

Fig. 3 shows the accuracy of using PQ-based AMM for

ResNet-20 on CIFAR-10, as well as the Mean Square Error

(MSE) of the replaced model and the original model. We

replace the MM from the last to the first layer by PQ-based

AMM. Fig. 3a uses vanilla PQ with 𝑘-means for encoding,

while Fig. 3b uses maddness with hashing for encoding.

Results show the accuracy keeps dropping while more

layers are replaced by AMM, because the error of the AMMs

is accumulated. As expected, vanilla PQ shows better results

than maddness, since 𝑘-means introduces smaller quantiza-

tion error than hashing. maddness can maintain accuracy

when only the last layer is replaced. This is consistent with

the maddness paper, which only replaces the last layer, i.e.,

fully-connect, by AMM. However, if we replace the last two

layers, the accuracy sharply drops by 30%, and finally ends

in 10% accuracy. Vanilla PQ drops by 30% when the last six

layers are replaced, and also ends in 10% accuracy.

Reason for poor accuracyWe expose the key reason for

the poor accuracy of PQ-based AMM is that the optimization
goal of PQ and DNN learning is different. As shown in Eq. 1,

the goal of PQ is to minimize quantization error, i.e., learn

the centroids to minimize the distance of each sub-vector

and its nearest centroid. On the other hand, the learning goal

of DNN is to minimize the final loss function, through back-

propagation to iteratively adjust the model parameters of

each layer.Without considering the loss function, whenmore

layers use AMM, the approximation error gets accumulated,

as shown in Fig. 3. To get better accuracy, it is necessary to

learn the centroids by the DNN training process.

However, the challenge is that PQ centroid learning and

encoding functions shown in Eqs. 1 and 2 are not differen-

tiable, and cannot use backpropagation to calculate gradient.

This paper thus proposes the soft-PQ technique, which em-

powers the centroid learning for a DNN by backpropagation

and gradient descent.
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3 DIFFERENTIABLE CENTROID

LEARNING FOR DNN

As exposed above, the key factor to empower table lookup

for DNNs is to learn the centroids of each layer through back-

propagation to minimize the model loss. However, the main

challenge is that the argmin function in vanilla PQ, according
to Eq. 2, is not differentiable. We therefore propose the differ-

entiable centroid learning for DNN. The learning integrates

three methods to adapt three levels of approximation.

Firstly, we propose soft-PQ method, which leverages the

continuous and differentiable approximation to argmax func-
tion, i.e., softmax [32], for backpropagation.We approximate

the 𝑜𝑛𝑒ℎ𝑜𝑡 centroid result as the weighted sum of all centroid

results (Sec. 3.1). Prior work has used softmax for differen-
tiable PQ, but only for input embedding compression[8]. Our

work is the first to enable soft-PQ for end-to-end DNNs.

Secondly, the use of softmax introduces another level of
approximation to using argmin, which could also lead to

reduced model accuracy. We propose a learnable tempera-

ture method to address this challenge to adjust the approx-

imation error of softmax with argmin for each layer. The

temperature of each layer’s softmax can be learned through

backpropagation (Sec. 3.2).

Thirdly, to reduce memory cost of the lookup tables, LUT-

NN applies scalar quantization on the lookup tables. How-

ever, this also introduces a level of approximation. Similarly,

we propose quantization-aware training to adapt this ap-

proximation during centroid learning (Sec. 3.3).

Figure 4: Soft PQ learns centroids. Forward pass uses

argmin as the encoding function, and backward uses

softmax. Each color marks a sub-vector dataset using

one codebook. 𝑃𝑐
𝑘
is the 𝑘𝑡ℎ centroid for sub-vector 𝑎𝑐 .

3.1 Backpropagation through soft-PQ

As discussed in Sec.2.1, vanilla PQ employs 𝑘-means to learn

centroids from the dataset, and the encoding function 𝑔𝑐 (𝑎𝑐 )
utilizes argmin to encode a sub-vector as the nearest centroid,
represented by a onehot vector (0, ..., 1, ..., 0) as shown in

Fig.4. The sub-vector AMM result can be read directly from

the lookup table by 𝑔𝑐 (𝑎𝑐 ) · ℎ𝑐 (𝑎𝑐 ).
However, to apply PQ to the entire DNN model and min-

imize the model loss, the centroids for each layer must be

learned from backpropagation and gradient descent. We uti-

lize the smooth argmax function, i.e., softmax, as the encod-
ing function for backpropagation, as shown in Eq.5. Here, 𝑡

represents the temperature hyperparameter, which will be

further discussed in Sec. 3.2.

𝑔𝑐 (𝑎𝑐 ) = softmax(−
𝑎𝑐 − 𝑃𝑐

𝑘

2 / 𝑡) (5)

For a codebook with 𝐾 centroids, the softmax function

takes a vector of 𝐾 distance results between the sub-vector

𝑎𝑐 and each centroid 𝑃𝑐
𝑘
as input. It normalizes the input to

a probability distribution that adds up to 1. According to

the definition of softmax, each probability is proportional to

the exponent of the distance, i.e., 𝑒𝑥𝑝 (−
𝑎𝑐 − 𝑃𝑐

𝑘

2/𝑡). The
closer the centroid is to the sub-vector, the higher the proba-

bility will be. The encoding for a sub-vector is transformed

from a deterministic onehot vector into a probability vec-

tor. For example, as illustrated in Fig. 4, the output of the

softmax encoding function is (0.12, ..., 0.64, ...), where 0.64 is
the probability of the nearest centroid. The sub-vector AMM

result is then obtained as the dot product of the probability

vector and the lookup table entries.

Soft-PQ centroid learning: Using softmax, the centroid
learning process of our soft-PQ for the entire model is illus-

trated in Fig.4. During the forward pass, the onehot argmin
function is utilized to calculate the model output and loss,

as model inference will also use argmin for simplicity. The

backward pass utilizes softmax as the encoding function

to calculate gradients, adjust centroids via gradient descent,

and rebuild lookup tables with the updated centroids for the

next training iteration. Based on Eq.4, the sub-vector AMM

in soft-PQ is formulated as Eq. 6.

𝑎𝑐𝑏𝑐 = 𝑔𝑐 (𝑎𝑐 )·ℎ𝑐 (𝑏𝑐 )−sg(𝑔𝑐 (𝑎𝑐 )·ℎ𝑐 (𝑏𝑐 )−𝑔𝑐 (𝑎𝑐 )·ℎ𝑐 (𝑏𝑐 )) (6)

Here, 𝑠𝑔 represents the stop gradient operator. It serves
as an identity function during the forward pass to enable

the use of 𝑔𝑐 (𝑎𝑐 ) encoding in argmin. During the backward

pass, it drops gradients inside it to enable 𝑔𝑐 (𝑎𝑐 ) to generate

gradients via softmax.
The initial value is critical for learning convergence and

accuracy. Therefore, we use the centroids learned by𝑘-means

from vanilla PQ to initialize the centroids and lookup tables.

3.2 Learned temperature

The temperature hyperparameter 𝑡 of softmax [28] con-

trols the approximation error of softmax to argmax. Shown

in Fig. 5a, as 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑥)𝑖 =
𝑒𝑥𝑝 (𝑥𝑖/𝑡 )∑𝐾
𝑘=1

𝑒𝑥𝑝 (𝑥𝑘/𝑡 )
, when 𝑡 → ∞,

𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑥)𝑖 → 1

𝐾
, i.e., the output probability distribution

approaches uniform distribution.When 𝑡 → 0, 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑥) →
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𝑜𝑛𝑒ℎ𝑜𝑡 (𝑎𝑟𝑔𝑚𝑎𝑥 (𝑥)), i.e., the probability of the largest 𝑥 ap-

proaching 1 and the others is 0.

Therefore, there is a tradeoff between small and large tem-

perature. For small temperature, softmax is close to onehot
argmax, but the training is difficult since the variance of gra-

dients is large. For larger temperature, the approximation

error is increased, but the variance of gradients is smaller.

Works before normally set 𝑡 as a fixed value (mostly 1), or

anneal it from a large number to a small one during train-

ing [28, 32], but never analyze how to set it reasonably. This

is because currently for a DNN model, softmax is only used

by the output layer to produce class probability, or used by

the input layer to produce symbol embedding. The approxi-

mation error barely impacts model accuracy. However, our

soft-PQ employs softmax in every layer. The accumulated

error can decrease accuracy without proper 𝑡 settings.

We thus propose to learn the temperature for each layer,

also during backpropagation while centroid learning. Fig. 5b

shows the learned 𝑡 for each layer for ResNet18. The value

for each layer is different, and thus not practical to tune

by hand. According to the CIFAR10 accuracy experiments,

training with the learned temperature technique only spends

1

10
iterations of training with temperature setting to 1 to

achieve 85% accuracy. Detailed results will show in Sec. 6.

(a) (b)

Figure 5: (a) The output probability distribution of

softmax( 𝑥
𝑡
) at different temperature, for four centroids

as an example. 𝑡 → ∞ approaches uniform distribu-

tion, and 𝑡 → 0 approaches argmax. (b) The learned 𝑡

for each layer of ResNet18.

3.3 Scalar quantized lookup table

Lookup tables are the main disk and memory cost. We reduce

the table size by scalar quantization (e.g., FP32 to INT8). We

leverage the classic range-based linear quantization. The

formula is 𝑟 = 𝑠 (𝑞 − 𝑧) [29], in which 𝑟 is the real value, 𝑠 is

the scaling factor, 𝑞 is the quantized value, and 𝑧 is the zero

point. We use symmetric quantization, so 𝑧 is forced to be

0, and the quantized range is [−2𝑛−1, 2𝑛−1 − 1]. The scaling
factor 𝑠 is calculated as the max absolute value in the table

divided by half of the range, i.e., 𝑠 =
max(|value|)

2
𝑛−1−1 .

Quantized lookup tables introduce another level of ap-

proximation. Similar to temperature, we thus quantize the
tables during centroid learning, to minimize the loss func-

tion. Inspired by Jacob et al. [29], the backpropagation uses

lookup tables in real values, so that they can be adjusted

in small amounts. The forward pass uses quantized lookup

tables as in the inference to calculate the loss. Results show

that by this learning method, the quantized lookup table has

little impact on the model accuracy.

4 COST REDUCTION OF LUT-NN

Before introducing the inference design of LUT-NN, this sec-

tion analyzes the theoretical FLOPs and model size reduction

by LUT-NN. The two primary factors of LUT-NN are the

number of centroids and the length of sub-vectors, repre-

senting a tradeoff between cost and accuracy. We conduct

the analysis with these two factors.

According to the output formula Eq. 4 of a PQ-based AMM

in LUT-NN, the main cost is from the encoding function

𝑔𝑐 (𝑎𝑐 ), which calculates the Euclidean distance of the sub-

vector with each centroid. After that, the cost is from table

lookup with the encoding result (i.e., index of the closest

centroid), and the result aggregation of sub-vectors. For file

size, the major cost is from the lookup tables, which saves

the dot product result of each centroid and the according

sub-vectors in the weight matrix. The size of codebooks is

relatively small, since the sub-vectors on the same column

share one codebook.

Therefore, we analyze the FLOPs of encoding, table lookup

and aggregation, as well as the size of lookup tables as the

cost of a LUT-NN AMM, to compare it with normal MM

in Table 1. Since convolution can be transformed to MM by

im2col, its cost also follows these formulas. For a convolution,

𝑀 is the number of output channels,𝐷 is the number of input

channels × filter size
2
, and 𝑁 is height × width.

The number of centroids 𝐾 and the sub-vector length 𝑉

are two hyperparameters of LUT-NN. They are tradeoffs

between accuracy and cost (refer to Sec. 6.3). The more cen-

troids 𝐾 and shorter sub-vector 𝑉 may lead to higher accu-

racy, but will increase the cost of LUT-NN. Table 2 shows the

calculated GFLOPs and model size by the formulas in Table 1

for different models, using typical (𝐾,𝑉 ) settings in LUT-NN.
These typical settings can achieve comparable accuracy with

the original model, and also align with the SIMD width for

high performance. Similar to other hyperparameters in DNN

training, 𝐾 and 𝑉 can be set by grid search, evolutionary

search, or other popular searching methods.

It is clear that LUT-NN can achieve both computation

and model size saving. The FLOPs saving is because 𝐾 is

normally smaller than𝑀 . For example, the number of output

channels i.e.,𝑀 , for ResNet50 is normally 128, 256, or 512, so

the FLOPs can be reduced by 4× when 𝐾 = 8. For ResNet20,

the number of output channel is 16, 32, and 64, so the FLOPs

is reduced by 2× when 𝐾 = 8.

5 TABLE LOOKUP INFERENCE DESIGN

In this section, we present the design and optimization of the

inference system that supports LUT-NN. Fig. 6 depicts the
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𝐴 ∈ R𝑁×𝐷
: input matrix

𝐵 ∈ R𝐷×𝑀
: weight matrix

𝑉 : the length of a sub-vector 𝑎𝑐

𝐾 : the number of centroids in a codebook for 𝑎𝑐

Ours MM

FLOPs 𝑁 · 𝐷 · 𝐾 + 𝑁 ·𝑀 · 𝐷/𝑉 𝑁 · 𝐷 ·𝑀
Size 4 · 𝐷 · 𝐾 + 𝐷 ·𝑀 · 𝐾/𝑉 4 · 𝐷 ·𝑀

Table 1: FLOPs and disk size of a LUT-NN AMM com-

pared to MM (FP32).

Model

GFLOPs

original (8, 9) (16, 9)

ResNet18 (CIFAR10) 0.555 0.098 0.132

SENet18 (CIFAR10) 0.556 0.098 0.131

VGG11 (CIFAR10) 0.606 0.085 0.102

ResNet18 1.814 0.412 0.515

SENet18 1.814 0.412 0.515

VGG11 7.609 1.132 1.334

original (16, 32) (16, 16)

BERT 2.759 0.169 0.254

Model

Disk Size (MB)

original (8, 9) (16, 9)

ResNet18 (CIFAR10) 42.59 12.55 23.13

SENet18 (CIFAR10) 42.92 10.94 21.53

VGG11 (CIFAR10) 35.18 8.45 16.88

ResNet18 44.55 12.57 23.16

SENet18 44.88 12.91 23.49

VGG11 37.12 10.39 18.82

original (16, 32) (16, 16)

BERT 162.26 23.05 43.30

Table 2: Theoretical GFLOPs and model size of typical

(𝐾 , 𝑉 ), calculated by formulas in Table 1.

LUT-NN model inference architecture, comprising the Clos-

est Centroid Search stage and the Table Read and Accumula-

tion stage. In the Closest Centroid Search stage, LUT-NN first

computes the distance between input tensors and centroids

and searches the nearest centroids for each input tensor. In

the Table Read and Accumulation stage, LUT-NN reads the

pre-computed results from the lookup table and accumulate

results. LUT-NN inference design fully takes advantage of

the features of current hardware architectures to optimize

the design and implementation of Table Lookup. These opti-

mizations improve inference by utilizing memory hierarchy,

utilizing shuffle instructions, and utilizing mixed-precision

accumulation instructions.

5.1 Closest centroid search

The centroid search takes the most computation costs in

LUT-NN, and efficient centroid search is critical for perfor-

mance efficiency compared to conventional computational

methods. The Closest Centroid Search stage first calcu-

lates the distance between input tensors and centroids. We

can represent this calculation as matrix multiplications of

Figure 6: Table Lookup Inference Design

input tensors and codebook matrices. Then, it searches for

the nearest centroids for each input sub-vector.

However, the design of centroid search in LUT-NNpresents

challenges that involve leveraging the features of existing

hardware architectures. Firstly, LUT-NN distance compu-

tation is irregular-shaped (tall-and-skinny) and difficult to

optimize using BLAS libraries. For example, the XNNPACK

library achieves only 23.0 GFLOP/s on Pixel 6 for the sec-

ond layer of LUT-NN based ResNet18, which accounts for

only 25.7% of peak performance. The height of the input

tensor (𝑁 ) is usually much larger than the length of the

sub-vector (𝑁 ≫ 𝑉 ) and the number of centroids (𝑁 ≫ 𝐾)

on each codebook. Therefore, the operation intensity of the

distance calculation can be approximated by
2𝑁𝑉𝐾

𝑁𝑉+𝐾𝑉+𝑁𝐾 ≈
2

1/𝐾+1/𝑉 FLOP/Byte [55]. Since the length of the sub-vector

and the number of centroids are small in LUT-NN, the opera-

tion intensity
2

1/𝐾+1/𝑉 is also small. The distance computation

becomes a memory-intensive matrix multiplication.

Therefore, we focus primarily on optimizing memory ac-

cess for centroid distance computations (❶ in Fig. 6) to lever-

age memory hierarchy in current hardware. To optimize

memory access for centroid distance computations (❶ in

Fig. 6), we reduce memory access overhead by keeping fre-

quently accessed data in registers and caches as much as pos-

sible. So we design a centroid-stationary computation scheme

to reside centroid matrices in registers and reorder centroid

matrix loads in the inner loop to keep them in the cache

as long as possible. The centroid-stationary computation

keeps 𝐾 centroids in the cache for each codebook, which

only requires reading these centroids once from DRAM. Con-

sequently, it only requires reading an 𝑁 ·𝑉 input tensor from

DRAM once, reducing memory bandwidth costs and improv-

ing performance.

Second, after computing centroid distances, the Closest

Centroid Search stage must identify the nearest centroid

for each input sub-vector and generate the centroid index

(❷ in Fig. 6). It can be represented by an argmin function,
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which finds an index with the shortest distance. However,

searching for the nearest centroid for each input sub-vector is

a data-dependent operation. To find the closest one, we must

compare each distance sequentially, which is RAW (Read

After Write) dependent and hard to be parallelized on CPUs.

We proposeintra-codebook parallelism to optimize the Clos-

est Centroid Search stage. Intra-codebook parallelism searches

the nearest centroid for the input sub-vector on a codebook

in parallel. We slice a codebook into multiple sub-codebooks

and compare each distance between sub-vector and cen-

troids in each sub-codebook. Then, we interleave each sub-

codebook’s execution, and avoid data dependency in closest

centroid search. We merge the compared distances by reduc-

tion and find the index corresponding to the closest centroid.

It leverages instruction-level parallelism to improve hard-

ware utilization and performance.

5.2 Table read and accumulation

LUT-NN obtains the indices of the nearest centroids for the

input sub-vectors after closest centroid search, and leverages

Table Read and Accumulation stage to compute the final

results. This stage first reads the pre-computed results from

the corresponding lookup table through indices (❸ in Fig. 6)

and completes the computation by accumulation operation

(❹ in Fig. 6). For example, convolution operators directly

read out filter’s outputs from lookup tables and accumulate

each input channel’s result for output channels.

However, Table Read and Accumulation stage introduces

additional overhead in inference. We enhance inference effi-

ciency by skillfully utilizing widely available and supported

instructions in commercial hardware. First, table read is diffi-

cult to parallelize and introduces additional indirect memory

accesses, which exaggerate the memory overhead on lookup

tables. Since we quantize lookup table into INT8 in Sec. 3.3,

we leverage widely supported SIMD shuffle instructions (x86:
pshfb and ARM: tbl) to achieve parallel and efficient table

read. We demonstrate the implementation of table read us-

ing shuffle instructions in Fig. 6. The shuffle instruction [6]

permutes each byte of a vector based on an index vector and

stores the shuffled bytes in the result vector register in each

clock cycle. On 128-bit wide SIMD, a vectorized table read

instruction handles 16 sub-vector lookups (128/8 = 16) on

16 results (128/8 = 16) simultaneously, greatly simplifying

table read and reducing overheads.

Second, the accumulation still has comparable computa-

tion costs to the entire process. For example, when a code-

book handles 𝑁 index lookups on a 𝐾 · 𝑀 lookup table, it

costs 𝑁 ·𝑀 table reads (𝐾 = 16) and 𝑁 ·𝑀 accumulation adds.

Therefore, the vectorized lookup table leaves accumulation

operations as the performance bottleneck of table reads. The

number of parallel processing units within a SIMD instruc-

tion is called SIMD lanes. We typically set the number of

centroids to 16 (K=16) to maximize the utilization of all SIMD

instruction lanes. Since a higher number of SIMD lanes leads

to higher throughput on the same width of SIMD instruc-

tion (e.g., the vectorized INT16 add instruction has the half

throughput of INT8 on a 128-bit SIMD), we maximize accu-

mulation throughput by mixed precision accumulation. It

first accumulates results in INT16 to utilize more SIMD lanes

and then gathers INT16 to INT32 to avoid overflow.

5.3 Utilization of memory hierarchy

As LUT-NN is composed of many memory accesses, we ex-

plain more details for its memory hierachy usage.

The frequent-accessed codebook (for centroids) is kept in

the inner loop during distance calculation, so that the hard-

ware cache can leaverage the locality to keep the codebook

in cache. The size of a codebook for one layer is normally

small, in KB level (calculated by sub-vector length × number

of centroids × number of codebooks × number of bytes). For

example, the largest codebook in our tested models is 288 KB.

It can be held in L2 cache on many mobile devices.

The lookup table (for precomputed results) is larger, in

MB level. It can be held in L3 cache. Even if it is larger than

L3 cache, the memory access overhead could still be hidden

in our implementation. LUT-NN uses Shuffle instructions

to parallelize table lookup, turning the pattern of reading

index numbers and lookup tables from random to sequential.

The memory access is thus predictable and easy to prefetch.

Furthermore, we interleave computation and memory access

instructions within the kernel, which can overlap computa-

tion and memory access time.

6 EVALUATION

6.1 Experiment methodologies and settings

Dataset and Models Our experiment tests LUT-NN’s ef-

fectiveness on image recognition, speech recognition, and

NLP tasks. For image recognition and speech recognition,

we evaluate VGG, ResNet, and SENet family models on dif-

ferent datasets, including CIFAR-10 [37], GTSRB (German

Traffic Sign Recognition Benchmark) [50], Google Speech

Command [56], SVHN (Street View House Numbers) [47],

UTKFace [60], and the large-scale complex ImageNet [12]

dataset. The CIFAR-10 dataset consists of 60𝐾 images in 10

classes, with 50𝐾 for training and 10𝐾 for validation. The

GTSRB dataset has 43 classes of traffic signs, with 39𝐾 train-

ing images and 12𝐾 test images. Google Speech Command

is an audio dataset containing 65𝐾 recordings of 30 words,

designed for keyword spotting on edge devices. SVHN is a

dataset including 600𝐾 real-world images of house numbers

for 10 classes. UTKFace dataset consists of 20𝐾 face images

labeled by age, gender, and ethnicity. We use the age predic-

tion task to test the regression ability of LUT-NN. We will

report Mean Average Error (MAE) for this task. ImageNet

dataset has 1.28𝑀 images for training and 50𝐾 for validation.
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Dataset Model

Centroid

Learning Rate

Temperature

Learning Rate

Weight

Decay

Batch

Size

# of Epochs Optimizer

LR

Scheduler

CIFAR10

ResNet18

SENet18

VGG11

1 × 10
−3

1 × 10
−1 0 256

200

Adam

Cosine

Annealing

GRSRB

Speech Commands

1 × 10
−4

UTKFace 150

SVHN

1 × 10
−3 200

ImageNet 150

GLUE BERT {5, 4, 3, 2} × 10
−5

1 × 10
−2

32 3 AdamW Constant

Table 3: Soft-PQ training settings for centroid and temperature learning. We choose the best fine-tuning learning

rate among {5× 10
−5
, 4× 10

−5
, 3× 10

−5
, 2× 10

−5
} based on the accuracy of the validation set for BERT, following [15].

Model ResNet18 SENet18 VGG11

Dataset LUT-NN MADDNESS baseline LUT-NN MADDNESS baseline LUT-NN MADDNESS baseline

CIFAR10 94.40 10.01 95.26 94.48 10.65 95.47 93.89 22.87 95.04

GTSRB 98.73 4.53 98.80 98.36 5.68 98.84 98.55 5.70 99.22

Speech

Commands

93.70 1.49 91.72 93.04 1.49 94.36 93.38 1.49 93.11

SVHN 96.00 20.68 96.67 96.22 20.12 96.60 96.23 29.97 96.62

UTKFace 4.91 10.51 5.57 4.74 11.02 5.46 5.69 24.57 5.85

ImageNet 67.38 0.10 69.76 68.21 0.17 70.63 68.04 0.16 68.33

Table 4: LUT-NN achieves comparable accuracy with the original models, significantly outperforming Maddness.

UTKFace is the lower the better. Others are the higher the better.

Dataset Task

Single

Sentence

Similarity and

Paraphrase

Natural Language

Inference

SST-2 QQP QNLI RTE Average

Training Dataset Size 67k 364k 105k 2.5k

Test Dataset Size 1.8k 391k 5.4k 3k

BERT base (%) 93.5 71.2 90.5 66.4 80.4

LUT-NN (%) 92.4 69.6 87.4 64.7 78.5

Table 5: LUT-NN achieves comparable accuracy to BERT-base on NLP tasks selected from GLUE.

On the large ImageNet dataset, ResNet18 and SENet18

models use 7x7 convolution for the first layer and 3x3 max-

pooling, while other datasets use 3x3 convolution for the

first layer and no max-pooling. The final three dense layers

of the original VGG models are replaced by an average pool-

ing layer and a dense layer to reduce model size for mobile

deployment, following the general practice for VGG deploy-

ment [55]. Except for ImageNet, the first max pooling layer

is removed for VGG. In evaluation results, the models for

ImageNet use the model names, and the models for other

datasets are marked as "Model (CIFAR10)" to differentiate.

To evaluate LUT-NN for NLP tasks, we used BERT models

and the tasks from GLUE benchmark [53].

Soft-PQ training setting Table 3 lists the detailed train-

ing hyperparameter settings. Except for the initial learning

rate, we followed standard practices for all other training

procedures [15, 27]. As the learned temperature requires a

larger learning rate to converge quickly to a sub-optimal

solution, we use different learning rates for the centroid and

temperature learning. Prior to soft-PQ training, we initialize

centroids using 𝑘-means clustering. Specifically, we apply

the original model inference to a randomly sampled sub-

dataset (consisting of 1024 training samples) and collect each

operator’s inputs. We then utilize the 𝑘-means algorithm to

cluster each operator’s inputs and obtain the initial centroids.

LUT-NN system settings In order to balance accuracy and

cost, we can specify various settings for LUT-NN, including

the number of centroids in a codebook (𝐾 ), the length of the

sub-vector (𝑉 ) (as shown in Table 1), and the operators to be

replaced by table lookup. The default setting for 𝐾 and 𝑉 is

to align with both the feature size and the length of SIMD

instructions. Specifically, we set (𝐾,𝑉 ) = (16, 9) for 3 × 3

convolution, (𝐾,𝑉 ) = (16, 4) for 1 × 1 convolution, We will

also evaluate other settings in Sec. 6.3 ablation study.

For operators to replace, we replace all convolution oper-

ators for CNN models by table lookup except the first one.

This is because as explained by Zhou et al. [61], the layer
interacted with the model input is very sensitive to accuracy.

We also observe this phenomenon. Replacing the first layer

by table-lookup can lead to obvious accuracy drop. This issue

is even more serious for BERT. Replacing the first two layers

results in 80% accuracy loss (refer to Fig. 13). Therefore, we
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do not replace these layers by table lookup. For BERT, other

than explicitly stated, we replace the fully connected opera-

tors of the last 6 layers. The results with different replaced

layers for BERT will be shown in Section 6.3 ablation study.

Evaluation platforms LUT-NN is implemented on ARM

Neon and Intel SIMD ISA (Instruction Set Architecture), and

can run in a single or multi threads. We evaluate LUT-NN on

two mobile devices Google Pixel 4 and 6, which are equipped

with Cortex-A76 (2.42 GHz) and Cortex-X1 (2.80 GHz), re-

spectively. In addition, we evaluate LUT-NN on a desktop

CPU (Intel Core i7-4790) running at 3.60 GHz and a server

CPU (Xeon Silver 4210) running at 2.20 GHz.

Comparison baselines The accuracy baselines are (1) origi-

nal models and (2)Maddness [5], respectively. The inference

performance baselines are ONNXRuntime (ORT) v1.12.1 [46]

and TVM v0.9.0 [9], as the SOTA hand-written performance,

and the auto-tuned performance upper bound for linear com-

putation opeartors. We tune the TVM baselines using Au-

toScheduler and AutoTVM in 1500 iterations.

6.2 Accuracy, latency, memory and power

Accuracy Table 4 and 5 summarize the accuracy comparison.

Remarkably, to compare with directly applying maddness,

LUT-NN can improve accuracy by 66% to 92%, achieving

similar-level of accuracy with the original models. LUT-NN

behaves particularly well on GTSRB (≤ 0.67% difference),

SVHN (≤ 0.67% difference), CIFAR-10 (≤ 1.15% difference),

Speech Command (≤ 1.32% difference) , and UTKFace (LUT-

NN is even better). For the Speech Command task, LUT-NN

can even improve accuracy by 1.98% for ResNet18. Also for

the UTKFace dataset, LUT-NN can even reduce MAE by at

most 13.2%. Expectedly, the accuracy difference for the more

complex tasks, ImageNet and NLP, is a bit larger compared

to the tasks above, with 0.9%~2.42% difference for ImageNet,

and an averaged 1.9% difference for NLP tasks.

Operator speedup Fig. 7 shows the operator speedup se-

lected from three models. The operator speedup for VGG11

ranges from 4.28× to 5.43× on ARM CPU, and from 3.82× to

3.86× on x86 CPU. The best speedup on BERT kernels are

12.5× (ARM CPU) and 10.3× (x86 CPU).

BERT operators achieve higher speedups due to larger𝑀 =

768 or 3072, and longer sub-vector𝑉 = 32. According to Table

1, the FLOPs of our proposed LUT-NN is 𝑁𝐷 (𝐾 +𝑀/𝑉 ), and
the FLOPs of a normal MM is 𝑁𝐷𝑀 . The FLOPs reduction

by LUT-NN can be calculated by𝑀/(𝐾 +𝑀/𝑉 ). Therefore,
the reduction is particularly large when𝑀 ≫ 𝐾 and 𝑉 ≫ 1.

The kernel speedup gradually improves as the layer index

increases for CNN models. The reason is that the number

of output channels increases from 64 to 128, 256, and 512 as

the layer index increases. The increased number of output

channels𝑀 contributes to the speedup in these layers.

Model speedup Fig. 8 shows the end-to-end model latency.

LUT-NN achieves 1.30~4.23× speedup on ResNet18, SENet18

and VGG11 compared to TVM and ORT. The best speedup

is 4.23× in VGG11 (for CIFAR10) on Pixel6 ARM CPU over

ONNX Runtime. The BERT model has higher throughput,

and the speedups are 5.6× and 6.8× on the ARMCPU and the

x86 CPU, respectively. Compared to CNN models (𝑀 ≤ 512),

the BERT model has a larger input tensor (𝑀 = 768, 3072) to

acquire better performance gains. It also has a longer sub-

vector length (𝑉 = 32) compared to CNN models (𝑉 ≤ 9).

Multi-thread speedup To evaluate the scaling capability of

LUT-NN, Fig. 9 shows the speedup with the thread increases,

i.e., one to four on x86 CPUs and one to two on the Pixel

6 ARM CPU. Note that we evaluate the scalability on the

big cores (cores with the highest frequency) of ARM CPUs,

to avoid the interference of asymmetric big and little cores.

Pixel 6 has two big cores. Since Pixel 4 only has one big core,

we skip it in this evaluation. The results show that LUT-NN

achieves better scalability compared to the baselines. It can

reach 2.24~2.49× speedup as the number of threads increases

to 4. Meanwhile, LUT-NN achieves a 2.17~2.82× speedup

over other baselines under the same number of threads.

Model memory footprint Fig. 10 compares the memory

footprint of LUT-NN with baselines. The results show that

LUT-NN can save 1.43~2.83× memory for CNN models and

4.76~6.49× for BERT. For these CNN models, the sub-vector

length is 9 or 4 for different operators, while the length is

set to 16 for BERT. Because longer sub-vectors result in a

higher compression ratio on feature maps, BERT achieves

lower memory costs than other models.

Power We evaluate the power consumption of LUT-NN

on Pixel 4. The experiment results in Table 6 demonstrate

that LUT-NN reduces power consumption by 15%~41.7%

compared to TVM, which reveal that LUT-NN is an energy-

efficient algorithm and system design.

Figure 7: LUT-NN operator speedup over ORT and

TVM on Pixel 6 and the x86 server CPU.

6.3 Ablation Study

We evaluate the effectiveness of the learned temperature and

hyperparameters in the ablation study. The hyperparameters
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Figure 8: End-to-end latency comparison between LUT-NN, ORT, and TVM (lower is better).

Figure 9: Normalized multithread speedup (over TVM one thread) of LUT-NN, ORT, and TVM (higher is better).

Figure 10: Model memory consumption of LUT-NN,

ORT, and TVM on the x86 server CPU.

Figure 11: Learning curves of LUT-NN ResNet18 on CI-

FAR10 with temperature tuning methods. “Annealing

Temperature” (Orange) refers to manually annealing

temperature from 1 to 1e-1. Our learned temperature

technique reaches 94.4% accuracy, higher than the an-

nealing temperature (91.55%) and setting temperature

as 1 (89.85%).

include the number of centroids, the length of sub-vector,

and the number of replaced linear computation operators.

Learned temperature In Sec. 3.2, we use gradient descent

to learn the temperature. To evaluate the effectiveness of our

method, we compare three temperature tuning strategies

together: learned temperature, statically setting the temper-

ature as 1, and annealing temperature from 1 to 0.1. We

compare the training curves in Fig. 11. The figure suggests

that our proposed learned temperature reaches the high-

est accuracy (94.4%) and outperforms the statically setting

(89.85%) and the annealing temperature (91.55%). In addition,

the learned temperature has a faster convergence speed.

Impact of centroid number and sub-vector length The

centroid number and sub-vector length do affect not only

the inference throughput but also the model accuracy. We

present the ablation study for the impact of these two hy-

perparameters. We follow the same experiment setting as

Sec. 6.1 on ResNet18.

Figs. 12 collect accuracy and FLOPs for the variant of cen-

troid numbers and sub-vector lengths in ResNet18. For this

model, the sub-vector length significantly affects the model

accuracy and worsens as the sub-vector length increases.

Each codebook has to handle higher dimensions as the sub-

vector length grows, which cannot be accurately classified

and harms the model accuracy.

The centroid number also affects accuracy and perfor-

mance. As the centroid number increases, each codebook

can classify sub-vector in more fine-grained granularity, and

it improves the accuracy of ResNet18. To balance the model

accuracy with performance, we set 𝐾 = 16 and 𝑉 = 9 for

better accuracy and fewer GFLOPs than the vanilla ResNet18.

The optimal hyperparameter setting for DNNs is a long-

standing research topic. Some neural network search tech-

niques, such asweight sharing [7] and search space search [48],

could apply to LUT-NN to reduce the searching cost.

Figure 12: The scaling of centroid number and sub-

vector length on ResNet18. x-axis is logarithmic.
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The number of replaced operators As stated, to replace

the front layers of BERT by table lookup can greatly impact

accuracy, and we replace the last six layers in our default

settings. Fig. 13 shows the accuracy impact by replacingmore

layers. We gradually replace the operators of more layers,

from the last to the front layer, for BERT on the Semantic

Textual Similarity Benchmark (STS-B) task. We can see the

accuracy drops obviously for the front three layers.

Figure 13: The accuracy of LUT-NN based BERT with

respect to the number of layers to replace.

Speedup breakdown In Sec. 5, we propose four inference

optimization techniques, which include:❶memory optimiza-

tion on centroid distance computations, ❷ intra-codebook

parallelism, ❸ shuffle instructions table lookup, and ❹ mix-

precision accumulation in Fig. 6. To better understand per-

formance gains, we evaluate the execution of a convolution

operator (𝐶𝑖𝑛 = 𝐶𝑜𝑢𝑡 = 64, 𝑘 = 3, 𝑠 = 1, 𝐻 = 𝑊 = 56, the

second layer of ResNet18) on Pixel 6 when different tech-

niques are enabled. The results show that ❸ (44.6%) saves

the most execution time, followed by methods ❶ (18.5%)

and ❷ (16.4%). Finally, method ❹ delivers a minor improve-

ment (4.1%). The results show that our inference design and

optimization can take advantage of ARM/x86 ISA’s special

instructions, which outperform conventional operators.

Scalar quantization level for lookup table As explained

in Sec. 3.3, LUT-NN leverages scalar quantization to reduce

the table size. In this subsection, we evaluate the accuracy

impact of different quantization levels by using ResNet18 for

the CIFAR10 dataset as an example. The accuracy of LUT-NN

is 94.44% with FP32 lookup table, 94.40% with INT8 lookup

table, and 94.27% with INT4 lookup table. The results show

that our quantization-aware training can achieve similar

accuracy by using lower bits compared to FP32. We select

INT8 in our current implementation as its the tradeoff of

accuracy and speedup. INT4, on the other hand, is not sup-

ported by the hardware SIMD units directly. The exploration

of lower-bit lookup table could be a potential future work.

Model LUT-NN v.s. TVM Avg. power (W)

BERT 2.6/3.7

ResNet18 2.6/3.0

ResNet18 (CIFAR) 2.6/3.3

SENET18 2.6/2.9

SENET18 (CIFAR) 2.8/3.2

VGG11 2.3/2.9

VGG11 (CIFAR) 2.7/3.3

Table 6: Power (deducted SoC idle power) on Pixel 4.

7 RELATEDWORK

Approximated matrix multiplication Traditional approx-

imatedmatrixmultiplication techniques focus onminimizing

the difference between the ground truth and the approxi-

mated output. For example, Magen et al. [42] use random pro-

jection to map twomatrices to a lower-dimensional subspace,

and then perform accurate multiplication on the mapped ma-

trices. Maddness [5] uses product quantization to learn the

most typical features (also known as centroids) in the input

distribution.Maddness then stores the products of centroids

and the weight matrix in advance in a lookup table, so that

the product of any input matrix and weight matrix can be

approximated by the result stored in the table. To conclude,

traditional methods will suffer from severe accuracy loss

when used in neural network inference if the approximation

is too harsh. Our method can avoid this defect by integrating

itself into the end-to-end training process.

Also, previously, some attempts have beenmade to approx-

imate the weights of NN with low-rank tensor expansion

[13, 14, 30]. Specifically, LCNN [2] is also a kind of low-rank

approximation. With LCNN, a dictionary is trained and the

NNweights can be represented by linear combinations of the

dictionary items. Afterward, LCNN transforms a vanilla con-

volution into lookup operations in the dictionary. Our work

is different from LCNN in that our work learns centroids for

each layer’s input feature map but not the weight.

Product quantization for DNN Product Quantization [43]

is a popular and successful method for large-scale approx-

imated nearest neighbor search [33]. In recent years, re-

searchers have integrated product quantization into neural

networks for various purposes. For example, [31, 36, 58, 59]

incorporated product quantization as a layer in a convolu-

tional neural network to obtain a compact and discriminative

image representation. [8] utilized Product Quantization to

compress the embedding layer in NLP models. [10, 17, 51]

compressed theweightmatrix for neural networks with Prod-

uct Quantization. However, our approach differs from the

above methods that our purpose is to achieve end-to-end

neural network inference acceleration.

Scalar quantization Scalar quantization methods aim to

reduce scalar bits in neural networks, e.g., from float repre-

sentation to INT8 representation. They can both compress

the neural network bits and accelerate the inference. Jacob

et al. [29] proposed an INT8 quantization method with both

a training scheme and an efficient kernel implementation.

Other researchers [1, 3, 11, 21, 45, 62] further proved that

1/2/4-bit quantization is sufficient for image classification.

More recently, Wang et al. [54] proposes a new approach to

quantization using trainable lookup tables which can fit the

distributions in different layers and have small additional

computational costs. Although we leverage scalar quantiza-

tion to compress the size of the lookup table (Sec. 3.3), the
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main idea of our work is different from these quantization

methods. Our work focuses on learning the most typical

features of each NN layer and computing the results of these

features in advance for future input tensors, in order to both

compress NN weights and accelerate NN inference.

Inference result reuse There are a range of works that

exploit the duplicated inputs, to reuse their inference results

and skip further model inference. Cachier [16] reuses re-

sults among nearby users. Potluck [23] reuses results across

applications. Euphrate [63] reuses results of temporal pixel

motion for continuous vision. FoggyCache [22] reuses results

across devices. DeepCache reuses results of similar regions

in recent frames of consecutive videos. MCDNN [25] reuses

results across applications. Semantic Memory [38] reuses

results from some layers for continuous vision. These works

rely on specific application inputs. Our work, by comparison,

optimizes the model itself to reduce size and FLOPS.

Lookup table for DNN Different from our work that learns

and stores the centroid results in the table, there are works

that store other results in the tables. LogicNets [52] maps

artificial neurons to truth tables in FPGA. It also compresses

the model by available pruning and scalar quantization tech-

niques. Ramanathan et al. [49] store the results of bitline

computing in Processing in Cache hardware in the table, to

accelerate DNN. These works do not target neural network

optimization or training techniques like LUT-NN.

8 FUTURE OPPORTUNITY DISCUSSION

Hardware implication Potentially, LUT-NN can greatly re-

duce FLOPs, e.g., 16× for BERT. However, current hardware

restrains LUT-NN from showing its full potential. The reason

is that current hardware is optimized for linear computa-

tion, but not table lookup. Compared to direct Multiply-Add

support for MM in hardware, LUT-NN has to run argmin
partially sequentially to return the index of the nearest cen-

troid, and then lookup in the table followed by aggregation.

Besides, the SIMD width limits the options of the number of

centroids. These are obviously inefficient.

Even on this unfriendly hardware, LUT-NN has shown

the benefits of table lookup on all dimensions, particularly

for latency, power, and memory reduction. An accelerator or

function unit supporting the first-class parallel table-lookup

pipeline could even more significantly reduce the inference

cost. LUT-NN opens new opportunity for hardware design.

Replace more operator types Currently LUT-NN replaces

linear computation operators by table lookup, including MM,

convolution, and fully connected. The scaled dot-product

attention (< 2% of total latency) in attention layers have no

weights, and cannot precompute the results with centroids

to save in tables, so we do not replace it by lookup table in

this work. A possible way to replace it by lookup table is to

precompute and save the production results of centroids. In

addition, how to replace the non-linear operators, such as

the activation functions, by LUT-NN can be future work.

Learning for hashing As introduced in Sec. 2.1, hashing

can be used to avoid the Euclidean distance calculation of

𝑘-means encoding, but at the cost of higher quantization

error (refer to Fig. 3b). We evaluate the potential of hash-

ing for DNN inference. Since hashing is not differentiable,

LUT-NN uses hashing after the centroids are learned. Our

current results show that to achieve similar model accuracy

as Euclidean distance for encoding, we have to use a 12-level

decision tree for hashing. Compared to distance calculation,

it can further reduce FLOPs by 30% to 3×. It could be possible
to also integrate hashing into the backpropagation to learn

the hashing functions. This could reduce the depth of the

tree and further reduce the encoding cost.

On current commodity hardware without direct hashing

support, hashing costs even higher than Euclidean distance

calculation, since the tree traversing is sequential without

SIMD support. Therefore, we still use Euclidean distance

for encoding in LUT-NN now. Future hardware can also

integrate hashing units for further speedup.

LUT-NN on GPUs and FPGAs NVIDIA GPUs provide the

efficient shuffle instruction, i.e., “prmt”, achieving Tera-OPs

throughput. Similar as the LUT-NN implementation on the

CPUs, which heavily depends on the shuffle instructions, this

GPU shuffle instruction can be leveraged for parallelly look-

ing up the approximated computation results in the tables.

FPGAs contain a vast array of lookup tables implemented

through reconfigurable memory, which LUT-NN can uti-

lize for the storage and retrieval of codebooks. Additionally,

FPGAs are equipped with Block RAM, a primary memory re-

source that enables efficient data storage. It can be employed

for LUT-NN’s lookup tables.

9 CONCLUSION

This paper takes the first step towards DNN inference by

table lookup. A new paradigm potentially brings significant

benefits to the DNN inference ecosystem, simplifying the in-

ference software and hardware design and decoupling with

the DNN algorithm updates. By the centroid learning tech-

nique for DNN, LUT-NN achieves comparable accuracy for

complex tasks with much less resource cost. However, LUT-

NN still has space to be improved, such as the learning tech-

nique to improve accuracy and hardware support for table

lookup, which calls for future efforts from the community.
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