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Abstract
Large Language Model (LLM) inference consists of two

distinct phases – prefill phase which processes the input
prompt and decode phase which generates output tokens au-
toregressively. While the prefill phase effectively saturates
GPU compute at small batch sizes, the decode phase results
in low compute utilization as it generates one token at a
time per request. The varying prefill and decode times also
lead to imbalance across micro-batches when using pipeline-
parallelism, resulting in further inefficiency due to bubbles.

We present SARATHI to address these challenges. SARATHI
employs chunked-prefills, which splits a prefill request into
equal sized chunks, and decode-maximal batching, which con-
structs a batch using a single prefill chunk and populates the
remaining slots with decodes. During inference, the prefill
chunk saturates GPU compute, while the decode requests ‘pig-
gyback’ and cost up to an order of magnitude less compared
to a decode-only batch. Chunked-prefills allows construct-
ing multiple decode-maximal batches from a single prefill
request, maximizing coverage of decodes that can piggyback.
Furthermore, the uniform compute design of these batches
ameliorates the imbalance between micro-batches, signifi-
cantly reducing pipeline bubbles.

Our techniques yield significant improvements in infer-
ence performance across models and hardware. For the
LLaMA-13B model on A6000 GPU, SARATHI improves de-
code throughput by up to 10×, and accelerates end-to-end
throughput by up to 1.33×. For LLaMa-33B on A100 GPU,
we achieve 1.25× higher end-to-end-throughput and up to
4.25× higher decode throughput. When used with pipeline
parallelism on GPT-3, SARATHI reduces bubbles by 6.29×,
resulting in an end-to-end throughput improvement of 1.91×.

1 Introduction

The scaling up of language models [25, 26, 35, 38] has led to
an emergence in their abilities [45] in a variety of complex
tasks — natural language processing, question answering,
code generation, etc. This has led to an explosion in their
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Figure 1: Example two-stage pipeline parallel schedule. (a)
In prior solutions like Orca [48], pipeline bubbles are common
due to varying prompt and decode compute times. Further,
decodes are highly inefficient (decode cost-per-token is order-
of-magnitude higher than Prefill). (b) SARATHI significantly
reduces pipeline bubbles and enables more efficient piggy-
backed decodes.

usage across applications spanning conversational engines [2,
4, 5, 38], search [3, 8, 9, 15, 22], code assistants [1, 7, 16], etc.
The significant GPU compute required for inference on these
large models, coupled with their widespread usage, has made
LLM inference the dominant GPU workload. Optimizing
LLM inference has thus become very important and has seen
significant interest recently [39, 42, 48].

In this paper, we first analyze a fundamental reason behind
the low efficiency of LLM inference. Each LLM inference
request goes through two phases – a prefill phase correspond-
ing to the processing of the input prompt and a decode phase
which corresponds to the autoregressive token generation.
The prefill phase processes all tokens in the input sequence
in parallel, leading to high GPU utilization even with a small
batch size. For example, on an A6000 GPU, for the LLaMA-
13B model, a prefill with a sequence length of 512 tokens
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saturates GPU compute even at a batch size of just one. The
decode phase, on the other hand, processes only a single to-
ken in each autoregressive pass, resulting in very low GPU
utilization at low batch sizes. For example, our experiments
reveal that, at small batch sizes, the decode cost per token can
be as high as ∼ 200 times the prefill cost per token. Moreover,
since a request goes through only a single prefill pass, but
multiple decode passes (one for each generated token), the
overall inference efficiency is significantly impacted.

One strategy to improve LLM decode efficiency is to in-
crease batch size using model parallelism. In servers with
high bandwidth connectivity such as NVIDIA DGX A100,
tensor-parallelism [43] can enable deployment of an LLM
on up to 8 GPUs, thereby supporting large batch sizes and
efficient decode. Pope et al. [39] show that tensor parallelism
can be scaled up to 256 devices on specialized TPUv4 pods.
However, tensor-parallelism at such a large scale can result
in poor performance when hyper-clusters are unavailable. In
such cases, pipeline parallelism [24, 37] can help increase
batch size. Thus, systems like Orca [48] rely on pipeline par-
allelism to scale LLM inference and adopt the well-known
solution of using micro-batches to mitigate pipeline stalls or
bubbles [34]. However, as we show in this paper, the stan-
dard micro-batch-based scheduling can still lead to pipeline
bubbles due to the unique characteristics of LLM inference.
Specifically, LLM inference consists of a mixture of varying
length prefills and decodes. This creates varying processing
times for the different micro-batches, resulting in significant
bubbles and wasted GPU-cycles as illustrated in Figure 1(a).
Note that the first bubble in the figure is due to varying prompt
sizes while the second bubble is due to mismatch between
prompt and decode compute times.

In this paper, we present the design and implementation of
SARATHI, an efficient LLM inference technique. SARATHI
uses chunked-prefills and decode-maximal batching to address
the problems of 1) inefficient decodes and 2) pipeline bubbles.
Chunked-prefills splits a prefill request into equal compute-
sized chunks. Further, SARATHI uses decode-maximal batch-
ing to construct a batch by using a single prefill chunk and
filling the remaining batch with decodes. This hybrid batch
provides units of work that are both compute saturating and
uniform, thereby addressing the problems of inefficient de-
codes and pipeline bubbles.

Since prefill and decode phases have different compute
requirements, the key insight of our method is that mixing
prefill and decode requests in a single batch can enable uni-
formly high compute utilization. However, since each request
has only a single prefill phase, followed by multiple decode
phases (for each generated token), we will not have enough
prefill requests to be able to always create a hybrid batch of
prefills and decodes. Chunked-prefills allows us to construct
multiple hybrid batches from a single prefill request, thereby
increasing the coverage of decodes that can piggyback with a
prefill. In our hybrid batch, the single prefill chunk ensures

high GPU utilization, while the decode phase requests ‘pig-
gyback’ along. Given an average prefill-to-decode token ratio
for an LLM application, we select a prefill chunk size that
maximizes the overall performance.

The hybrid batches constructed in SARATHI have a uni-
form compute requirement. Thus, when used with pipeline
parallelism, SARATHI ensures that the micro-batches are well
balanced, which results in a significant reduction in pipeline
bubbles as shown in Figure 1(b).

We evaluate SARATHI across different models and hard-
ware — LLaMA-13B on A6000 GPU, LLaMA-33B on A100
GPU, and GPT-3 with 8-way pipeline and 8-way tensor
parallelism across a simulated cluster of 64 A100 GPUs.
For LLaMA-13B on A6000, SARATHI improves decode
throughput by up to 10× and results in up to 1.33× end-
to-end throughput improvement. Similarly, for LLaMA-33B
on A100, our decode throughput improves by 4.25×, and re-
sults in a 1.25× end-to-end throughput improvement. When
used with pipeline parallelism, SARATHI reduces bubbles by
6.29×, resulting in end-to-end speedup of 1.91×.

The main contributions of our paper include:
1. Chunked-prefills which allows the construction of work

units that are compute saturating and uniform.
2. Decode-maximal batching which allows inefficient de-

codes to ‘piggyback’ with efficient prefills.
3. Application of chunked-prefills and decode-maximal

batching to pipeline parallelism to significantly reduce
pipeline bubbles.

4. Extensive evaluation over multiple models, hardware,
and parallelism strategies demonstrating up to 1.91×
improvement in throughput.

2 Background

We first give an overview of the transformer architecture,
followed by a brief discussion of the two phases of LLM
inference, and pipeline parallelism.

2.1 The Transformer architecture
Figure 2 shows the architecture of a transformer decoder
block. Each decoder block consists of two primary modules:
self-attention and feed-forward network (FFN). These mod-
ules can be divided into the following six operations: pre-
proj, attn, postproj (within the attention module), and ffn_ln1,
ffn_ln2 (within FFN) and others (e.g., layer normalization,
activation functions, residual connections etc.).

2.2 The prefill and decode phases
Transformer inference begins with the prefill phase that pro-
cesses all the input tokens of a given batch in parallel. In
this phase, the input to a transformer block is a tensor X of
shape [B,L,H] where B denotes the batch size, L denotes the
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Figure 2: High-level architecture of a decoder block.

sequence length of each request (i.e., the number of input
tokens in the given query), and H is the model’s embedding
size (e.g., 5120 for LLaMA-13B).

Table 1 shows the shapes of input, output, and weight ten-
sors of the various operations. Each transformer block first
computes self-attention on a given input X . Typically, multi-
head attention is used, but we consider only one head for
simplicity of exposition. A linear transformation preproj over
X (using the weight tensors W Q, W K and WV of shape [H,H])
produces the Q, K and V that are commonly known as queries,
keys, and values, each of shape [B,L,H]. Internally, preproj
is a single matrix-matrix multiplication of X with a combined
weight tensor of shape [H,3H].

Next, the attn computation over Q, K and V produces a
tensor Y of shape [B,L,H]. Finally, postproj applies a lin-
ear transformation over Y (using weight matrix Wo of shape
[H,H]), returning a tensor Z of shape [B,L,H].

Next, the FFN module performs two batched matrix-matrix
multiplications. In ffn_ln1, Z is multiplied with a weight ten-
sor of shape [H,H2] producing an output tensor of shape
[B,L,H2], which is then multiplied by a weight tensor of shape
[H2,H] in ffn_ln2 to output a tensor of shape [B,L,H]. Here,
H2 refers to the second hidden dimension of the model.

The decode phase performs the same operations as prefill,
but only for the single token which was generated in the
last autoregressive iteration. Thus, the input tensor in decode
phase is of shape [B,1,H] (as opposed to [B,L,H] of prefill).
Further, the attention computation for each new token depends
on the key (K), and value (V ) tensors of all prior tokens in the
same request. To avoid recomputing K and V of all tokens in
every iteration, most implementations cache these values in
GPU memory - which is referred to as the KV cache. Note
that each token’s K and V tensors are of shape [1,H].

2.3 Multi-GPU LLM Inference
As the model sizes of LLMs increase, it becomes neces-
sary to scale them to multi-GPU as well as multi-node de-
ployments [19, 39]. Furthermore, LLM inference throughput,

Operation Shapes of tensors
Input(s) Weight(s) Output(s)

preproj [B,L,H] [H,H] [B,L,H]
attn [B,L,H] - [B,L,H]
postproj [B,L,H] [H,H] [B,L,H]
ffn_ln1 [B,L,H] [H,H2] [B,L,H2]
ffn_ln2 [B,L,H2] [H2,H] [B,L,H]

Table 1: Shapes of the input, weight, and output tensors in
a transformer decoder block. B, L and H denote batch size,
embedding (aka hidden) size and sequence length (L=1 during
decode, except for attention).

specifically that of the decode phase is limited by the max-
imum batch size we can fit on a GPU. Inference efficiency
can therefore benefit from model-parallelism which shards
the model weights across multiple GPUs freeing up mem-
ory to support larger batch sizes. Prior work has employed
both tensor-parallelism (TP) [43] (within node) and pipeline-
parallelism (PP) [6, 46, 48] (across nodes) for this purpose.

TP shards each layer across the participating GPUs. This
splits both the model weights and KV cache equally across
GPU workers, leading to linear scaling of per-GPU batch size.
However, it comes at a high communication cost due to two
all-reduce operations per layer – one in attention computation
and the other in FFN [43]. Moreover, since these commu-
nication operations are in the critical path, TP is preferred
only within a single node connected by high bandwidth in-
terconnects like NVLink. PP is primarily used to facilitate
cross-node deployments for very large models, where the
model cannot fit within a single node.

Compared to TP, PP splits a model layer-wise, where each
GPU is responsible for a subset of layers. To keep all GPUs in
the ‘pipeline’ busy, micro-batching is employed. These micro-
batches move along the pipeline from one stage to the next at
each iteration. PP has the advantage of a much better compute-
communication ratio compared to TP, as we only need to send
activations once for multiple layers of compute. Furthermore,
PP requires communication only via point-to-point communi-
cation operation, compared to the more expensive allreduces
required in TP. Thus, PP is the only viable model-parallelism
approach when high-bandwidth connectivity like NVlink is
unavailable at cluster-scale. In such settings, the use of PP
can help increase the maximum batch size supported in each
node by 2-3×, thereby improving LLM inference efficiency.

3 Motivation

In this section, we show that LLM inference is inefficient for
two main reasons: (1) the decoding phase is memory-bound,
and (2) the use of pipeline parallelism leads to significant
pipeline bubbles for LLMs. Together, these factors lead to
poor GPU utilization for LLM inference.
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Figure 3: Per-token prefill and decode time with different
batch sizes (sequence length = 1024) for LLaMa-13B on
A6000 GPU. Prefill saturates GPU compute even at batch
size of 1 and results in almost constant per-token time across
batch sizes. Decode under-utilizes GPU compute and costs
as much as 200× prefill for batch size 1. The incremental
cost of linear operators for decode is almost zero as batch size
increases. The attention cost does not benefit from batch size
as it is memory-bound.

3.1 Analyzing Prefill and Decode Throughput

Figure 3 shows the per-token cost of each of the six trans-
former operations (§2.1) for prefill and decode at various
batch sizes for a fixed sequence length (prefill+decode) of
1024. First, we observe that prefill has almost constant per-
token cost across various batch sizes, indicating that prefill
saturates the GPU even at batch size of 1. Second, we see
that decode behaves very differently from prefill as the per-
token cost reduces significantly when the batch size increases.
Third, we see that the decode cost per-token is 200×, 100×,
and 16.7× that of prefill at batch size of 1, 2 and 18, respec-
tively. Thus, it is clear that optimizing decodes is critical for
efficient LLM inference. Finally, we see that the operations
under others contribute less than 5% of the overall runtime of
the transformer block. Hence, we focus on only optimizing
the five major operations and ignore others.

Figure 4a shows the throughput of the prefill and decode
stages for different batch sizes (B) and sequence lengths (L).
We observe that the throughput of the prefill phase saturates
at about 180 tokens/millisecond when B×L ≥ 512: e.g., a
single prefill request can achieve peak throughput at L ≥ 512.
In contrast, the decode throughput increases linearly with
small batch sizes. To further understand the saturation point
of decode phase, we profile a single layer as opposed to the
40 layers of the full model. This enables us to fit 40× larger
batches on the GPU due to the reduced memory footprint of
model weights and KV caches. We find that decode saturates
at a much larger batch (e.g., 256 with 1024 sequence length).
Such large batches are infeasible to run with the full model.

To explain this behavior, we profile the arithmetic intensity
of individual operations: arithmetic intensity captures the
amount of compute per memory read/write that can be used
to distinguish between compute-bound and memory-bound
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Figure 4: Impact of the arithmetic intensity (bottom) on the
throughput (top) of prefills and decodes for LLaMA-13B on
A6000 GPU.

operations. Figure 4b shows the arithmetic intensity of each
operation separately for prefill (left) and decode phases (right).
As shown, in prefill phase, all operations have high arithmetic
intensity, even at a batch size of one. On the other hand, the
arithmetic intensity of these operations drop by more than
two orders of magnitude in the decode phase. Only at a very
large batch size of 256, the decode phase starts becoming
compute-intensive. However, scaling up the batch size to such
high values is infeasible due to the KV-cache footprint of
each request. For instance, we can fit a maximum batch size
of 18 requests at a sequence length of 1K for the LLaMA-
13B model on an A6000 GPU. Therefore, in the range of
batch sizes that are practical today, the decode phase remains
memory-bound.

The difference between the throughput scaling of these two
phases stems from the fact that the prefill phase computes
(batched) matrix-matrix multiplications as opposed to the
vector-matrix multiplications of the decode phase. It is well-
known that kernels with arithmetic intensity above a GPU’s
FLOPS:MemBandwidth ratio are compute-bound and can be
executed efficiently [11]. In contrast, kernels with a lower
arithmetic intensity fail to utilize GPUs well due to being
memory-bound.

3.2 Pipeline Bubbles in LLM Inference
Pipeline Parallelism (PP) is a popular strategy for cross-node
deployment of large models, owing to its lower communica-
tion overheads compared to Tensor Parallelism (TP). PP splits
a model layer-wise, where each GPU is responsible for a sub-
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Figure 5: Pipeline bubbles in LLM inference A 2-way
PP iteration-level schedule [48] across 4 requests (A,B,C,D)
shows the existence of pipeline bubbles due to non-uniform
batch execution times.

set of layers; compared to TP which shards each layer across
the participating GPUs. As discussed in §2.3, compared to
TP, PP has a much better compute-communication ratio and
does not require expensive interconnects.

A challenge with PP, however, is that it introduces pipeline
bubbles or periods of GPU inactivity as subsequent pipeline
stages have to wait for the completion of the corresponding
micro-batch in the prior stages. Pipeline bubbles is a known
problem in training jobs, where they arise between the for-
ward and backward passes due to prior stages needing to wait
for the backward pass to arrive. Micro-batching is thus com-
monly employed in PP training jobs to amortize the bubbles
across the multiple micro-batches forming a batch [24,34,37].

Unlike training, since inference jobs only do forward passes
and do not have backward passes, one might expect that the
use of micro-batches will fully avoid pipeline bubbles dur-
ing inference. In fact, prior work on transformer inference,
such as, FasterTransformer [6] and FastServe [46] use micro-
batches and do not consider the problem of bubbles with PP.

Orca [48] suggests that the use of iteration-level schedul-
ing eliminates bubbles in pipeline scheduling (see Figure
8 in [48]). However, as we show in this paper, even with
iteration-level scheduling of requests, each micro-batch (or
iteration) in LLM inference can require a different amount
of compute (and consequently has varying execution time),
depending on the composition of prefill and decode tokens
in the micro-batch (see Figure 5). We identify three types
of bubbles during inference: (1) bubbles like PB1 that occur
due to the varying number of prefill tokens in two consecutive
micro-batches (2) bubbles like PB2 that occur due to different
compute times of prefill and decode stages when one is fol-
lowed by the other, and (3) bubbles like PB3 that occur due to
difference in decode compute times between micro-batches
since the accumulated context length (KV cache length) varies
across requests. These pipeline bubbles are wasted GPU cy-
cles and directly correspond to a loss in serving throughput
with pipeline parallelism. If we can ensure that each micro-
batch performs uniform computation, we can mitigate these
pipeline bubbles.

3.3 Insights

Our experiments show that the prefill and decode stages have
very different compute utilization patterns – prefill can satu-

rate GPU compute even with a single request, while decodes
require a large batch size to be compute-efficient. However
large batches are impractical due to their high KV cache foot-
print. Such disproportionate resource utilization implies that
for every request, there are phases of high compute utilization
due to efficient prefills, followed by a potentially long tail
of inefficient decodes which results in poor overall GPU uti-
lization. Furthermore, the non-uniformity in compute times
across micro-batches leads to pipeline bubbles, resulting in
inefficient pipeline parallel multi-GPU deployments.

This observation leads us to our key insight that it is possi-
ble to construct uniformly compute-intensive batches by (1)
slicing a large prefill request into smaller compute-efficient
and uniform chunks using chunked-prefills and (2) creating
a hybrid batch of a prefill chunk and piggybacking decodes
alongside this chunk. Consequently, creating such uniform
and compute-intensive batches ensures high GPU utilization
throughout, as well as, minimizes pipeline bubbles in multi-
GPU deployments by eliminating the runtime variance across
micro-batches in different stages of the pipeline.

4 SARATHI: Design and Implementation

In this section, we describe the design and implementation of
SARATHI, which employs two techniques - chunked-prefills
and decode-maximal batching to improve the performance of
LLM inference.

4.1 Overview
Conventional inference engines like FasterTransformer [6]
perform request-level inference scheduling. They process
batches at request granularity; i.e., the they pick the next batch
of requests to execute on the model replica only when all the
requests in the current batch complete. While this reduces
the operational complexity of the scheduling framework, it is
inefficient in its use of resources. Shorter requests in a batch
have to be padded to match the length of the longest request,
and thus does wasteful work instead of exiting early. Alterna-
tively, iteration-level scheduling has been proposed in more
recent systems like Orca [48], vLLM [20], and HuggingFace
TGI [17], where depending on the predetermined batch size
b, requests can dynamically enter and exit a batch.

However, today’s iteration-level scheduling systems do not
pay attention to the requests that comprise the batch, and the
varying execution time between batches. Specifically, a batch
could comprise of requests only in the prefill phase, requests
only in the decode phase, or mixed requests consisting of
a few prefills and decodes, with the only constraint that the
batch size is b at all times. As discussed in §3.3, such batch
formation results in non-uniform units of compute, resulting
in periods of bursty resource utilization, and pipeline bub-
bles. SARATHI tackles this challenge by introducing two key
techniques: chunked-prefills and decode-maximal batching.
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k0 k1 k2 k3
q0 1 - - -
q1 1 1 - -
q2 1 1 1 -
q3 1 1 1 1

k0 k1 k2 k3 k4 k5 k6 k7
q4 1 1 1 1 1 - - -
q5 1 1 1 1 1 1 - -
q6 1 1 1 1 1 1 1 -
q7 1 1 1 1 1 1 1 1

k0 k1 k2 k3 k4 k5 k6 k7 k8 k9 k10 k11
q8 1 1 1 1 1 1 1 1 1 - - -
q9 1 1 1 1 1 1 1 1 1 1 - -

q10 1 1 1 1 1 1 1 1 1 1 1 -
q11 1 1 1 1 1 1 1 1 1 1 1 1

attention mask during first chunk prefill

attention mask during second chunk prefill

attention mask during third chunk prefill

Figure 6: Example of how attention mask is set across dif-
ferent chunk prefill iterations in SARATHI (q and k represent
“query" and “key" tokens, respectively). The attention mask
for v (“values") is set similarly.

4.2 Chunked-prefills

Chunked-prefills is a prefill splitting mechanism hinged on
two key insights. First, for a given model and GPU, increas-
ing the number of prefill tokens shows diminishing returns in
throughput beyond a certain point as shown in Figure 4a. For
instance, the Llama-13B model achieves peak prefill through-
put on an A6000 GPU when the number of prefill tokens is
512 or higher. At a chunk size of 256, we see a marginal re-
duction of 12.5% in the peak throughput. Further, as the size
of the hidden dimension in the model increases, the chunk
size needed to saturate the GPU compute drops; for exam-
ple, the throughput of a single layer of GPT-3 (hidden size =
12288) peaks at a chunk size of 256 on an A100 GPU. This
implies that a compute-saturating batch can be formed with
a carefully sliced prefill chunk. Second, in many practical
scenarios, the size of prefill is reasonably large, ranging from
1K – 4K in production workloads, thereby opening the doors
for chunking a prefill request into smaller units of compute.

Implementing chunked-prefills requires carefully setting
the attention mask. If a request’s input prompt of say size
1K is split into four chunks of size 256 tokens each, we need
to ensure that the attention masks are appropriately set for
every subsequent prefill chunk until the end of the prompt.
For ease of exposition, using an example of chunk size of
four, Figure 6 shows how SARATHI progressively sets the
attention mask for every successive chunk of a prefill prompt
in three consecutive iterations: each query token qi can peek
into the keys (and values) of all the tokens preceding it, but
not the ones that follow. Setting the attention mask this way
ensures that chunked-prefills computation is mathematically
equivalent to the full prefill.

Overhead of chunked-prefills. Splicing the input of a pre-
fill sequence into multiple smaller chunks has two potential

sources of overhead. First, the arithmetic intensity of chunked-
prefills computation decreases as the chunk size becomes
smaller. Therefore, smaller chunks can affect prefill efficiency
due to low GPU utilization. However, this can be addressed
easily with a one-time profiling of the prefill throughput for
various chunk sizes on a given model-hardware combination
and expected workloads and a chunk size can be chosen such
that the end-to-end throughput of the model is maximized.

Second, chunked-prefills pose a slight overhead in atten-
tion computation due to repeated memory accesses of the
KV cache of a request’s tokens from prior chunks. While
every chunked-prefills operation until the end of the prompt
will perform the same number of computations for FFNs, the
attention kernel in every subsequent chunk after the first will
have to reread all the KV pairs of the prior tokens from the
GPU memory, as shown in Figure 6. For example, if a prefill
sequence is split into N chunks, then the first chunk’s KV
cache is loaded N times, the second chunk’s KV cache is
loaded N − 1 times, and so on. However, the overhead due
to increased attention time does not significantly affect the
end-to-end prefill efficiency because attention computation is
a small fraction of the overall forward pass time as seen in
Table 2. We present a detailed analysis of the overheads of
chunked-prefills in §5.4.

4.3 Decode-Maximal Batching
Harnessing the benefits of chunked-prefills requires us to
carefully construct a hybrid batch consisting of a mix of prefill
and decode tokens, so as to maximize compute utilization
and ensure uniform compute time across all batches. We
propose decode-maximal batching to alleviate the imbalance
in compute and memory utilization in iterative scheduling by
exploiting the idea of chunked-prefills.

In decode-maximal batching, we construct a batch by using
a single prefill chunk and piggybacking the remaining slots
with decode tokens. This hybrid batch provides us with units
of work that are both compute saturating and uniform. We now
discuss how we construct a hybrid batch to achieve maximum
efficiency.

4.3.1 Piggybacking decodes with prefills

To piggyback decodes with a prefill, we need to take care of
two things. First, we need to identify the maximum possi-
ble batch size of decodes that can be piggybacked and also
identify the number of prefill tokens that comprise the prefill
chunk. Second, in order to actually utilize the GPU-saturating
prefill computation of the hybrid batch to make the decodes
efficient, we need to fuse the linear operation computations
for the prefill chunk and decodes of the batch into a single
operation.

Decode batch. The maximum decode batch size to be pig-
gybacked with a prefill chunk is determined based on the

6



Batching Operation(s) Total Per-token Time
Scheme Linear Attn Time Prefill Decode

Prefill-only 224.8 10 234.8 0.229 -
Decode-only 44.28 5.68 49.96 - 12.49

Decode-maximal 223.2 15.2 238.4 0.229 1.2

Table 2: Per-token prefill and decode time (in ms) For
LLaMA-13B on A6000 GPU, the rows show operation times
for 1) prefill-only requests of prompt size 1024 of batch size
4, 2) decode-only batch size of 4 with sequence length 1024,
and c) a mixed batch of a single 1021 prefills and 3 decodes.
Decode-maximal batching reduces the decode time per token
by an order of magnitude.

available GPU memory (MG), the model’s parameter mem-
ory requirement per GPU (MS), and the maximum sequence
length L that the model supports. The total of prefill (P) and
decode (D) tokens per request cannot exceed this maximum
sequence length. Assuming the memory required per pair of
K and V for a token is mkv, the maximum permissible batch
size B is determined as follows

B = ⌊
(

MG −MS

L∗mkv

)
⌋

In the baseline scheme, decode-only batches can be of size
at most B. In SARATHI, the number of decodes can be at most
B− 1 as they piggyback along with one prefill chunk (the
prefill’s KV cache also needs to be in GPU memory until its
corresponding decode iterations begin).

In decode-maximal batching, we fuse all the linear opera-
tions, while letting the attention computations for the prefill
and decodes happen separately. The attention operation for
decode requests is batched together, while the attention in
prefill chunk is processed separately.

Decode efficiency. Recall that the prefill and decode phases
follow the same computation path, i.e., the linear operations
use the same weight tensors in both the prefill and decode
phases. However, compared to prefill, a decode iteration con-
sists of only a few input tokens (equal to the batch size).
Therefore, most of the computation time in baseline decoding
is spent fetching model weights from GPU’s global memory.

In contrast, decode-maximal batching computes over the
decode tokens using matrix matrix multiplications, by com-
bining decode tokens with the prefill tokens in a single matrix
multiplication operation. This, effectively eliminates the need
to load the model weights separately for decoding — i.e., once
the model weights are fetched for prefills, they are also reused
for decoding. As a result, decode-maximal batching converts
decoding from being in a memory-bound phase to being in a
compute-bound phase. This way, decodes, when piggybacked
with prefills come at a marginal cost in SARATHI (note that
the attention cost remains unchanged).

To illustrate the various costs involved through an example,
Table 2 compares the runtime of one iteration of decode-
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Figure 7: The effect of tile quantization on the runtime of one
iteration of LLaMA-13B on A6000 GPU.

maximal batching with that of the baseline scheme that com-
putes prefill and decode iterations separately. With baseline
batching, a decode-only iteration spends 12.49 milliseconds
per token. In contrast, per-token decode time is only 1.2 mil-
liseconds with decode-maximal batching. This shows that pig-
gybacking decodes with prefills can improve decode through-
put by up to an order to magnitude.

4.4 Identifying the ideal chunk size
An important design consideration in SARATHI is how to pick
the most suitable chunk size. A straightforward choice is to
pick the smallest chunk size that saturates a model’s prefill
throughput. However, we find that this strategy is not the most
efficient in many cases.

To demonstrate the importance of chunk size, we introduce
a simple notation “P:D ratio" that is computed as the ratio of
the number of prefill tokens to the number of decode tokens
in a given batch. For example, a P:D ratio of 10 implies that
the number of prefill tokens is 10 times that of decode. For
a fixed P+D, a lower value of P:D ratio means that there are
more decode tokens in a batch compared to one with a higher
value of P:D ratio.

The size of prefill chunks in SARATHI impacts the number
of decodes that can be piggybacked using decode-maximal
batching. For example, consider a batch size of four requests
(where one request is in the prefill phase and three are in the
decode phase) and a chunk size of 128. A prefill of size P will
then yield P/128 prefill-chunks, allowing P/128 ×3 ≈ P/42
decodes to piggyback. Thus, in this case, when the P:D ratio is
greater than 42, it allows us to overlap all decodes with prefills.
Similarly, if the chunk size is 256, then all decodes can be
piggybacked when the P:D ratio is greater than 84. Therefore,
a lower chunk size can help piggyback more decode tokens
for a given prefill sequence.

Note that decoding time increases as the the P:D ratio
goes down. Therefore, beyond a certain point, optimizing
decodes becomes more important than executing prefills at
peak efficiency. For example, if the prefill and decode phases
consume 10% and 90% of the total time, respectively, then
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even a 5× overhead in prefills is acceptable if the decodes
can be optimized by 2× or more.

To sum it up, identifying a suitable chunk size involves a
trade-off: smaller chunks piggyback more decodes but at the
expense of lower prefill efficiency whereas larger chunks are
prefill efficient but piggyback fewer decodes. Therefore, the
ideal chunk size depends on the expected P:D ratio and the
split between prefill and decode times for a given application.

The tile quantization effect. Additionally, we observe an
intricate detail related to the chunk size. GPUs compute mat-
muls by partitioning the given matrices into tiles and assign-
ing them to different thread blocks for parallel computation.
Here, each thread block refers to a group of threads and com-
putes the same number of arithmetic operations. Therefore,
matmuls achieve maximum GPU utilization when the ma-
trix dimensions are divisible by the tile size. Otherwise, due
to tile quantization, some thread blocks perform extraneous
(wasted) computation [11].

Notice that the time to compute a prefill sequence suddenly
increases when the sequence length is just higher than a mul-
tiple of 128 (tile size in our experiments). For example, as
shown in Figure 7, doubling the sequence length from 128 to
256 tokens increases iteration time by 27% — from 55ms to
69.8ms. However, adding only a single token further increases
the iteration time to 92.33ms — a dramatic 32% increase due
a only one additional token. This shows that the GPU is most
efficient at matmuls when the sequence length is a multiple
of the tile size.

Therefore, selecting the ideal chunk size is a two-fold de-
cision. First, pick a chunk size based on the desired prefill
efficiency for the given workload. Next, ensure that the sum
of chunk size and the number of piggybacked decode tokens
is a multiple of the tile size. This ensures that the relevant
matrix dimension of the fused operations stays a multiple of
the tile size. For example, if the chosen chunk size is 256, the
tile size is 128, and the maximum permissible batch size is B,
then, the prefill chunk size should be 256− (B−1).

4.5 Implementation
We implement SARATHI on the nanoGPT codebase [12] with
support for both chunked-prefills and decode-maximal batch-
ing. To compare against Orcas’s iteration-level scheduling, we
use our mixed batching mechanism, with no constraint on the
number of prefills allowed per batch. This ensures that there is
no discrepancy in results between the baselines and SARATHI
due to differences in implementation. To compute the atten-
tion operation, we use xformers implementation [21] as in our
setup, it outperformed PyTorch 2.0’s in-built attention imple-
mentations: i.e., flash attention, memory-efficient attention,
and math attention kernels. To avoid allocating memory for
KV caches in each decode iteration, we pre-allocate the KV
cache as per the maximum sequence length for each experi-
ment and update respective KV pairs in place when required.

Model GPU Num Per-GPU Mode
GPUs Mem(GB)

LLaMA-13B A6000 1 48 Deployment
LLaMA-33B A100 1 80 Deployment

GPT-3 A100 64 80 Simulation

Table 3: Models, GPUs, and mode of evaluation.

We support different model configurations in our codebase
to evaluate SARATHI over different model and hardware com-
binations. For example, to evaluate LLaMA-13B, we set the
number of layers and attention heads to 40, and hidden size to
5120. For LLaMA-33B, we use 60 layers, 52 attention heads,
and hidden size of 6656. For GPT-3, we use 96 layers, 96
attention heads, and hidden size of 12288. The configurations
are as per the publicly available architectural parameters of
these models [10, 14].

5 Evaluation

We evaluate SARATHI on a variety of models and GPUs using
physical deployments for single GPU experiments and profile-
driven simulations for large-scale experiments as shown in Ta-
ble 3. Our evaluation seeks to answer the following questions:

1. What is the impact of SARATHI on the throughput of de-
codes as well as the end-to-end throughput of LLMs? In
addition, what is the impact of varying sequence lengths,
batch sizes, and P:D ratios (§5.1)?

2. How does SARATHI compare to existing iteration-level
scheduling mechanisms like Orca (§5.2)?

3. What is the impact of our techniques on GPU bubbles and
the throughput of pipeline-parallel models (§5.3)?

4. What are the overheads of chunked-prefills (§5.4)?

5.1 Evaluation on a Single GPU
In this section, we measure the decode speedup and the end-
to-end throughput of SARATHI, on a single GPU, against that
of the baseline which executes the prefill and decode stages
separately via prefill-only and decode-only batches. Further,
we examine the effects of varying P : D ratio (ratio of prefill
to decode tokens), sequence lengths (total tokens per request
— P+D), and batch sizes on the overall throughput.

5.1.1 Decode speedup

We first show the impact of our techniques on decode phase
throughput that we calculate based on the average time spent
on decoding one token. For the baseline system, we compute
the average decode time per token by dividing the time to
process one decode iteration by the batch size. In SARATHI,
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Figure 8: Decode-only speedup with SARATHI on an A6000
GPU with LLaMA-13B (chunk size = 256).

Model Sequence Batch P:D Decode Throughput
(GPU) Length Size Ratio Speedup Gain

LLaMA-13B 1K 6 50:1 5.45× 1.33×
(A6000) 2K 6 50:1 3.26× 1.26×

3K 6 50:1 2.51× 1.22×
LLaMA-33B 1K 10 28:1 3.83× 1.25×

(A100) 2K 5 63:1 4.25× 1.22×
3K 3 127:1 3.51× 1.14×

Table 4: Peak throughput gains with SARATHI for different se-
quence lengths with two different model-GPU combinations
(chunk size = 256).

where decodes are piggybacked, for a batch with p+d tokens,
where p denotes the prefill chunk size and d denotes the
decode batch size, we find the difference in runtime between
the decode-maximal batch and a prefill-only batch of prefill
size p, and attribute the difference in time as the marginal
decode time for a batch of d requests. This marginal decode
time is then used to compute the decode time per token.

Figure 8 plots the results for a chunk size of 256 for LlaMa-
13B on A6000 GPU, as we vary the batch size, up to the
respective maximum value that fits, for three different pre-
fill sequence lengths. We observe that chunked-prefills im-
proves decode efficiency by up to an order of magnitude over
baseline. Decode throughput of SARATHI is higher due to
decode-maximal batching that computes decode tokens with
matrix-multiplications, allowing reuse of the model weights
— for both prefills and decodes — once they are fetched from
the GPU’s global memory.

We observe that our decode speedup reduces as we increase
the batch size or sequence length. This behavior is expected
for the following reasons: (1) decodes in the baseline system
become more efficient as the batch size increases, and (2) the
cost of attention increases quadratically with the sequence
length: since all our improvements come from optimizing the
linear operations, a higher attention cost reduces our scope for
improvement. However, our decode throughput improvement
is still significant in all cases (2.8×−10×).

5.1.2 Peak throughput gains with SARATHI

Table 4 shows the peak throughput gain that SARATHI
achieves over the baseline. To demonstrate the generality
of our techniques, we evaluate SARATHI on two model-GPU
combinations: (1) LLaMA-13B on an A6000 GPU and (2)
LLaMA-33B on an A100 GPU. Further, we investigate the
peak throughput gain with varying sequences of length 1K,
2K and 3K. Table 4 shows the batch sizes and P:D ratios
where we achieve the maximum speedup.

In the best case, our techniques improve the end-to-end
throughput by as much as 1.33× for LLaMA-13B and up
to 1.25× for LLaMA-33B. We observe that the speed up is
relatively higher on the A6000 GPU as compared to the A100
GPU. This is due to the higher FLOPs/MemBandwidth of the
A100 GPU compared to the A6000 GPU (≈ 156 vs. ≈ 53,
ignoring GPU caches). Therefore, we require a higher chunk
size on the A100 GPU (or a model with a higher embedding
size) to avoid losing the prefill efficiency. However, SARATHI
still consistently outperforms the baseline by 1.14×-1.25× on
the A100 GPU. These results show that piggybacking decode
tokens with prefill chunks is useful across a wide range of
models and hardware. We note that although we improve
decode efficiency by up to an order of magnitude, the end-to-
end speedups and in turn monetary savings in inference cost
are in the order of 25%. This is because our technique only
improves decodes and not prefills.

5.1.3 Effect of varying P : D ratio

In this subsection, using various sequence lengths and chunk
sizes, we investigate the effect of varying P : D ratios on
the end-to-end inference throughput to cover a wide range of
application scenarios. P : D ratio is an important parameter for
these experiments: a lower P : D ratio indicates that a request
constitutes more decode tokens compared to other requests
with a higher P : D ratio. Although a lower P : D ratio implies
that decodes will constitute a larger fraction of the inference
cost and thus SARATHI will have more surface area of attack,
however, it also means there will be fewer prefill chunks for
piggybacking decodes. This trade-off results in a behavior
where the improvement from SARATHI peaks at a particular
P : D ratio and then tapers off on either side. We discuss this
in more detail below.

Figure 9 plots the results of our experiments. We find that
the peak efficiency of our techniques occurs at different P : D
ratios for different prefill chunk size and batch size scenar-
ios. If C is the chunk size and B is the batch size, then we
can show that this peak will occur when the decodes per-
fectly piggyback with the prefill chunks. This occurs when
the number of prefill chunks (= P/C) is the same as the re-
quired number of decode iterations (=D/(B−1)), i.e., when
P : D =C/(B−1). For example, using a chunk size of 256
at batch size of 18, SARATHI achieves the peak throughput
improvement of 1.27× at P : D= 14 (≈C/(B−1) = 256/17)
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(a) Sequence length = 1K, batch size = 18.
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(b) Sequence length = 2K, batch size = 10.
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(c) Sequence length = 3K, batch size = 6.

Figure 9: Normalized throughput (tokens/ms) for LLaMa 13B on A6000 GPU with different sequence lengths, P:D ratios, and
chunk sizes.
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Figure 10: Breakdown of total time spent on different operations for LLaMa 13B on A6000 GPU with varying sequence lengths
and batch sizes, using prefill chunk sizes of 256 (top half) and 512 (bottom half). Orange and blue bars represent baseline and
SARATHI, respectively.

for sequence length of 1K as shown in Figure 9a. Using the
chunk size of 512 for sequence length=1K at batch size of 18
also provides significant gains of up to 1.23× at P : D = 28
(≈C/(B−1) = 512/17) whereas the gains are much lower
with a chunk size of 128. While smaller chunks provide more
opportunity to overlap decodes, splitting prefills into very
small chunks leads to lower arithmetic intensity i.e. less ef-
ficient matmuls and higher overheads (due to multiple reads
of KV cache), resulting in reduced end-to-end performance.
Thus we obtain a much higher throughput with chunk size
of 256/512 compared to the smaller chunk size of 128. Note
that the peak gains occur at a higher value of P : D ratio when
using a larger chunk size.

We achieve peak performance when inference is not en-
tirely dominated by either prefills or decodes (in other words,
when the P : D ratio is balanced). Such a state allows us to
overlap prefills and decodes efficiently for longer. Otherwise,

SARATHI either runs out of prefill tokens (if P : D is low) or
decode tokens (if P : D is high). In these cases, SARATHI can
switch to a different chunk size, or operate similar to the stan-
dard baseline processing prefill-only or decode-only batches.
However, note that despite this variation, our improvements
are still around 10% over a large range of P : D ratios.

5.1.4 Effect of varying the batch and chunk sizes

In this section, we dive deeper to investigate the performance
of SARATHI by varying the batch sizes and chunk sizes for
each sequence length. In all these experiments, we focus on
execution scenarios where the P : D ratio is balanced i.e.,
when P : D =C/(B−1) and all decode tokens are perfectly
piggybacked with prefills. This allows us to measure the peak
performance of our system.

Figure 10 shows the results for these experiments. For each
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Figure 11: Comparison with iteration-level scheduler Orca
for LLaMa 13B on A6000 GPU.

configuration of sequence length and chunk size, we show
the effect of varying batch sizes. Further, for each run, we
also show the runtime across different operations i.e., preproj,
attention, postproj, and ffn.

Note that decode-maximal batching batches the prefill and
decode tokens in linear operations to improve compute uti-
lization. Therefore, the linear operations see a significant
runtime reduction of up to 1.6× (see ffn runtime in the first
row) compared to the baseline. However, note that the mag-
nitude of improvement also depends on the P : D ratio (in
other words, it depends on what fraction of time is spent in
decodes). For example, using a chunk size of 256 doubles
the number of decodes that can be piggybacked compared to
using 512 as the chunk size. Therefore, in the optimal config-
urations (P : D =C/(B−1)), for chunk size of 256, decodes
constitute a higher fraction of total runtime, compared to the
optimal configuration when chunk size is 512. Therefore, our
throughput gains are higher when using chunk size of 256.

We also observe that different linear operations see differ-
ent speedups using our technique. Linear computation in the
ffn module sees the highest runtime reduction of 1.3×-1.6×.
In contrast, the runtime reduction for preproj and postproj is
1.05×-1.38×. For small batch sizes, we find that most of the
throughput improvement is due to the higher efficiency of ffn
computation in decode-maximal batching.

5.2 Comparison to Iteration-level Scheduling

In our evaluation thus far, we have considered a baseline
system that processes prefill-only or decode-only batches at a
time. This is how popular frameworks like FasterTransformer
deploy transformer models. In contrast, Orca’s iteration-level
scheduling [48] can add (or remove) a request to (or from) a
running batch at the granularity of individual iterations.

Iteration-level scheduling affects GPU utilization as well:
when requests arrive or depart at different times, some prefills
(of newly arriving requests) automatically overlap with the
decodes (of already running requests). Therefore, we expect
that iteration-level scheduling would do better than the base-
line — at least in some cases. However, we emphasize that
the overlap between prefills and decodes is more of a side-
effect in iteration-level scheduling and its behavior can vary
significantly depending on the size and arrival or departure
time of requests. Even more importantly, current approaches
to iteration-level scheduling submit the entire input sequence
of a request in a single prefill phase. This significantly limits
the opportunity of piggybacking decode tokens with prefills.

To understand the effect on overall throughput, we evaluate
the state-of-the-art iteration-level scheduler, Orca [48], in two
scenarios: its best-case and worst-case. In the best case, Orca
scheduling overlaps the full prefill of one new request with the
ongoing decodes. In the worst-case, all the requests begin and
end at the same time. In the latter case, Orca scheduling be-
haves similar to our earlier baseline where there is no overlap
between the computation of prefill and decode tokens. Note
that in the average case of Orca, there could be more than one
full prefill (corresponding to multiple requests) overlapping
with some decodes – this would further limit Orca’s ability to
piggyback decodes tokens with prefills.

Figure 11 shows our results for these experiments. First
(Figure 11a), we show results for the optimal choice of
P : D = C/(B− 1), where C = 256 and B is the maximum
batch size that fits for the sequence length. As expected, worst-
case Orca scheduling performs similar to the baseline. We
find that, for a small sequence length of 1K, the best-case Orca
scheduling achieves 1.11× higher throughput. This is due to
the incidental overlapping of the prefill and decode requests
in the best-case schedule. However, as sequence length in-
creases, the performance of best-case Orca scheduling drops
close to the baseline. This is an artifact of our choice of
P : D =C/(B−1). As we increase sequence length, the batch
size B reduces, resulting in a higher optimal P : D. Since Orca
submits the entire input sequence as a single prefill request,
a higher P : D means that it soon runs out of the prefill to-
kens, at which point it processes the remaining decode tokens
similar to the baseline, making even the best-case version
inefficient. SARATHI consistently outperforms with overall
throughput gains of 1.27×, 1.25× and 1.23× for the three
sequence lengths.

Another aspect to consider in iteration-level scheduling is

11



0 20 40 60 80
Bubble Time (s)

0.0

0.2

0.4

0.6

0.8

1.0
C

D
F

SARATHI
TP+PP

(a) Comparison of bubble time

0 2000 4000 6000 8000 10000
Num Requests

0

500

1000

1500

2000

2500

3000

3500

Ti
m

e 
to

 c
om

pl
et

e 
(s

) SARATHI
TP+PP
TP (8 replicas)

(b) End-to-end request completion time

Figure 12: Impact of SARATHI on pipeline bubbles (top) and
request completion times (bottom) for GPT-3 deployed on
DGX A100(s) in simulation.

the effect of variable sequence lengths on request latencies.
Since the prefill time increases with the length of the input
sequence, adding a longer prefill sequence in a running batch
can delay the ongoing decodes, which in turn increases the la-
tency of these ongoing requests in Orca scheduling. SARATHI
avoids this due to the use of smaller chunk prefills.

Next, we evaluate the throughput gains at different P : D ra-
tios for different chunk sizes in Figure 11b. We consider only
sequence length of 1K for this experiment as the best-case
Orca baseline achieves maximum performance in this regime.
Note that best-case Orca scheduling can be considered a spe-
cial case of SARATHI, where the chunk size, C, is set to the
maximum sequence length. As can be seen, the optimal P : D
shifts to the right as chunk-size increases. SARATHI with
chunk size of 256 performs the best in lower P : D regimes,
reaching a peak throughput gain of 1.27× compared to base-
line. SARATHI with chunk size of 512 consistently outper-
forms Orca best-case and performs overall best in the higher
P : D regime, reaching a peak throughput gain of 1.23×. In
comparison, Orca best-case has much flatter gains and reaches
a peak throughput gain of 1.11× at a much higher P : D.

5.3 Pipeline Parallelism with SARATHI

Next, we evaluate how SARATHI reduces pipeline bubbles in
a multi-GPU pipeline-parallel setup and subsequently impacts
the overall runtime of inference jobs. For this experiment, we
report evaluations in a carefully simulated environment.

We first profile the runtime for each operation in Table 1
in the prefill and decode phase for various batch sizes and
sequence lengths for the GPT-3 model [25]. We further profile
the network communication cost to faithfully simulate tensor-
parallel and pipeline-parallel executions. Finally, we build
a regression model to extrapolate and predict these values
for missing data points that may be encountered during an
online simulated inference serving system. We confirmed that
the estimated runtimes by the simulator are within 5% of the
empirical values on an 8-GPU, 80GB A100 DGX box.

We report results for deployment over 64 A100 GPUs
across eight servers connected with InfiniBand. We evalu-
ate three scenarios; (1) 8-way tensor-parallel (TP) within a
node with 8-way pipeline-parallel (PP) across nodes with the
best-case Orca-style scheduling, (2) the same TP-PP setup as
above with scheduling using SARATHI’s chunked-prefills and
decode-maximal batching, (3) 8 parallel replicas, each with
8-way TP, serving simultaneously. For all scenarios, we use
the maximum batch size that fits the GPU — for TP+PP this
was 27 and for TP only this was 11. The P:D ratio is fixed
at 10 for this simulation with the minimum and maximum
sequence length of the requests set to 1K and 4K respectively.
Each request may have a different sequence length which is
sampled from a Zipf distribution (θ = 0.4), adhering to the
maximum sequence length. The number of prefill and decode
tokens is then calculated by satisfying the desired P:D ratio.
For this experiment, we set the chunk size to be 256.

Figure 12a plots the cdf of pipeline bubble time per request.
We define this as the sum of bubble time for all the micro-
batches across all iterations for a given request. SARATHI
reduces the median bubble time per request by 6.29×, by
creating equal-compute units of work.

Next, we compare the overall request completion time for
the different scenarios in Figure 12b. This graph plots the
time to complete a given number of requests (our simula-
tion considers a total of 10K requests). The TP-PP execution
requires less memory for storing parameters compared to
the TP-only setup, resulting in more room for the KV cache.
Thus the TP-PP deployment supports 2.45× higher batch
size compared to TP-only deployment, and yet, we observe
that the TP-only execution is 1.28× faster than the baseline
TP-PP with Orca scheduling, due to the large pipeline bub-
bles in the latter case. However, with chunked-prefills and
decode-maximal batching, SARATHI enabled PP execution is
accelerated by 1.91× compared to the baseline TP-PP, and by
1.48× compared to the TP-only execution. Thus, SARATHI
makes pipeline parallel execution an attractive option for
LLM inference by significantly minimizing pipeline bubbles.

5.4 Ablation Study of Chunked-prefills

In this subsection, we evaluate how splitting a full prefill
computation into multiple smaller prefill chunks affects the
efficiency of the prefill stage in SARATHI. To quantify this, we
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(a) Self-attention (prefill-only).
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(c) End-to-end speedup for the entire batch.

Figure 13: Ablation study: Effect of varying the chunk size on different components of the system for LLaMa 13B on A6000
GPU.

measure the time to compute the prefill phase for various se-
quence lengths using the full sequence at once - this represents
our baseline prefill performance. For each long sequence, we
then compute the prefill with chunked-prefills and compare its
end-to-end runtime with the baseline. The difference between
the two indicates the overhead of chunked-prefills.

Prefill chunking has two potential sources of overheads: (1)
it uses smaller chunk sizes compared to the baseline which
may lower the GPU utilization, and (2) it needs to load the
KV cache of each chunk multiple times, depending on the
number of chunks in a request. Therefore, to fully understand
the overhead of prefill chunking, we investigate the following:
(1) what is the impact of chunking on attention computation
for a prefill-only batch, (2) what is the effect of chunking
on the overall runtime of prefill-only batch, and (3) what is
the end-to-end throughput when chunked-prefills is used in
tandem with decode-maximal batching. We study these by
varying the chunk size from 64 to 512 as shown in Figure 13.

First, we observe that smaller chunk sizes can add signifi-
cant overhead, for both attention and the overall prefill run-
time. For example, the chunk size of 64 incurs 3× overhead
for attention (see Figure 13a) and about 5×(see Figure 13b)
in the overall prefill time. As one can expect, the overhead of
chunked-prefills is lower for large chunk sizes: this is a com-
bined effect of higher GPU utilization and fewer KV cache
reloads with larger chunks. Overall, we find that chunk sizes
of 256 and 512 provide reasonable prefill efficiency, limiting
the end-to-end prefill computation loss to within 20% and
10%, respectively.

Second, SARATHI can compensate for some loss in pre-
fill efficiency by improving the decode throughput. For in-
stance, we see from Figure 13c that a chunk size of 64 almost
matches the performance of our baseline despite being 5×
slower in prefill whereas a chunk size of 128 yields up to
1.16× higher throughput despite its prefill being more than
2× slower than the baseline, mainly due to piggybacking
more decodes. The tile-quantization effect is also evident
in Figure 13 as SARATHI achieves higher improvement in
throughput when the chunk size is a multiple of 128; e.g.,
chunk size 256 shows better speedup than 320.

6 Discussion

In this paper, we have comprehensively demonstrated how
SARATHI improves the performance of LLM inference across
several models and hardware configurations. However, there
are multiple challenges that require further investigation.

First, we focus only on an efficient scheduling mechanism
in SARATHI to improve the throughput of LLM inference.
However, real-world deployments need to optimize an in-
ference serving infrastructure simultaneously along multiple
dimensions e.g., latency, queuing delays, fairness, etc. Meet-
ing these goals with SARATHI requires revisiting scheduling
policies. Second, although we show what is an appropriate
chunk size for a given P:D ratio, we leave it to future work
to explore how to pick an optimal chunk size as it depends
on several factors like the hardware, model characteristics,
sequence length, and the composition of prefill-decode tokens,
especially in scenarios where the P:D ratio may not be known
ahead of time. Third, we make a simplistic assumption in this
paper that each request in a batch has the same number of
prefill and decode tokens (except the simulation experiments)
whereas, in the real world, the sequence lengths can vary sig-
nificantly across different LLM inference requests. Finally,
we focused on sequence lengths of up to 3K, and P:D ratio in
the range of 1-200. We believe that these are representative of
many real-world deployments. However, there has also been
an increased interest in supporting very long sequences (e.g.,
10s-100s of thousands [18]). Such large sequence lengths may
pose new challenges as the cost of attention grows quadrati-
cally with the number of tokens. We are actively investigating
these challenges.

7 Related Work

In this section, we provide a brief summary of related work
along two dimensions: systems optimizations and model in-
novations.
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7.1 Systems Optimizations

Memory management: In auto-regressive decoding, the
number of tokens that need to be generated for a given re-
quest is not known apriori. Therefore, conventional systems
pre-allocate memory for the KV cache based on a conser-
vative estimation of the maximum number of tokens. Re-
cently, vLLM showed that this approach is inefficient and
proposed a framework — motivated by the virtual memory
abstraction — that enables incremental memory allocation
for KV caches [20]. This helps improve the batch size, espe-
cially when the number of tokens varies significantly across
different requests. FlexGen [42] focuses on improving the
throughput of offline LLM inference in resource-constrained
scenarios e.g., running a large model on a single GPU. To-
ward this goal, FlexGen employs a judicious combination of
memory offloading, quantization, and scheduling.
Optimizing (self-)attention: In [40], the authors propose an
algorithm to reduce the memory requirement of self-attention
from O(n2) to O(1), with respect to the sequence length.
FlashAttention [29] proposed a tiling-based algorithm that
speeds up attention computation by minimizing the number of
bytes read/written between different levels of GPU memory.
Follow-up work [28] on FlashAttention further improved it
along parallelism and work partitioning [28]. In our exper-
iments, we found the xformers memory efficient attention
implementation [21] to be the most efficient.
Kernel-level optimizations: FasterTransformer [6] proposed
optimized layers for the transformer’s encoder and decoder
blocks. These are based on low-level GPU optimizations such
as kernel fusion. We expect that such low-level optimizations
would equally benefit SARATHI as well.
Scheduling optimizations: Orca proposed an iteration-level
scheduling framework that avoids wasting compute due to
token padding that was used earlier to batch together requests
with different sequence lengths [48]. Further, Orca reduces
latency by returning the response as soon as a request’s end-
of-sequence token gets generated. FastServe proposed a pre-
emptive scheduling framework to minimize the job comple-
tion times [46]. Some other scheduling frameworks include
Triton [13] and Clipper [27] that separate the serving layer
from the execution engine of the model. Our current work
focuses on optimizing the execution layer and can be used
with different scheduling policies proposed by such systems.

The optimizations proposed by several of the prior works
can complement our optimizations e.g., more optimized atten-
tion implementations will enable scaling SARATHI to longer
sequence lengths and dynamic memory allocation will help
in supporting larger batch sizes and so on.

7.2 Model Innovations

A significant body of work around model innovations has
attempted to address the shortcomings of transformer-based

language models or to take the next leap forward in model
architectures, beyond transformers. For example, multi-query
attention shares the same keys and values across all the at-
tention heads to reduce the size of the KV cache [41], allow-
ing larger batch sizes. Several recent works have also shown
that the model sizes can be compressed significantly using
quantization [30–32,47]. Mixture-of-expert models are aimed
primarily at reducing the number of model parameters that get
activated in an iteration [23, 33, 36]. More recently, retentive
networks have been proposed as a successor to transform-
ers [44]. In this work, we focus on addressing the performance
issues of the most popular transformer models from a GPU’s
perspective. Model innovations are orthogonal to our work.

8 Conclusion

In this paper, we identify two primary reasons for LLM infer-
ence inefficiency: 1) suboptimal GPU utilization due to lack
of parallelism and memory-bound nature of decode phase,
and 2) significant pipeline bubbles due to inconsistent prefill
and decode times across different iterations, leading to micro-
batch imbalance. To address these challenges, we introduce
SARATHI, a novel approach that incorporates chunked-prefills
and decode-maximal batching. Decode-maximal batching im-
proves GPU utilization by piggybacking decodes with prefills,
which converts the memory-bound decode phase to be com-
pute bound. Chunked-prefills helps with making more prefills
available for decodes to piggyback, and also provides for a
uniform unit of work which helps significantly reduce pipeline
bubbles. We demonstrate that SARATHI results in significant
improvements in end-to-end throughput across models and
hardware configurations.
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