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ABSTRACT

String data is common in real-world datasets: 67.6% of values in a
sample of 1.8 million real Excel spreadsheets from the web were
represented as text. Systems that successfully clean such string
data can have a significant impact on real users. While prior work
has explored errors in string data, proposed approaches have often
been limited to error detection or require that the user provide
annotations, examples, or constraints to fix the errors. Furthermore,
these systems have focused independently on syntactic errors or
semantic errors in strings, but ignore that strings often contain
both syntactic and semantic substrings. We introduce DataVinci,
a fully unsupervised string data error detection and repair system.
DataVinci learns regular-expression-based patterns that cover
a majority of values in a column and reports values that do not
satisfy such patterns as data errors. DataVinci can automatically
derive edits to the data error based on the majority patterns and
constraints learned over other columns without the need for fur-
ther user interaction. To handle strings with both syntactic and
semantic substrings, DataVinci uses an LLM to abstract (and re-
concretize) portions of strings that are semantic prior to learning
majority patterns and deriving edits. Because not all data can result
in majority patterns, DataVinci leverages execution information
from an existing program (which reads the target data) to identify
and correct data repairs that would not otherwise be identified.
DataVinci outperforms 7 baselines on both error detection and
repair when evaluated on 4 existing and new benchmarks.
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1 INTRODUCTION

Errors in tabular data, such as inconsistent or corrupted values, are
common and can result in incorrect computations, invalid conclu-
sions, and downstream data pipeline failures [5]. Such data errors
can stem from a variety of sources including manual data entry,
data integration, and faulty computations. Prior work [26] reported
that even in professional settings, such as financial institutions and

consulting firms, up to 24% of spreadsheets can have mistakes, in-
cluding data errors. Figure 1 shows some examples of errors found
in online Wikipedia tables and public Excel spreadsheets.

In a sample of 1.8 million Excel spreadsheets from the web, we
found that 67.6% of values are represented as text (compared to
numeric or datetime values), providing a substantial opportunity
for string repair systems to help real users. While prior work has
introduced approaches relevant to string data, these typically have
focused primarily on detecting errors but not repairing them [6, 7,
16, 26], required users to provide (partial) annotations or constraints
to drive a semi-supervised detection/repair procedure [11, 12, 18,
19], or have relied on a limited rule-learning approach [2].

Furthermore, effective string cleaning must support errors in
columns where values contain both syntactic and semantic sub-
strings. For example, given a column with three values [(NY,
(Boston), (Miami)] where the pattern is both semantic (city
names) and syntactic (parenthesized values), a repair system should
report the first entry as a data error and suggest (New York) as
the repaired value. Unfortunately, prior rule-based and external-
knowledge-based systems can only tackle the syntactic issue or the
semantic issue, respectively, but not the combination of these.

We introduce DataVinci, a fully automated error detection and
resolution system for string columns in tabular data. DataVinci is
designed to handle qualitative string errors [12] in a column, such
as missing string values, inconsistent formats, or misspellings in
strings. Critically, in contrast to prior work [7, 12, 26], DataVinci
does not only detect data errors in strings but also suggests repairs.
DataVinci is the first system, to our knowledge, to detect and
repair errors in strings that consist of both syntactic and semantic
substrings. Prior work has been tailored to either category sepa-
rately. Finally, DataVinci can perform detection and repair in a
fully unsupervised manner, without requiring user inputs such as
providing constraints [6], examples [12], or annotations [18].

Error Detection. To carry out fully unsupervised error detection
on a string column, DataVinci exploits the regularity in string
data, and reports as data errors those values that do not satisfy
patterns associated with a (configurable) large fraction of the col-
umn’s values. In contrast to existing pattern-based work [2, 7, 16],
DataVinci uses an LLM to identify and mask semantic substrings,
allowing the regular-expression-based pattern learner to capture
strings with both syntactic and semantic substrings.

Error Repair. While prior string repair systems require that the
user provide examples [11], annotations [18], or constraints [19],
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Figure 1: Examples of string data errors found in Wikipedia tables and Excel spreadsheets. The data errors in each column are

highlighted. There is a mix of both syntactic (like 03.45) and semantic data errors (like Birminxham) found in real tables.

DataVinci can suggest data repairs without any additional input by
comparing the data error to the regular-expression-based patterns
(i.e. significant patterns) that are associated with a large fraction
of values. Specifically, DataVinci generates candidate repairs by
deriving a minimal set of edits to an erroneous value that lead
to satisfying a significant pattern. Because these edits may con-
tain elements such as character classes that need to be concretized,
DataVinci learns relationships between non-error values and sig-
nificant regular expressions and uses these as constraints when
predicting the concrete values. After these edits are applied any
semantic mask values remaining are concretized by replacing them
with concrete LLM-predicted substrings. DataVinci sorts the final
set of candidate repairs based on a heuristic ranker.

Execution-Guided Repair. By flagging values that do not satisfy
significant patterns as data errors, DataVinci can mitigate false
positives. However, real data may not always display such signif-
icant patterns. For example, consider a column named col1 with
values [c-1, c-2, c3, c4]. A pattern learner would identify
two patterns, one to cover the first two entries and a second to
cover the last two entries. Without further information, it is not
possible to identify any of these entries as a data error under a
majority assumption. However, executing the user-written spread-
sheet formula =SEARCH(“-”, [@col1])), which searches for the “-”
in a string, on the first two values will yield a valid result, but
on the last two values will result in an exception. This execution
provides a strong signal that the last two values are data errors
with respect to this formula. DataVinci can exploit this execution
information to provide suggested repairs. First, DataVinci flags
the last two value as data errors given their exceptional execu-
tion. Second, DataVinci learns a regular expression exclusively
over the two successful input values. Third, DataVinci applies the
pattern-based repair procedure previously described to the failing
inputs, producing the expected repairs c-3 and c-4 by inserting
the missing “-” characters.

We evaluate DataVinci on an existing benchmark (Wikipedia
web tables [7]) and three new benchmarks (a collection of real-
world Excel tables, synthetically corrupted Excel tables, and Excel
formulas and their input data). We compare our performance to 7
baselines, which include 5 existing error detection/repair systems,
one LLM-based baseline, and one small transformer-based model. In
addition, we augment detection-only systems with a GPT-3.5 error

repair module. Jointly these cover a variety of existing approaches
from the data management community or reasonable alternatives.

We find that DataVinci’s fully unsupervised pattern-based de-
tection and repair approach leads to higher precision detection
(+1.6 to +8.7 points than next best), higher recall detection (+3.6
than next best), and higher precision repairs (+1.6 to +12.2 points
than next best). We find that removing the LLM-based abstraction
and concretization approach that enables repairing mixed syntactic
and semantic strings reduces repair precision and recall (-3.8 and -6
points, respectively). Finally, we show that applying DataVinci’s
execution-guided repair to our benchmark of Excel formulas raises
formula-level execution success rates to 54% (single-column in-
puts) and 47.8% (multi-column inputs) compared to 43.2% and 35.7%
for DataVinci without execution-guided repair, and substantially
outperforming the next best non-DataVinci baseline.

To summarize, our contributions are:
• Wedevelop a pattern-based approach to detect and repair er-

rors in strings with both syntactic and semantic substrings.
• We implement our approach in DataVinci, which can de-

tect data errors and suggest repairs in a fully unsupervised
fashion. We also introduce execution-guided repair for data
cleaning, where DataVinci executes an existing program
that depends on the target column, uses the resulting execu-
tion success information to learn patterns, and reduces the
associated program failures by applying suggested repairs.

• We carry out an extensive evaluation of DataVinci on mul-
tiple datasets from different domains and against multiple
existing systems, which shows that DataVinci can outper-
form existing string error detection and repair approaches.

• We release the URLs and data preparation scripts to produce
our three novel Excel-based benchmarks.1

2 PROBLEM STATEMENT

We take inspiration from the data error detection and repair for-
mulation presented in prior work [7, 19]. First, we introduce our
target domain of string data errors.

Definition 2.1 (String Data Error). Let𝑇 be a table, consisting of a
collection of𝑚 columns {𝑐1, . . . , 𝑐𝑚}, each with 𝑛 values. Let 𝑐𝑖 be

1Due to compliance we are not able to release the post-processed data, so we release
scripts replicate our benchmarks.



Figure 2: DataVinci illustrated with an example from our corpus. 0○ denotes the input table. 1○ DataVinci learns significant

patterns, which account for both syntactic and semantic substrings (using the LLM), for the Player ID column. The values

satisfying each pattern are shown in the pattern’s color. Underlined pattern elements (e.g. Country) correspond to LLM-

abstracted semantic substrings. 2○ significant patterns are used to detect outliers. usa_837 is detected as an error as it does

not satisfy a significant pattern. 3○ edit programs for the outlier are learned by deriving edits to the string that will satisfy

a significant pattern. 4○ constraints are generated to concretize abstraction actions in edit programs. Here, the constraint

between{CAT1} and Category column is learned. Applying these value constraints produces the candidate repairs 5○. The

heuristic ranker sorts candidates and 6○ the top ranked candidate is suggested to the user.

a string column consisting of observed values {𝑣1, . . . , 𝑣𝑛}, where
𝑣 𝑗 is a string value. For each 𝑣 𝑗 , let 𝑣∗𝑗 be the latent clean value. If
𝑣 𝑗 ≠ 𝑣∗

𝑗
, we say 𝑣 𝑗 is a string data error.

The goal of a string repair system is not only to identify such
string errors, but also provide repaired values.

Definition 2.2 (String Error Repair). Let 𝑣 be a string value with a
data error. Let 𝑣 be a string value produced by a data repair system,
given 𝑣 and the table 𝑇 . We say 𝑣 is a candidate string error repair.
If 𝑣 = 𝑣∗, we say it is a successful string error repair.

Because the space of possible errors and repairs described pre-
viously can be infinite2, we focus our problem on pattern-based

regular error detection and repair in string values. In Section 3.2 we
show that rather than limit our scope, simple adaptations to this
framing allows us to perform pattern-based semantic repairs.

Definition 2.3 (Regular string column and regular errors). Let L𝑖

be the (pre-defined) latent regular language that characterizes latent
values in column 𝑐𝑖 , such that ∀ 𝑣 𝑗 ∈ 𝑐𝑖 : 𝑣∗𝑗 ∈ L𝑖 . We say a value
𝑣 𝑗 is a regular error, if 𝑣 𝑗 ∉ L𝑖 .

Definition 2.4 (Regular repair). Let 𝑣 be a regular string error. We
say 𝑣 is a candidate regular string repair, if 𝑣 ∈ L𝑖 . If 𝑣 = 𝑣∗, we say
it is a successful regular string repair.

The goal of our approach is to automatically learn a represen-
tation for L𝑖 , and use this representation along with our table 𝑇
to produce repair candidates for every 𝑣 ∉ L𝑖 . Note that a direct
2consider you can always extend the string with new characters

consequence of Definition 2.3 is that a string data error that is
in the latent regular language, but is not the right value, will not
be detectable in this setting. This is reflected in DataVinci’s de-
sign and we will show that despite this restriction, our approach
achieves high performance on real benchmark tasks. We describe
DataVinci’s components in greater detail in the following section.

3 DATAVINCI

Figure 2 shows a schematic overview of DataVinci. We start
with a table that contains a string column to clean (Player ID) 0○.
DataVinci performs error detection by learning a set of significant
patterns 1○ using an off-the-shelf pattern learner. Because patterns
may need to represent both syntactic and semantic substrings, we
use an LLM to replace semantic substrings with a mask. Values that
do not satisfy any significant pattern are flagged as data errors 2○
and are provided to the repair engine. The repair engine produces
edit programs by deriving the edits necessary for a data error to
satisfy a significant pattern. These edit programs can have abstract
edit actions, such as deciding what character in a class or substring
in a disjunction (e.g., CAT1) to choose 3○. We resolve these choices
by learning value constraints over non-error data 4○ and applying
these to the abstract edit actions to produce full repair candidates
5○. Because different significant patterns may produce different
repair suggestions, we employ a heuristic ranker to return the top
suggestion 6○. The following sections describe these steps in detail.



Figure 3:DataVinci’s semantic abstraction prompt structure.

The different colors show the components of the prompt.

3.1 Detecting Patterns and Errors

DataVinci uses a set of patterns to describe the regular language
that a column represents. Values that do not match any patterns,
and thus not accepted by the language, are marked as errors. Each
pattern is described by a regular expression over all characters
encountered in our dataset. As is standard in regular expressions, we
use the following character classes for simplicity of notation: digits,
cased and uncased letters, alphanumeric, spaces, alphanumeric with
spaces, and the common recurring character class of [0, 1].

Given a column 𝑐 , DataVinci uses FlashProfile [15] to learn
up to 𝑘 patterns 𝑅 = {𝑟1, . . . , 𝑟𝑘 } such that all values 𝑣 in 𝑐 are
in the language jointly defined by these patterns L𝑅 =

⋃L𝑟𝑘 .
FlashProfile supports disjunction (e.g., (cat|dog) matches “cat” and
“dog”) and quantification over groups (e.g., ([a-z].)+ matches one or
more repetitions of a letter and a period). FlashProfile balances the
number of individual patterns with the generality (number of cells
covered) of each pattern. We use the default parameters.

From these patterns, DataVinci then selects the subset of pat-
terns 𝑅𝑚 ⊆ 𝑅 that individually cover at least a fraction 𝛿 of the
values. We refer to these as significant patterns. The union of
these significant patterns defines the language L𝑅𝑚 =

⋃
𝑘∈𝑚 L𝑟𝑘 .

DataVinci reports any value 𝑣 ∉ L𝑅𝑚 as a data error. We can
change the confidence required for DataVinci to report a value as
an error by changing the threshold 𝛿 .

3.2 Semantic Abstractions

To allow DataVinci’s repairs to perform both syntactic and se-
mantic changes, like usa_837→ US-837 in Figure 2 (where the
substrings usa and US denote a country), using a syntactic repair
engine, we perform a semantic abstraction on each value. In such
an abstraction, substrings that denote some named concept 𝑥 , like
a city or a color, are replaced with a mask token𝑚𝑥 .

Example 1. Consider a column with values [red 1, dark green 2,

blue phone 3]. A pattern that matches this column is ([a-z] )+[0-9] and
we cannot identify that “phone ” should be removed. With knowledge

about colors, the semantic abstraction of this column is [𝑚𝑐 1,𝑚𝑐 2,

𝑚𝑐 phone 3]. The significant pattern becomes𝑚𝑐 [0-9] and “𝑚𝑐 phone

3” is identified as an error.

One way of obtaining the semantic abstraction of a string is
to maintain a dictionary of concepts. This has three main draw-
backs: some concepts are hard to exhaustively enumerate (like
colors), spelling mistakes cannot be repaired without additional
fuzzy matching (like “bleu” instead of “blue”) and semantic concepts
can be contextual (“red” can also refer to a movie).

We propose to leverage a large language model (LLM) to obtain
the semantic abstraction. While abstracting, we also allow the LLM
to provide suggestions for replacement strings that can be used to
replace the mask in the final string. This allows the LLM to repair
spelling mistakes, for example, in Figure 2, it correctly repairs the
masked value usa to US.

To capture the context of semantic concepts, we prompt the
model with a whole column at once. Long columns are processed
in batches based on the maximum prompt length (4k tokens for
GPT-3.5). Due to the repetitive nature of this task, we found that
long prompts did not deteriorate the quality of generations.

It is important to mask values at the right level of granularity.
For example, values from a column [Q4-2002, Q3-2002, Q32001]
are masked entirely as Quarter if given to the LLM without further
restrictions. This masking would prevent the last value from being
repaired (Q32001→ Q3-2001).

To mask values with the right granularity, we only mask a set
of predefined semantic categories. Sherlock [8], a prior work on
semantic type detection, introduced a method to classify a column
as one of 78 popular semantic types, such as Name, Country and
Currency. We take the 20 most frequently occurring semantic types,
which cover 99.2% of values with a detected semantic type, from a
sample 25K data columns from our Excel data.

Figure 3 summarizes the prompt to perform semantic abstraction
with the LLM. We use few-shot prompting to show the model both
(1) to mask the substring 𝑠 of semantic type 𝑡 as {𝑡 (𝑠)} and (2) that it
is allowed to repair the masked values (i.e. {𝑡 (𝑠′)}where 𝑠′ ≠ 𝑠). For
example, the masked version of “US-123” is “{country(US)}-123” and
“u.k.-392” becomes “{country(UK)}-392”. These are then transformed
to “𝑚1-123” and “𝑚1-392” before learning patterns, and𝑚1 is added
to the alphabet for our regular expression learner.

3.3 Repairing Values with Edit Programs

Given a pattern 𝑟𝑘 ∈ 𝑅𝑚 and a value 𝑣 ∉ L𝑟𝑘 , DataVinci repairs 𝑣
by learning edit programs 𝑒 such that 𝑒 (𝑣) ∈ 𝑟𝑘 , where we use 𝑒 (𝑣)
to denote applying program 𝑒 to value 𝑣 . Let an edit action be a
function that optionally deletes a character and optionally emits a
given character. An edit program is then a sequence program over
edit actions, which when applied to value 𝑣 , yields one candidate
repair. The edit program is applied to a string by starting from
the first character and applying each edit action on the current
character and advancing to the next character in the string. An
overview of edit actions is shown in Table 1.

Example 2. Consider an edit program [M, S(2), I(.)] consisting of

three steps. Highlighting the current character being looked at with

an underscore, the string AAA3 is edited as follows.

AAA3

𝑀−−→ AAA3

𝑆 (2)
−−−−→ A2AA3

𝐼 (.)
−−−→ A2.AA3

Let 𝑒 be an edit program that repairs value 𝑣 ∉ L𝑟 with respect
to pattern 𝑟 . 𝑒 is minimal if there does not exist an edit program



Table 1: Edit actions over characters.

Action Shorthand Delete Emits Cost

match() M 0
insert(𝑐) I(𝑐) 𝑐 1
delete() D ✓ 1
substitute(𝑐) S(𝑐) ✓ 𝑐 1

𝑒′ (𝑣) ∈ L𝑟 such that dist(𝑒′ (𝑣), 𝑣) < dist(𝑒 (𝑣), 𝑣), where dist is
the Levenshtein edit distance [20] between strings.

Given 𝑣 ∉ L𝑟𝑘 , DataVinci learns minimal edit scripts 𝑒 (𝑣) ∈
L𝑟𝑘 using dynamic programming. The pattern 𝑟𝑘 is interpreted
as a non-deterministic finite state automaton (NFA) where edges
correspond to matching (and consuming) a single character [22].
An example of a pattern and its corresponding NFA is shown in
Figure 4. An erroneous value will end in a non-accepting state in
the NFA where no further transitions can be taken. By changing
the characters of the string as we traverse it, edit actions allow us
to follow new edges. These changes come at a cost, however, and
these costs are shown in Table 1. Finding a minimal edit script then
corresponds to finding the lowest cost path in the NFA, which is
done through dynamic programming.

Example 3. Consider the example in Figure 4. When processing

the highlighted data error, after transitioning on the A edge, there are

no more edges that we can follow. For a cost of 1, we can use an edit

action I(3) to follow the [0-9] edge.

There are two challenges to finding the lowest cost path: loops
due to unbounded quantification and transitioning on character
classes and categories. For example, there are ten edit actions I(0)
· · · I(9) that allow following an edge [0-9].

To handle loops, we approximate the NFA for a given value 𝑣
with a directed acyclic graph 𝐷𝑣 by unrolling loops up to depth⌈ len(𝑣)
len(cycle)

⌉
with the length of a cycle defined as the number of

edges in it. We support nested cycles and follow the same unrolling
procedure recursively for each nested loop. In practice, we found
nested loops to be rare in our learned regular expressions.3 Figure 4
shows the NFA converted into a DAG by unrolling the loop twice
and topologically sorting states. The loop was unrolled twice as the
length of the cycle is 3 and

⌈ 4
3
⌉
= 2.

To match character classes and disjunctions, we first learn ab-

stract edit programs, which have edit actions that emit a character
class or a value from a disjunction. Two examples of abstract edit
actions are S(0-9) (see Figure 4) and I(CAT|PRO) (see Figure 2). After
the minimal abstract edit program is obtained, abstract edit actions
are concretized by choosing one of the characters in its character
class or one of the strings in the category. Concretization is detailed
in Section 3.4—it does not influence how minimal (abstract) edit
programs are learned.

Let cost(𝑖, 𝑗) be the cost of transitioning on edge 𝑗 after having
consumed 𝑖 characters in the string andmove(𝑖, 𝑗) be the edit action
required to do so. In the previous example, we had that cost(1, 𝑗2) =
1, as a result of the necessary insertion action. Since nodes can have
3less than 1% of regular expressions learned over 100,000 Excel columns resulted in
nested loops

Figure 4: DataVinci’s repair engine on an example column.

The significant regex learned for the column is (A[0-9].)+)
which is used to identify the outlier (AAA3), highlighted in

red. The regex is converted to an NFA with the starting and

accepting states shown in yellow and green, respectively, and

transition symbols over the edges. The NFA is then unrolled

to a DAG for the outlier. We show the computed cost and

moves matrix and highlight one optimal repair script path

in them with red arrows.

multiple incoming edges, we write 𝑝 ( 𝑗) to denote incoming edges
in the node where edge 𝑗 starts. The cost of transitioning on each
edge while traversing the string is recursively defined as

cost(𝑖, 𝑗 ) = min


min𝑗 ′∈𝑝 ( 𝑗 ) cost(𝑖, 𝑗 ′ ) + 1 (i)
min𝑗 ′∈𝑝 ( 𝑗 ) cost(𝑖 − 1, 𝑗 ′ ) + [𝑠 [𝑖 ] ≠ 𝑙 ( 𝑗 ) ] (m or s)
cost(𝑖 − 1, 𝑗 ) + 1 (d)

(1)
with 𝑙 ( 𝑗) the label of edge 𝑗 and [𝑎 ≠ 𝑏] Iverson bracket notation,
which evaluates to 1 if 𝑎 ≠ 𝑏 else 0. The associated moves are shown
on the right of each case.

Example 4. In Figure 4, we can arrive at cost(2, 𝑗2) (i.e. traversing
𝑗2 after consuming two characters) through 3 paths. We can move

from cost(1, 𝑗1) to the new state by substituting the second A with

a digit (S(0-9) with cost 1), inserting a digit and deleting the second

A (I(0-9), D with a cost 2), or delete the second A and insert a digit



(D, I(0-9) with a cost 2). Because substitution had the lowest cost (1),

cost(2, 𝑗2) = 1 and moves(2, 𝑗2) = S(0-9) .

The correctness of our DP algorithm can be proven through
extension of string edit-distance [23]. The time complexity of the
algorithm is 𝑂 (𝑚2𝑛) with𝑚 the number of edges in the DAG and
𝑛 the number of characters in the erroneous string 𝑣 . The space
complexity is 𝑂 (𝑚𝑛) as we only need to store the cost and moves
matrices.

3.4 Concretizing Edit Programs

DataVinci learns decision trees to predict concrete values for each
character class (which are just disjunctions over a set of characters)
and string disjunction in the pattern 𝑟 𝑓 that induced our edit pro-
gram. We refer to these learned rules as concretization constraints.
By construction, every abstract edit action corresponds to a charac-
ter class (or string disjunction) in 𝑟 𝑓 . We thus learn a decision tree
that uses features from rows where value 𝑣 ∈ L𝑟 𝑓 to predict the
value that allowed transitioning on an edge in the unrolled DAG
that has the target character class (or string disjunction).

Example 5. Consider value “A2.A3.” in row 2 from Figure 4 and

the associated unrolled DAG, which has two [0-9] edges, which match

2 and 3, respectively. Similarity, value “A5.A7.” on row 4 matches 5

and 7. For the first edge, this yields two training examples

row 2 → 2 row 4 → 5

for the decision tree.

To learn decision trees over these training examples, DataVinci
first extracts boolean features from each row. We take inspiration
from the Cornet [21] system for conditional formatting in tables
and generate predicates over a set of templates to use as features.
Table 2 shows all supported predicate templates. To generate can-
didate string constants 𝑠 , DataVinci considers the set of column
values and tokens after splitting (separately) on non-alphanumeric
characters, case changes, and switches between contiguous alpha-
betic and numeric characters. For length(𝑣, 𝑛) we consider the top
5 most frequent cell lengths in the column. In tables with multi-
ple columns, DataVinci generates these predicated-based features
over every column.

Example 6. Consider the first row in Figure 2. For the Player ID

column and TextContain(c, s), we generate four constants for 𝑠 . The
first is the value itself (Ind-674-PRO). Splitting the cell obtains tokens
{Ind, 674, PRO, -}. As TextContain(Player ID, -) is true for all cells in
the column, this is not considered and dropped. We get four features

from the first row: TextContains(Player ID, Ind), TextContains(Player
ID, 674), TextContains(Player ID, Pro), TextContains(Player ID, Ind-
674-Pro).

To learn each decision tree, DataVinci samples trees with vary-
ing number of split nodes and depth, filters down to those with an
accuracy of at least 𝛼 (default 0.8), ranks trees in ascending order of
(nodes, depth), and takes the first such tree. This tree can now be
applied to a repair that has abstract edits to predict the concretized
candidate repair.

Table 2: Supported predicate templates and their arguments.

The 𝑣 argument denotes the column value. For example,

equals(col1, "AR") matches the cells in column col1 which

are equal to "AR".

equals(𝑣 , 𝑠) contains(𝑣 , 𝑠) startsWith(𝑣 , 𝑠)
endsWith(𝑣 , 𝑠) length(𝑣 , 𝑛) hasDigits(𝑣)
isNum(𝑣) isError(𝑣) isFormula(𝑣)
isLogical(𝑣) isNA(𝑣) isText(𝑣)

3.5 Ranking Repair Candidates

Our repair procedure can produce multiple edit programs (since
there may be multiple significant patterns). To address this chal-
lenge, DataVinci uses a heuristic candidate ranker. This heuristic
corresponds to a weighted linear combination of edit script prop-
erties. The weights are manually set based on qualitative analysis
on a small held-out set of 100 columns sampled from our corpus of
Excel spreadsheets. The four properties are (1) string edit distance
between erroneous value and the repaired value, (2) count of al-
phanumeric edit operations, (3) string edit distance of repaired value
to closest value in column, and (4) fraction of column matching the
significant pattern used to generate the repair.

3.6 Execution-Guided Repair

DataVinci’s pattern-based detection relies on the assumption that
the significant patterns characterize the data distribution well, and
that values that do not satisfy such patterns are data errors. How-
ever, not all string data will be able to produce a significant patterns
nor will significant patterns learned over all values necessarily
highlight errors. To address this challenge, DataVinci can exploit
execution information from programs that operate on columns to
further refine its error detection and repair suggestions. This im-
provement comes from learning a significant pattern set 𝑅𝑚 that
accounts for different execution outcomes. We now describe this in
detail.

Let 𝑃 be a program that reads a subset of columns in a table,
including our target cleaning column 𝑐 . We say 𝑃 is a column-
transformation program if it can execute over each row tuple in-
dependently and produces one or more output values for each
row—thus generating one or more output columns.

Example 7. Consider a table with two columns c1 = [x, y, z] and

c2 = [a, b, c]. A program concat(c1, c2), which produces [xa, yb, zc], is

a column-transformation program, while first(c1), which produces x

is not.

DataVinci executes the column-transformation program on 𝑇
and groups executions into successes and failures (as signaled by
exceptional values, such as nan, or program exceptions). The non-
exception group is then provided to our regular expression learner
and all patterns learned are treated as significant patterns 𝑅𝑚 . All
values 𝑣 in our target column that were inputs to a failing execution
are identified as data errors, and we apply the repair procedure
previously described.



Table 3: Benchmark properties and metrics reported. #

Rows/# Cols denote the average number of rows/columns in

the table.

Dataset Metrics # Tables # Col # Row

Wikipedia Tables Precision, Fire Rate 1000 5.1 27.3
Excel Precision, Fire Rate 200 1.6 523.4
Synthetic Errors Precision, Recall, F1 1000 4.3 447.5
Excel Formulas Execution Success 11000 1.4 216.5

4 EVALUATION SETUP

We first describe the hardware specifications used for carrying out
experiments, the benchmarks we evaluate over and the baselines
to which we compare.4

4.1 Hardware Specifications

All experiments were carried out using Python (version 3.8.7) on
a machine with an Intel Core i7 processor (base at 1.8 GHz), K80
GPU, 64-bit operating system, and 32 GB RAM.

4.2 Benchmarks

We evaluate on four benchmarks. We use a benchmark of web
tables from prior work [7] and we collect and release three new
Excel-based benchmarks. We briefly describe the statistics of these
benchmarks in Table 3:

• Wikipedia Tables:We build on theWikipedia tables dataset
released in the original Auto-Detect [7] paper. Following
their approach, we take the sample of 1000 tables on which
they manually annotated system predictions and extend
this with manual annotations for DataVinci and our base-
lines. Like prior work, given this annotation approach, we
only report precision [7].

• Excel: We sampled 200 tables present in workbooks drawn
from a corpus of 1.8 million publicly available Excel work-
books from the web. Similar to the Wikipedia benchmark,
we run all available systems on the sampled tables, manu-
ally annotate their suggestions, and report precision.

• Synthetic Errors: We sample 1000 Excel tables (disjoint
from Excel benchmark) from the same corpus previously
described. We then synthetically introduce errors with the
goal of measuring recall. To introduce errors, we apply the
following noise operations: (1) random character insertion,
deletion and change, (2) random delimiter insertion dele-
tion and change, (3) random digit swap, (4) random shuffle
of characters, (5) random capitalization, (6) random deci-
mal, comma swap in numerics, (7) visually-inspired typos
{𝑜 →0, 𝑙 → 1, 𝑒 → 3, 𝑎 → 4, 𝑡 →7, 𝑠 → 5}. We randomly
corrupt cells with 20% probability. For each of the cells to
be corrupted, there is a 25% probability of applying 1, 2, 3
or 4 noise operations, sampled without replacement from
the set of operations described. Because it is likely there
are already real data errors present in the data, systems
may detect errors or suggest repairs for cells beyond our

4Data will be released for the camera ready to undergo required compliance checks.

Table 4: System comparison overview. Category denotes the

task for which the systems were designed. In the case, of T5

and GPT-3.5 category reflects our usage in this work.

System Category

WMRR Detection + Repair
HoloClean Detection + Repair

Raha Semi-supervised Detection
Auto-Detect Detection
Potters-Wheel Interactive Detection+Repair

T5 Detection + Repair
GPT-3.5 Detection + Repair

DataVinci Detection + Repair

synthetically corrupted cells. As a result, we focus our anal-
ysis on recall of our synthetic errors, but report precision
(which will be naturally deflated) and F1 for completeness.

• Excel Formulas: We create a dataset of the form (formula,
input columns), where formula is an Excel formula used
to define a column (i.e. all rows have the same formula,
modulo input values), and input columns correspond to the
input values necessary to execute the formula. We restrict
ourselves to formulas where input values and output value
are part of the same table. The task is to repair any data
errors in the input columns such that the formula evalu-
ates without producing any error values. To construct this
dataset we sampled 15,000 tables from Excel corpus previ-
ously described, extracted 11,000 formulas where at least 1
cell and less then 25% of cells result in an error value. Of
these 11,000 formulas, 7,200 have a single column input and
3,800 have multiple column inputs (on average 3.4). We use
this dataset to evaluate the impact of execution-guidance
in string data cleaning.

4.3 Baselines

We compare against various baselines as summarized in Table 4:
(1) WMRR [2]: an unsupervised approach to learn weighted

data rectifying rules based on functional dependencies.
Since the tool is not publicly available, to evaluate against
WMRR we reimplement it based on their paper description.

(2) HoloClean [19]: a popular data repair tool based on prob-
abilistic inference, which can repair qualitative and statis-
tical errors. We run the code released by the authors on
GitHub. HoloClean originally requires that users provide
denial constraints. To evaluate in a fully unsupervised set-
ting, comparable to DataVinci, we use a single vacuous
denial constraint (specifically, column 1 = column 1).

(3) Raha [11]: an ensemble-like system that combines multi-
ple error detection systems and semi-supervision to train
an error detection system. As Raha requires the user to
annotate examples, in our evaluation we take the first (top-
to-bottom) 5 groundtruth errors per column and provide
these as examples.



Table 5: Error detection performance across datasets. DataVinci outperforms in terms of precision on Wikipedia and Excel,

and in terms of recall on our synthetic benchmark. We report Potter’s Wheel and Auto-Detect results using the annotations

released with the Auto-Detect paper. For synthetic benchmarks the groundtruth is taken as the original table which can also

have inherent data errors which will skew the precision and F1 scoreas explained in Section 4, hence these metrics are reported

with a (*).

System

Wikipedia Excel Synthetic

Precision Fire Rate Precision Fire Rate Precision
*

Recall F1 Score
*

WMRR 70.0 2.93% 65.8 2.76% 55.3 66.8 60.5
HoloClean 67.0 3.87% 65.2 2.50% 52.1 64.1 57.5

Raha 68.9 4.03% 66.4 3.74% 59.5 68.2 63.6
Potters-Wheel 66.2 – – – – – –
Auto-Detect 78.5 – – – – – –

T5 60.8 27.47% 53.8 19.02% 40.5 56.3 47.1
GPT-3.5 73.9 10.99% 60.4 11.71% 50.1 69.8 58.3

DataVinci 80.1 16.85% 75.1 14.39% 67.4 73.4 70.3

(4) Auto-Detect[7]: a co-occurrence-based error detection sys-
tem, which also uses regular-expressions to generalize val-
ues. We use the Wikipedia results released with the paper.
Unfortunately, we are unable to run the tool on all our
benchmarks as it is not available publicly and as a result
only report performance on Wikipedia.

(5) Potter’s Wheel [18]: a seminal data error detection and
(semi-supervised) correction system based on functional de-
pendencies.We leverage the PottersWheel’s error detection
annotations on the Wikipedia dataset released in the origi-
nal Auto-Detect paper. Since we do not run Potter’s Wheel
system and rely on the Wikipedia annotations released,
we only report Potter’s Wheel results on the Wikipedia
benchmark.

(6) T5[17]: a popular transformer-based encoder-decodermodel
pretrained on text. We fine-tune T5 for the task of data re-
pair. Since T5 is a text generation model we encode each
column as a stringified list of column values separated by a
[SEP] token. The model is trained end to end to generate
the repaired column, given the potentially noisy column
as input. The training data consists of 100K dirty samples
(generated by the same approach used in our synthetic
benchmarks) and we task it with generating the original
columns. Because we run T5 on a single column at a time,
it does not consider other columns while repairing.

(7) GPT-3.5[3]: a state-of-the-art transformer-based decoder-
only model. We use the same input structure used to train
T5 to include the target column in GPT-3.5’s prompt. We
use GPT-3.5 in a fewshot setting, providing three static
examples of a dirty column and the cleaned output the
model needs to generate. The static examples are from Excel
(disjoint from our benchmarks) and are hand annotated.
We report results at temperature 0 and top-1 generation.
After experimenting with multiple temperatures, we found
temperature 0 works best on average based on precision
and F1 score across all benchmarks.

To evaluate unsupervised repair when using detection-only sys-
tems, such as Raha, Auto-Detect and Potter’sWheel, we add a call to
GPT-3.5 where we include the outlier value and its column header
along with 10 sample values selected based on spatial proximity (5
rows above and below and 3 columns to the left and to the right
with headers). We ask the model to generate the repaired value. We
sample values to fit in the fixed prompt length of 4,000 tokens and
make individual repair calls for each outlier detected.

5 RESULTS AND DISCUSSION

We explore the following research questions:

RQ1. Can DataVinci accurately detect string errors?
RQ2. Can DataVinci accurately repair string errors?
RQ3. Can DataVinci use program execution to improve repairs?
RQ4. How doDataVinci’s design decisions impact performance?

5.1 Error Detection (RQ1)

Like prior work [7, 11, 19] we report precision for detection. We
leverage existing annotations where possible and otherwise manu-
ally annotate systems’ predictions. We report precision, recall, and
F1 on our synthetically corrupted dataset, computed with respect
to our corruptions, as a result precision/F1 score can be deflated
from preexisting data errors.

In addition to standard metrics like precision, we also report each
system’s average fire rate. We define this as the average fraction of
cells in a column that are labeled as data errors.

Table 5 presents error detection results for DataVinci and base-
lines across three benchmarks.We find thatDataVinci outperforms
baselines in terms of precision on both the Wikipedia and the Ex-
cel benchmarks, despite having a higher firing rate than all but
one baseline (T5). Auto-Detect, which is well-suited to the type
of mistakes present in the Wikipedia dataset, performs competi-
tively. Overall, we find that error detection is relatively easier on
the Wikipedia benchmark, where tables on average have fewer
rows, compared to the Excel benchmark.



Table 6: Error repair performance across datasets. As described in Section 4 for the Wikipedia and Excel benchmarks we report

repair precision split into (1) Certain: repairs that are certain (based on hand annotation) and, (2) Possible: repairs that are

reasonable but groundtruth cannot be uniquely determined. For synthetic benchmarks the groundtruth is taken as the original

table which can also have inherent data errors which will skew the precision and F1 score hence, these metrics are reported

with a (*). Recall is computed as the percentage of cases correctly repaired out of the total errors synthetically introduced.

System

Wikipedia Excel Synthetic

Precision Precision Precision Precision

Precision
*

Recall F1 Score
*

(Certain) (Possible) (Certain) (Possible)

WMRR 61.1 57.8 59.2 55.6 43.2 61.1 50.6
HoloClean 58.4 55.6 59.0 54.9 41.3 58.6 48.5

Raha + GPT-3.5 58.6 54.8 56.4 53.5 45.2 62.0 52.3
Potter’s-Wheel + GPT-3.5 56.2 52.0 - - - - -
Auto-Detect + GPT-3.5 66.9 63.3 – – – – –

T5 41.0 37.8 37.7 35.2 27.9 47.0 35.0
GPT-3.5 63.9 55.5 52.1 48.9 38.2 63.8 47.8

DataVinci 71.3 64.9 71.2 64.6 54.1 68.9 60.6

On our synthetic benchmark, we find DataVinci achieves the
highest recall followed by GPT-3.5. The learning-based approach
taken by Raha also results in a recall rate that is comparable to the
more expensive GPT-3.5-based solution.

When performing qualitative inspection of the errors detected,
we find that GPT-3.5 can identify errors in semantic substrings
well. For example, in the following column of financial quarters,
{Q1-22, Q4-21, Q5-20, Q2-20, Q1-21} GPT-3.5 correctly identifies
the outlier to be Q5-20. However, GPT-3.5 fails to detect syntactic
errors like S1.4 in the column, {S.1.2, S.2.3, S1.4, S.1.3, S.2.1}, where
S1.4 is missing a period after S. Neural models like GPT-3.5 struggle
at recognizing these patterns whereas DataVinci can detect such
errors using regular-expression-based patterns.

Other tools, like Auto-Detect, work well on syntactic errors
but fails on semantic repairs. For example, consider the column
of county and a numeric ID separated by a hyphen {Alpine_231,

Kings_721, Lake_201, Santa Clara_246, Nevad210} the correct re-
pair here is Nevad210 → Nevada_210. This error involves a combi-
nation of syntactic and semantic inconsistency which most baseline
systems struggle with. DataVinci combines semantic information
via masking into its pattern based syntactic repair engine and thus
detects this error (and generates the correct repair).

5.2 Error Repair (RQ2)

For repair, we find that often there are cases where various possible
data repairs are reasonable and the correct repair cannot be uniquely
identified. To account for this, we annotate repair suggestions as
possible if this is the case, and then annotate the suggestion as
correct (i.e. reasonable) or not. In our results, we report repair
precision for certain cases and precision for possible cases separately
for completeness.

Table 6 shows the performance of DataVinci and baselines
systems for repairing data on our benchmarks. Note that repair
metrics combine: (1) detection (as a systemmust identify an error to
fix it), and (2) whether the repair matches the ground-truth repair.

Table 7: Table showing repair precision as the percentage

of errors that DataVinci and baseline systems can repair

correctly out of the errors that were correctly detected by

each system.DataVinci has the highest repair rate compared

to baseline systems.

System Wikipedia Excel Synthetic

WMRR 87.3 89.9 78.2
HoloClean 87.1 90.5 79.3

Raha + GPT-3.5 85.0 85.0 76.0
Potter’s-Wheel + GPT-3.5 84.9 – –
Auto-Detect + GPT-3.5 85.2 – –

T5 67.4 70.1 68.8
GPT-3.5 86.5 86.3 76.3

DataVinci 89.0 91.2 80.3

We find that DataVinci outperforms all baselines in terms of
both certain and possible repairs on Wikipedia and Excel bench-
marks and has the highest precision, recall and F1 score on the
synthetic test set. Raha+GPT-3.5 and Auto-Detect+GPT-3.5 have
high precision (Wikipedia), but we find that they have different
behaviors. Specifically, Auto-Detect (by design) does not support
inter-column dependencies, while Raha struggles to detect intra-
column patterns. WMRR and Potter’s-Wheel capture both inter-
and intra-column dependencies well but struggle with semantic
repairs as they do not detect these issues.

Both GPT-3.5 and T5 perform significantly worse on the syn-
thetic dataset as our noise operations predominantly introduced
syntactic errors with minimal semantic content.

Table 7 shows the precision rates when we only consider cor-
rectly detected errors for each system as a way to disentangle the
detection and correction effectiveness of each system. We find that
repair precision is substantially higher across the board, if we only



Figure 5: Example from Excel benchmarks where DataVinci

generates the correct repair while baseline systems fail. The

ground truth is US-837-PRO.DataVinci combines semantic

and syntactic substrings in its pattern and repairs the column

correctly. Analysis for this example is presented in Figure 2.

consider correct detections, andDataVinci outperforms in all three
benchmark sets.

We look at cases where DataVinci is able to accurately repair
data errors while baselines fail. We find that these are mostly where
either (1)DataVinci is able to leverage its semantic masking to sup-
press false positives; or (2) DataVinci detects a semantic anomaly
using patterns. Figure 5 shows an example from the Excel bench-
marks, which contains a tournament table having columns category
(Junior or Professional) and Player-ID which has three components
(Country code, unique numeric ID, first three letters of category).
For non competing players, the ID is QUAL- followed by a unique
numeric ID. usa_837 is an outlier in the Player-ID column and the
correct repair should change it toUS-837-PRO. As highlighted above,
DataVinci utilizes (1) semantic masking to repair usa→ US and
uses (2) patterns, paired with concretization value constraints, to
detect that the category substring is PRO.

We also look at cases where DataVinci failed to generate the
correct repair but one of the baseline systems succeeded. We find
that these cases were mostly the result of either (1) the column
does not have any significant patterns due to irregular data, or (2)
the error rate is too high and as a result the outlier is covered by a
significant pattern. Figure 6 shows one example for each case from
the Excel benchmarks along with the incorrect repair generated
by DataVinci and the correct repair generated by the baseline.
In the first example, DataVinci learns two significant patterns
𝑅𝑀 = {[A-Z]+, [A-Z]+0} and hence, does not detect the error.
In the second example, since the column contains irregular data,
DataVinci is unable to learn a significant pattern 𝑅𝑀 = {} and
does not detect any errors.

Figure 6: Example from Excel benchmarks where DataVinci

fails to generate the correct repair but a baseline system

succeeds. Error cells are highlighted. We show all repairs (de-

noted by →) suggested. DataVinci is unable to detect these

errors because they either 1○ satisfy a significant pattern, or

2○ the column has irregular data and no significant pattern

is learned.

Table 8: Execution success rates at formula and cell-level after

applying repair suggestions for each system on our Excel

Formulas benchmark. We split out formulas that depend

on single and multiple columns. We report the No Repair
(i.e. starting point) success rates first for comparison. We do

not report HoloClean as it is expensive to run and did not

complete in the 24 hours time limit. Applying DataVinci’s

execution-guided repairs leads tomore successful executions.

Single Column Multi Column

Type Formula Cell Formula Cell

No Repair 0.0% 85.8% 0.0% 81.4%
WMRR 32.6% 94.4% 29.6% 90.1%
Raha + GPT-3.5 34.5% 92.6% 31.4% 88.3%
T5 11.2% 89.4% 6.4% 86.2%
DataVinci Unsupervised 43.2% 94.3% 35.7% 90.9%
DataVinci+Execution 54.0% 96.5% 47.8% 94.0%

5.3 Execution-Guidance (RQ3)

We use our Excel Formula benchmark to evaluate the extent to
which DataVinci can use execution information to provide im-
proved repairs. We report two execution metrics: the fraction of
cells that no longer result in an error value, as well as the fraction
of columns where no cell results in an error value (i.e., the formula
succeeds fully).

To carry out this experiment, we run all baselines, apply repair
suggestions only on values that are an input into a row that has
an error value when the formula is originally executed. We re-
port formula-level and cell-level successful execution rates after
applying each systems’ suggestions.



0 5 10 15 20 25
Edit Distance

0.00

0.05

0.10

0.15

0.20

R
ep

ai
r S

ug
ge

st
io

ns
 (%

)

Execution Guided
Unsupervised

(a) Edit Distance

0 5 10 15 20 25 30 35 40
Repair Suggestions

0

10

20

C
ou

nt

Execution Guided
Unsupervised

(b) Number of Repairs

Figure 7: Comparison of unsupervised and execution-guided

DataVinci. Both the (a) distribution of original value to sug-

gested repair edit distances and (b) number of repairs per col-

umnmove higher when given execution information. Jointly,

this suggests that with execution informationDataVinci can

offer more repairs, with higher complexity (as proxied by

string edit distance).

Table 8 summarizes our results. We find that DataVinci with
execution-guided learning improves over all baselines 5 (including
the fully unsupervised DataVinci). While all systems have implicit
access to execution information, since we only apply their repairs
to inputs associated with erroneous executions, DataVinci with
execution-guided learning is the only system that also incorpo-
rates this information (by affecting the patterns learned: 𝑅𝑚) when
learning how to repair the data error.

Figure 7 shows that the distribution of string edit distances from
original data error to repaired suggestion, as well as the number
of repairs per column. We find that when provided with execution
information DataVinci can produce more repairs, and these re-
pairs tend to have a higher distance to the original value (implying
possibly more complex repairs). For example, Figure 8 shows an
example where DataVinci with execution learns the correct repair
resulting in successful execution of the formula while the unsu-
pervised variant is unable to provide any suggestions because the
pattern C[0-9]{2} repeats enough times to be considered as a
significant pattern.

5.4 Design Decision (RQ4)

We study how the various design decisions impact the performance
of DataVinci. Namely, we investigate the importance of semantic
abstraction/concretization, concretization value constraints, and
ranking. We carry out experiments on our synthetically corrupted
benchmark. We summarize our results in Table 9.

5.4.1 Semantic Substrings. To evaluate the impact of having se-
mantic information in repairs (see Section 3.2), we evaluate two
versions of DataVinci. We implement a version of DataVinci that
treats all strings as purely syntactic (No semantic abstraction) and
a version that can perform semantic abstraction but is restricted
5we exclude HoloClean as it did not scale to this task. We let HoloClean run for 24
hours and it only covered 24% of the formula benchmarks.

Figure 8: Example from Excel Formulas benchmark where

DataVinci with execution-guided repair can provide repair

suggestions that lead to successful formula execution but

the unsupervised variant cannot because the outlier pattern,

C[0-9]{2} occurs frequent enough to be considered a sig-

nificant pattern. Error output values are shown in red font,

and data errors in input values are highlighted.

Table 9: Repair precision, recall and F1 score on our synthet-

ically corrupted benchmark for different DataVinci abla-

tions. Full DataVinci outperforms all ablations. Removing

semantic abstraction and removing learned concretization

constraints (which concretize abstract edits) have the most

impact on F1 score.

Model Precision Recall F1

No semantic abstraction 50.3 62.9 55.9
Limited semantic concretization 52.0 65.6 58.0

No learned concretization 46.3 51.0 48.5
Edit distance ranking 53.2 67.1 69.3

DataVinci 54.1 68.9 60.6

to re-use the same substring for concretization, meaning it can not
repair errors in semantic substrings (Limited semantic concretiza-

tion). We find that both versions result in a lower performance
compared to full DataVinci, but removing semantics altogether
has a comparatively larger impact on precision and F1.

5.4.2 Concretization and Ranking. To study the effect of learned
concretization value constraints and ranking (see Section 3.4 and 3.5),
we design two ablated version of DataVinci, (1) where DataVinci
does not learn to concretize abstract edits, instead enumerates all
candidates and directly passes them through to the heuristic ranker
(No learned concretization); and (2) a version where all candidates
are ranked just based on the shortest string edit distance with re-
spect to the original data error (Edit distance ranking). Table 9 shows
that while removing either learned concretization or ranking has a
negative impact on performance, removing learned concretization
constraints has a larger effect.



Table 10: Comparing time (milliseconds), disk space (MB),

and GPU plus CPU memory used (MB), averaged over

Wikipedia benchmarks. (*) denotes systems which we did not

run and the reported stats are the ones published by Auto-

Detect authors for this dataset. Raha/Potter’s Wheel/Auto-

Detect only includes the detection time as repair is performed

by GPT head in our experiments. GPT-3.5 was used via API

and the reported time includes network latency.

System Time(ms) Disk(MB) Memory(MB)

WMRR 247.4 4.6 914.5
HoloClean 1049.3 996.3 1647.2

Raha 321.8 65.3 645.4
Potter’s-Wheel* 110.0 - -
Auto-Detect* 290.0 - -

T5 858.3 886.2 1534.2
GPT-3.5 1325.6 - -

DataVinci 261.5 5.6 10.5

5.5 Runtime Performance

Table 10 shows the average time taken, disk space used and RAM +
GPU VRAM used to detect (Raha, Potter’s Wheel, Auto-Detect) or
detect+repair (WMRR, HoloClean, T5, GPT-3.5, DataVinci) errors
on the Wikipedia benchmark. We report Potter’s Wheel and Auto-
Detect based on the Auto-Detect paper [7] which reports these
metrics in a similar environment and on the same benchmarks. We
note that GPT-3.5 includes network time. We find that in terms of
time and disk space, DataVinci is competitive with alternatives
such as WMRR, Raha, and Auto-Detect, while using substantially
less RAM. Since, T5 and HoloClean also utilize a GPU and don’t
run purely on CPU memory we report the sum of GPU and CPU
memory usage under Memory. We only report inference resources
but it is worth noting that T5 also requires training which took 4
hours on a K80 GPU.

HoloClean and T5 are the most resource intensive systems, as a
result of their implementation complexity. DataVinci, WMRR and
Raha are up to 4 times faster than HoloClean/GPT-3.5 and require
fewer resources to run.

6 LIMITATIONS

We describe some limitations of DataVinci. We have only evalu-
ated DataVinci on English language values and applicability to
non-English datasets may be limited. DataVinci does not handle
inter-table constraints, limiting its effectiveness when data con-
sistency relies on relationships across multiple tables. DataVinci
relies on identifying recurring patterns to perform error detec-
tion/repair, which may not occur in all data. Execution-guided
repair may mitigate this limitation but its applicability is limited by
the availability of programs that read the target data and the ability
to easily execute these programs.

7 RELATEDWORK

Data error detection has been the subject of active investigation in
the data management community. Prior work has developed sys-
tems that can identify qualitative data errors (e.g. incorrect value
structure) or quantitative data errors (e.g. unlikely values given
a distribution). Often systems further make distinctions between
syntactic issues and semantic data errors [11]. The seminal Potter’s
Wheel [18] system introduced an interactive data cleaning system
where users employ a spreadsheet-like environment to annotate
data errors with corrections, which the system then learns to apply
throughout the data. More recent work like AutoDetect [7] uses
large-scale co-occurrence statistics, along with pattern-based gen-
eralization, to achieve high-precision error detection. Raha [12]
achieves configuration-free error detection by combining many er-
ror strategies, clustering data based on these strategies’ annotations,
efficiently gathering user feedback on possible errors from these
clusters, and then training a model on this feedback to detect errors
throughout the dataset. Commercial platforms like Trifacta [1] and
PowerBI [13] typically offer data cleaning based on a fixed set of
patterns or common data issues (e.g. leading spaces). In contrast to
this line of work, DataVinci does not use fixed patterns to detect
errors but rather learns them. DataVinci does not only detect data
errors but also repairs them. In addition, DataVinci can detect and
repair errors in strings with both syntactic and semantic substrings.

While detecting data errors can help users identify issues in
their dataset, correcting these errors can also be costly. As a result,
past work has explored not only detecting but also repairing errors
identified. HoloClean [19] allows users to (optionally) specify de-
nial constraints, which it combines with error detectors, to build a
probablistic data cleaning program, which unifies these different
signals. WMRR [2] presents an unsupervised approach to learn-
ing cleaning rules, removing the need for users to specify denial
constraints or resolution rules. ActiveClean [9] and Baran [10, 11]
are semi-supervised tools to repair data based on few user exam-
ples. With the exception of WMRR (which our evaluation shows
achieves lower detection/repair performance), this line of work re-
quires a human in the loop. Like this work, DataVinci can provide
repair suggestions for errors detected. In contrast to these systems,
DataVinci uses a pattern-based approach to data repair, does not
require any user specification in the form of constraints or anno-
tated examples, and can repair strings that have a combination of
both syntactic and semantic substrings.

Transformer models [24] have recently gained a lot of popularity
and language [17] and code tasks [27]. As part of our evaluation, we
employ T5 and GPT-3.5 as baselines to perform data error detection
and repair. Prior work [14] has explored using foundation models
for data management tasks including data validation and cleaning.

DataVinci can repair strings that contain both syntactic and
semantic substrings, as described in Section 3.2. FlashGPT [25]
showed that LLM-based semantic transformations can be integrated
into a programming-by-example synthesizer that learns syntactic
string transformations. More recently, SMORE [4] presented a for-
malization of semantic regular expressions, which generalize tradi-
tional regular expressions to include semantic substrings. SMORE
can learn such semantic regexes given positive/negative examples.



Potter’s Wheel [18] anticipated the combination of semantic sub-
strings and syntactic substrings for data cleaning, and allowed users
to define membership tests associated with semantic types, and
used these definitions to guide its transformations. Like this line
of work, DataVinci combines syntactic and semantic information.
Like SMORE, DataVinci leverages regular expressions to formally
describe string values. In contrast to SMORE, FlashGPT, and Potter’s
Wheel, DataVinci does not have user examples or definitions but
rather learns patterns fully unsupervised. Like SMORE, DataVinci
uses an LLM to identify semantic substrings, but when learning the
regular expression DataVinci employs abstraction/concretization,
which allows it to use an existing regular expression learner [15].

8 CONCLUSION

In this paper we propose DataVinci, a tool for automatic repair of
string data errors.DataVinci learnsmajority patterns over columns
and uses these to detect string data errors. Because errors may occur
in strings with both syntactic and semantic substrings, DataVinci
employs an LLM to mask semantic substrings before learning a
pattern. DataVinci suggests repairs for the detected errors by
deriving minimal edits to the data error that lead to satisfying a
majority pattern. Because majority patterns may not always occur
or capture errors, DataVinci can address this challenge by incor-
porating program execution information. We evaluate DataVinci
against 7 baselines on four existing and new benchmarks and show
DataVinci achieves higher detection and repair performance. We
release scripts to reproduce our novel benchmarks for future data
cleaning research.
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