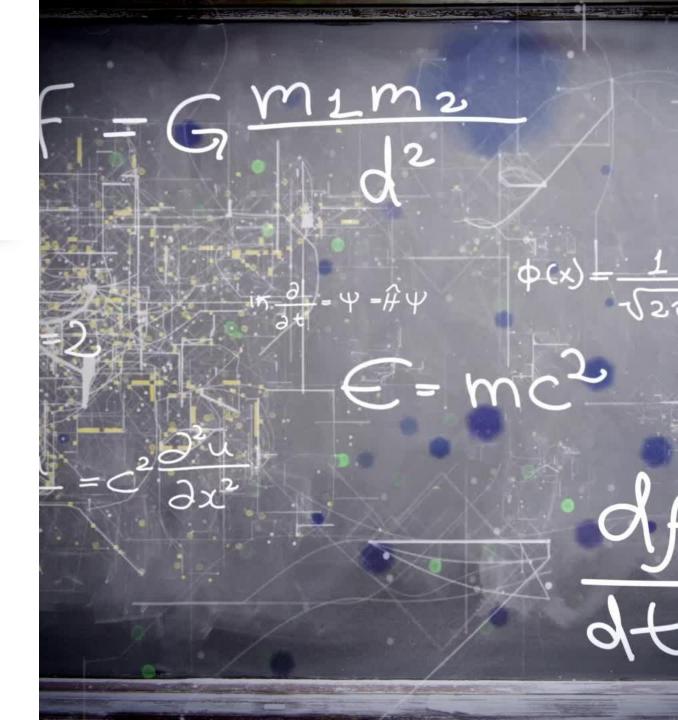
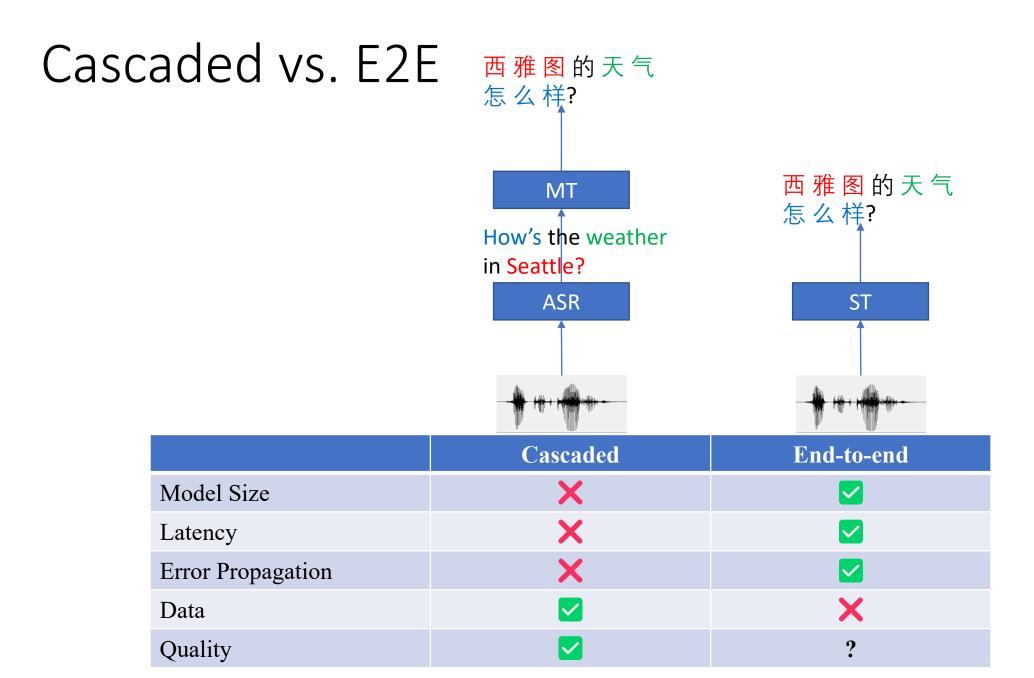


Large-Scale Streaming Endto-End Speech Translation

Terminologies

- Machine translation (MT)
- Speech translation (ST)
- Automatic speech recognition (ASR)
- End-to-end (E2E)
- Direct ST = E2E ST
- Simultaneous ST = Streaming ST





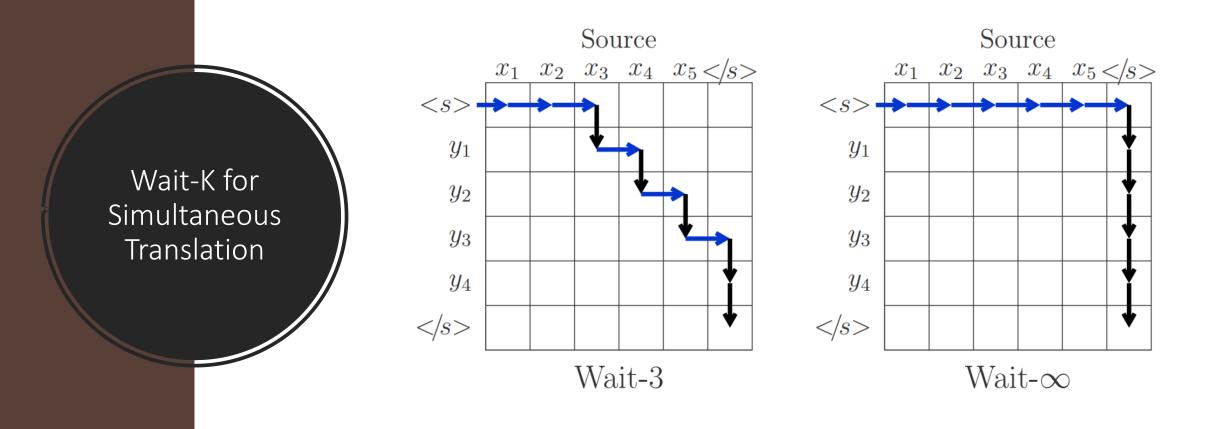


Image: M. Elbayad, L. Besacier, and J. Verbeek, Efficient wait-k models for simultaneous machine translation," arXiv preprint arXiv:2005.08595, 2020.

The Challenge of Wait-K

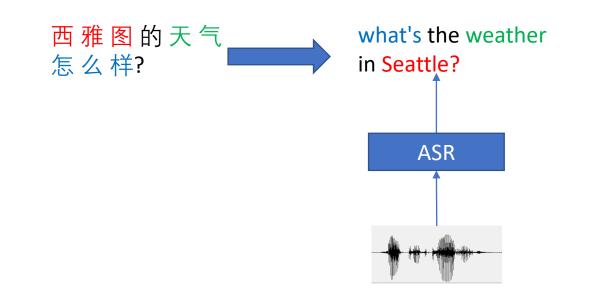
- Not flexible
 - The read-write operation is interleaving
 - K is pre-determined
- More works need to be done for direct speech translation because the step rates of speech and transcription are different.

Can We Build a Simultaneous E2E ST System?

• Treating ST as an ASR problem – we already have the success in streaming E2E ASR.

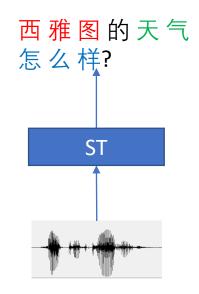
Can We Build a Simultaneous Direct ST System?

• Treating ST as an ASR problem – we already have the success in streaming E2E ASR.



Can We Build a Simultaneous Direct ST System?

• Treating ST as an ASR problem – we already have the success in streaming E2E ASR.

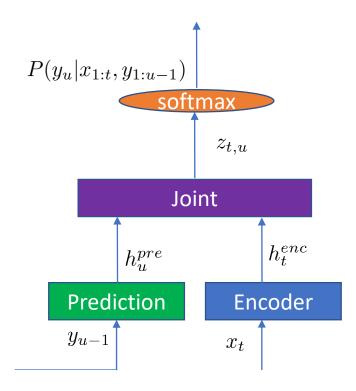


Innovating Streaming ST Method

- Most existing streaming ST methods either rely on waitk style solution or use MOCHA style solution which has been almost discarded in ASR.
- We first proposed to use RNN Transducer (RNN-T) which is the dominating streaming E2E method in ASR as the solution for streaming ST.

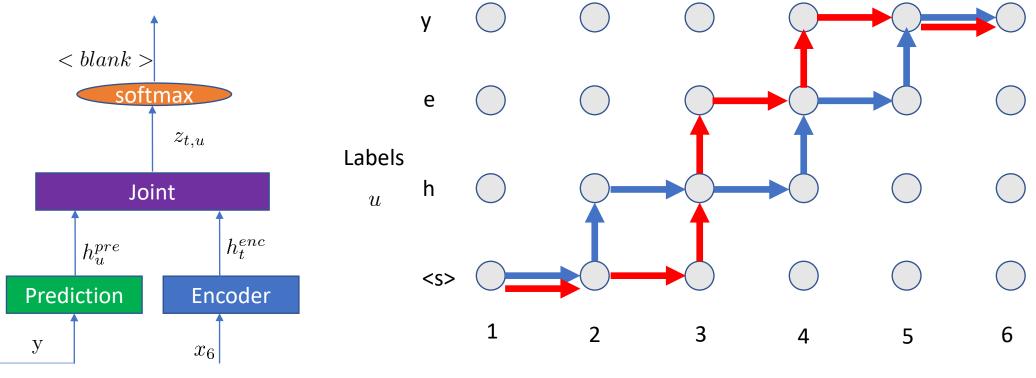
RNN-T: Streaming E2E ASR

- Encoder: converts input feature sequences into high-level hidden feature sequences.
- Prediction network: producing a high-level representation based on previous label.
- Joint network: combines the outputs from encoder and prediction network.

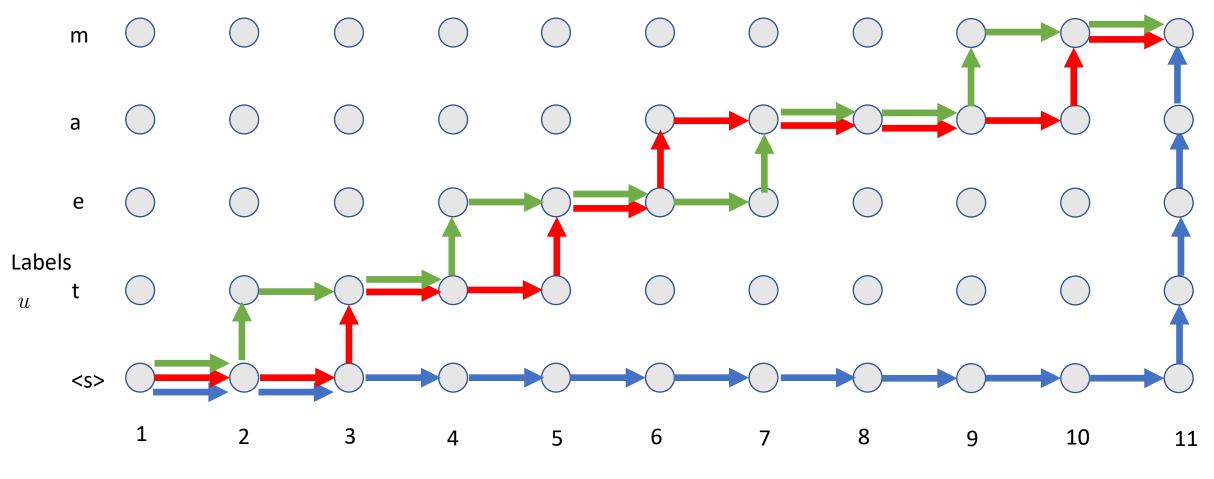


RNN-T Training

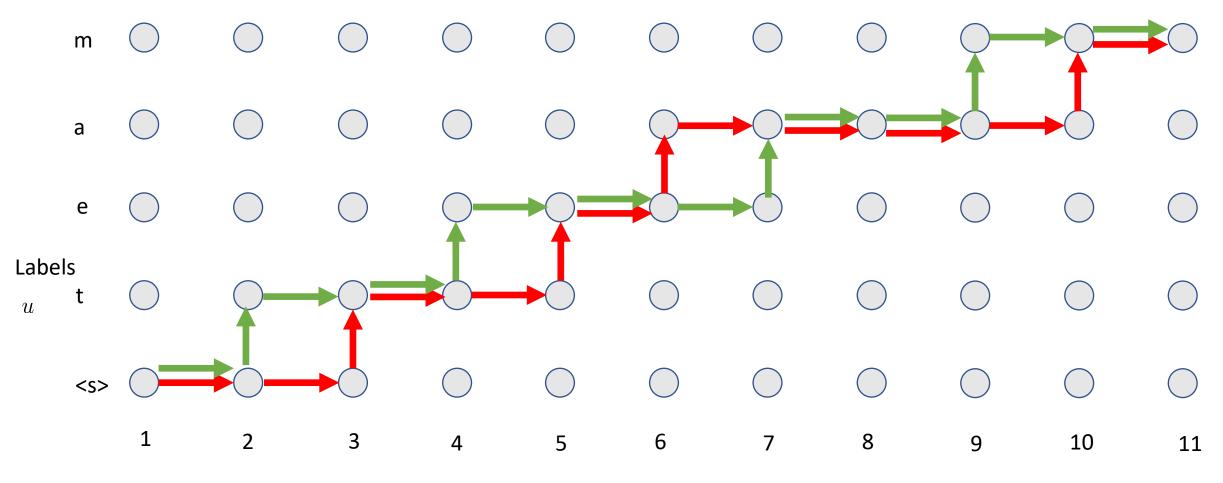
Given a label sequence of length U and acoustic frames T, we generate UxT softmax. The training maximizes the probabilities of all RNN-T paths.



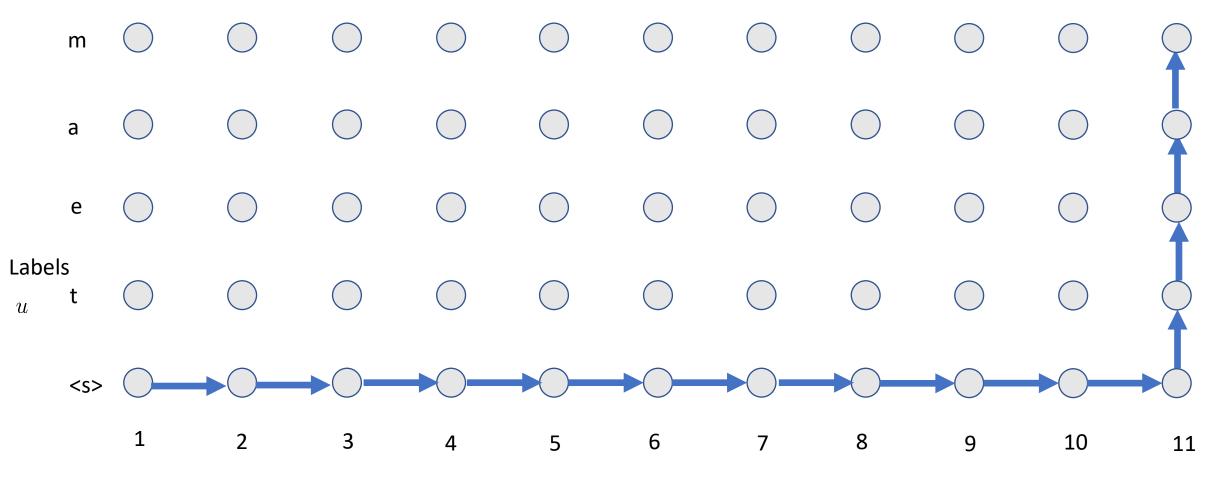
Flexible RNN-T Path



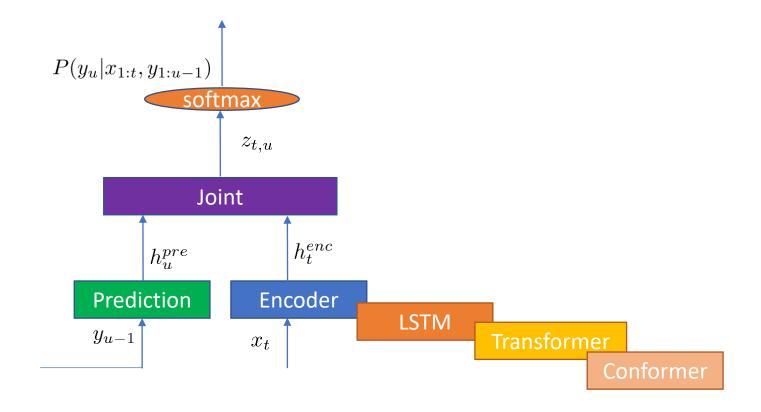
No Word-Reordering



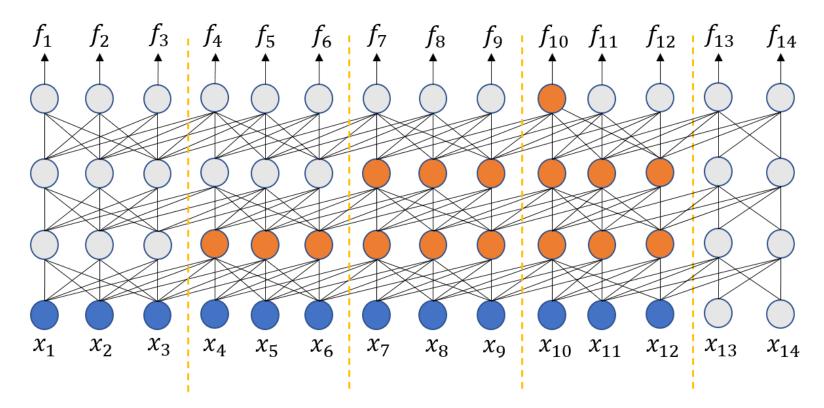
Word-Reordering at the End of Utterance



Encoder for RNN-T



Streaming Transformer



Chen, X., et al. Developing real-time streaming transformer transducer for speech recognition on large-scale dataset. in Proc. ICASSP, 2021.

Evaluation Metrics

- Accuracy evaluation: BLEU score
- Latency evaluation:

1) AP (average proportion; Cho & Esipova, 2016): Average of proportion of source input read when generating a target prediction, approaches 0.5.

 $AP = \frac{1}{|\mathbf{X}||\mathbf{Y}|} \sum_{i=1}^{|\mathbf{Y}|} d_i$, where di = number of input features when output yi (delay of yi)

2) AL (average lagging; Ma et all, 2019): Number of words behind the optimal path.

$$AL = \frac{1}{\tau(|\mathbf{X}|)} \sum_{i=1}^{\tau(|\mathbf{X}|)} d_i - \frac{(i-1)}{\gamma} ,$$

 $\gamma = |Y|/|X|, T(|X|) =$ index of the output sequence when first reaches the end of input 3) DAL (differentiable average lagging; Cherry and Foster, 2019)

$$DAL = \frac{1}{|\mathbf{Y}|} \sum_{i=1}^{|\mathbf{Y}|} d'_i - \frac{i-1}{\gamma}, \text{ where } d'_i = \begin{cases} d_i & i=0\\ \max(d_i, d'_{i-1} + \gamma) & i>0 \end{cases}$$

Experimental Results

• En-Zh:

BLEUs:

	MSLT_v1.1_dev	MSLT_v1.1_test
Cascaded	37.5	40.0
TT_3.2s	34.5	35.7
TT_160ms	32.9	34.7
TT_160ms	34.3	36.3

Latency measurements on MSLT_v1.1_test set:

	AP↓	$AL\downarrow$	$DAL\downarrow$
Cascaded	1	∞	∞
TT_3.2s	0.74	2151	1886
TT_160ms	0.61	841	834

Experimental Results

• En-DE

BLEUs

	MSLT_v1.0_dev	MSLT_v1.0_test
Cascaded	29.4	29.3
TT_3.2s	31.6	30.8
TT_160ms	30.2	29.4

Latency measurements on MSLT_v1.0_test set:

	AP↓	AL↓	DAL↓
Cascaded	1	∞	∞
TT_3.2s	0.74	2152	1890
TT_160ms	0.61	828	828

Streaming Multilingual Speech Model (SM^2)

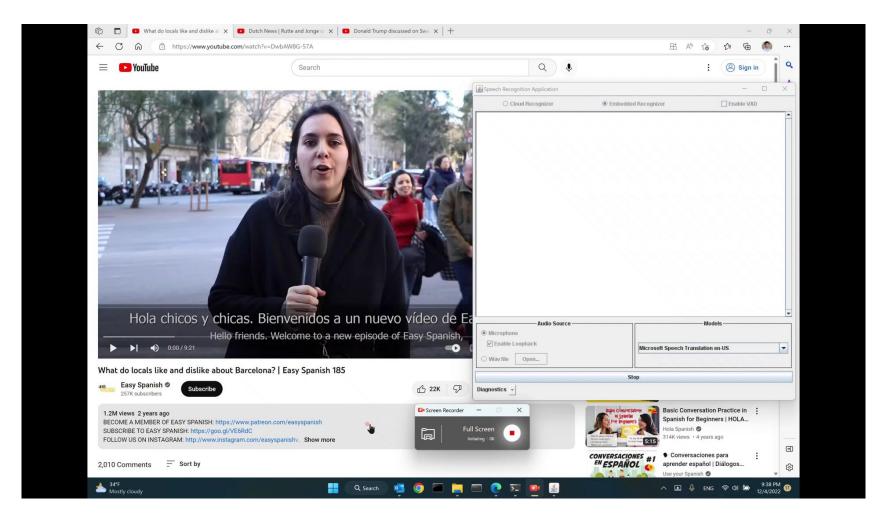
- Multilingual data is pooled together to train a streaming model to perform both ST and ASR functions.
- ST training is totally weakly supervised without using any human labeled parallel corpus.
- The model is very small, running on devices.

Xue, J., et al. A Weakly-Supervised Streaming Multilingual Speech Model with Truly Zero-Shot Capability. In Proc. ASRU, 2023.

BLEU evaluation on CoVoST 2 test sets

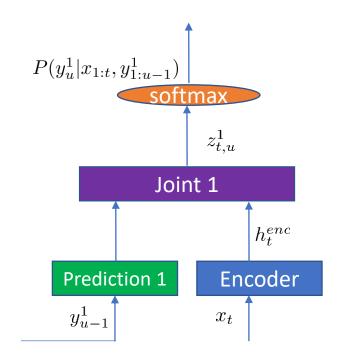
	Whisp	per [25]		S	M^2	
model size	244M	1550M		211M		343M
chunk size	30s	30s	0.32s	1s	30s	30s
DE→EN	25.3	36.3	32.3	34.0	36.4	37.8
$ZH \rightarrow EN$	6.8	18.0	15.9	18.0	19.8	21.6
JA→EN	17.3	26.1	20.1	21.6	23.5	25.4
$RU \rightarrow EN$	30.9	43.3	36.8	39.8	43.3	44.8
$NL \rightarrow EN$	28.1	41.2	36.1	38.5	42.2	43.4
$ET \rightarrow EN$	2.4	15.0	15.3	17.9	21.3	22.3
$SV \rightarrow EN$	29.9	42.9	33.6	37.1	36.5	33.8
$SL \rightarrow EN$	9.2	21.6	15.3	22.4	18.1	20.4
$ES \rightarrow EN$	33.0	40.1	32.9	34.7	36.8	37.3
$FR \rightarrow EN$	27.3	36.4	31.5	33.0	34.9	35.9
$IT \rightarrow EN$	24.0	30.9	31.7	33.4	35.0	36.1
$PT \rightarrow EN$	40.6	51.6	42.4	44.7	45.6	45.8
Average	22.9	33.6	28.7	31.3	32.8	33.7

SM^2 Trained with 25 Languages->English



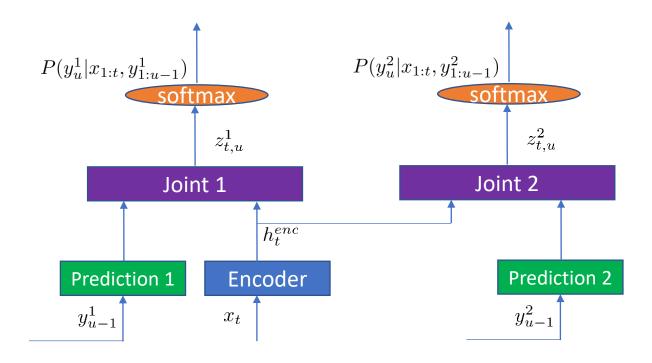
Language Expansion

 Every language has its own prediction and joint network, sharing the same encoder



Language Expansion

 Every language has its own prediction and joint network, sharing the same encoder



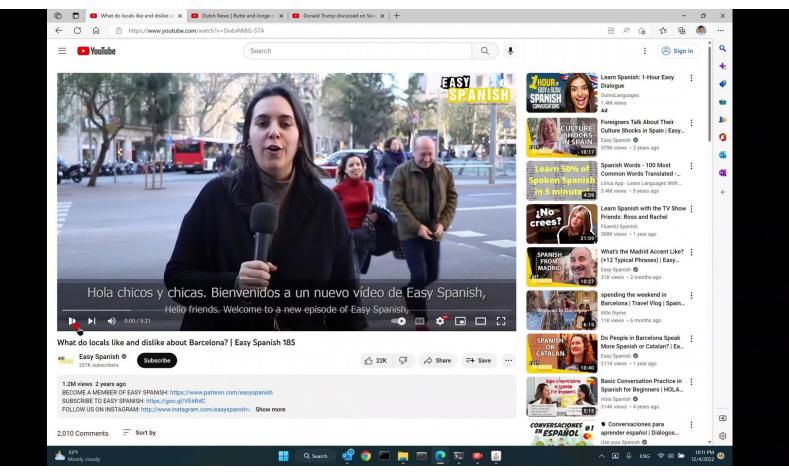
BLEU comparison among different X->ZH models

# source	languages	1	3	12	21	25
DE-	→ZH	2.2	21.0	21.8	22.5	21.3
EN-	\rightarrow ZH	0.1	28.9	29.2	29.3	28.2
JA-	→ZH	4.5	11.4	20.0	20.2	20.2
RU-	→ZH	8.9	20.1	27.8	28.3	26.8
NL-	→ZH	3.5	18.4	22.6	24.5	23.9
ET-	→ZH	3.9	9.7	12.4	14.0	13.1
SV-	→ZH	5.8	19.3	22.4	23.4	23.1
SL-	→ZH	2.1	6.3	8.1	8.5	8.7
ES-	→ZH	2.0	17.3	22.3	22.8	25.0
FR-	→ZH	2.9	16.0	20.7	21.7	23.8
IT–	→ZH	2.3	16.4	21.0	22.2	24.2
PT-	→ZH	5.1	21.6	26.4	27.0	28.8
Ave	erage	3.6	17.2	21.2	22.0	22.3

Bold numbers indicate zeroshot evaluations

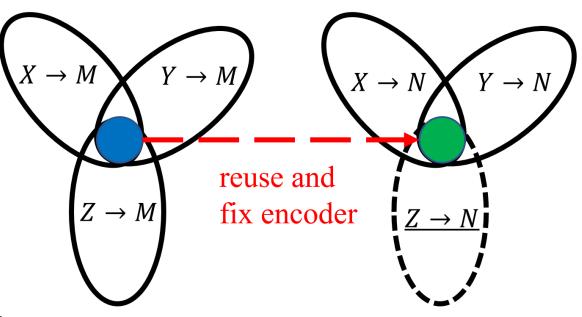
Zero-Shot Speech Translation

Trained only with English/German/Chinese->Chinese data, without observing any other language to Chinese.



Why Can SM^2 Do the Zero-Shot Translation?

- The utterances in the interlingua space (circle) have the same semantic meaning.
- Encoder is frozen for a new language output.
- Utterances in the interlingua space learn to translate to the new target language even if the pair is not observed.
- Because of the calibration inside the language, the learning can be extended to other utterances in the unseen language (dashed area).



Erase-Free Decoding

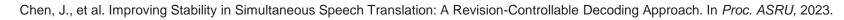
Streaming ST does NOT favor Flickering

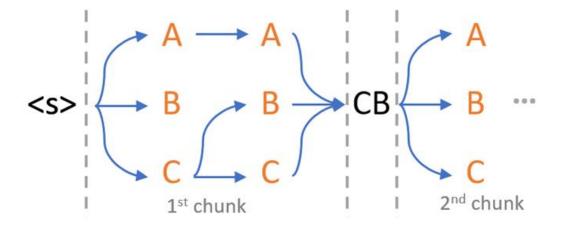
- Flickering causes discomfort among audience members, who might consequently lose track of the content.
- Flickering poses significant challenges for incremental synth esis of speech in the target language

Source Transcription	měiguó de zhōng xī bù yǒu hěnduō gāo shān 美国 的中 西 部 有 很多 高 山 USA 's central west area have many big mountain							
Translation-Ref	there are many big mountains in west central US							
(a) (a) E2E Streaming Translation $[t_1]$ American $[t_2]$ West central US $[t_3]$ West central US has many $[t_3]$ there are many big mountains in west central US (audio and segment end)								
(b) Revision-Free Decoding	(audio and segment start) [t ₁] American [t ₂] American midwest [t ₃] American midwest has many [t ₃] American midwest has many big mountains (audio and segment end)							

Erase-Free Decoding

- Beam Search in Chunks
 - Standard Beam Search within each chunk window.
- Stability-oriented pruning between Chunks
 - Prune the Beam based on different stability requirements, e.g., prune the beam to 1 to prevent erasing.
 - commit the best hypothesis.
- Able to achieve no erasing during inference.





Controllable Decoding

 At end of each chunk, pruning the beam based on a Revision Window (RW). Src: 美国 西部 有 很多 国家公园 USA west have many national parks

- Candidates that might cause revision beyond the window will be pruned.
- Trade-off the decoding quality and stability.
- When RW=0, there is no erasing.

				RW=1	
	American	west	has	many	(top candidate)
Beam	American	west	has	much	
	Western	US	has	much	×

Experiment

• We evaluate our method on CoVoST2 dataset with Streaming T-T model.

		C	DE->EN			ES->EN		IT->EN			
		BELU	AL	NE	BELU	AL	NE	BELU	AL	NE	
Gre	edy	19.55	1317	0.00	18.96	1239	0.00	17.94	1270	0.00	
	idard am	26.28	1057	1.49	26.68	1054	1.74	26.50	1052	1.59	
Ours (RW=0)	25.13	689	<u>0.00</u>	24.28	549	<u>0.00</u>	25.18	648	<u>0.00</u>	
Ours (RW=3)	26.33	800	0.11	26.61	730	0.11	26.55	768	0.11	

Joint Output of ASR and ST

Joint Simultaneous Speech Recognition and Translation

- Motivation
 - Help users' understanding: when users have partial knowledge of the spoken language and better understanding of the translation language;
 - Easy to synchronize: one model produces both outputs;
 - Consistency: similar and coherent transcriptions and translations;
 - Explainability: provides insights on the model behavior.
- We propose a novel joint token-level serialized output training (joint t-SOT) method to learn how to generate transcription and translation words in an interleaving way

Papi, S., et al. Token-Level Serialized Output Training for Joint Streaming ASR and ST Leveraging Textual Alignments. In Proc. ASRU, 2023.

Novel Interleaving Methods

We introduce two novel interleaving methods:

- 1. Alignment-based Interleaving: ASR and ST references are aligned with an alignment tool and words are interleaved based on the obtained alignments
- 2. Timestamp-based Interleaving: the timestamps of the ASR and ST references are estimated through ASR/ST models and this information is used to decide the interleaving

Joint t-SOT INTER ALIGN

• We leverage an off-the-shelf neural textual aligner **awesome-align** (Dou et al., 2021) to predict the alignment between transcription and translation texts

Joint t-SOT INTER ALIGN

 We leverage an off-the-shelf neural textual aligner awesome-align (Dou et al., 2021) to predict the alignment between transcription and translation texts

Transcription:Ich brauche das wirklich.Translation:I really need it.

Ich brauche das wirklich. I really need it.

• We interleave the aligned transcription and translation words

INTER ALIGN: #ASR# Ich #ST# I #ASR# brauche das wirklich. #ST# really need it.

Joint t-SOT INTER TIME

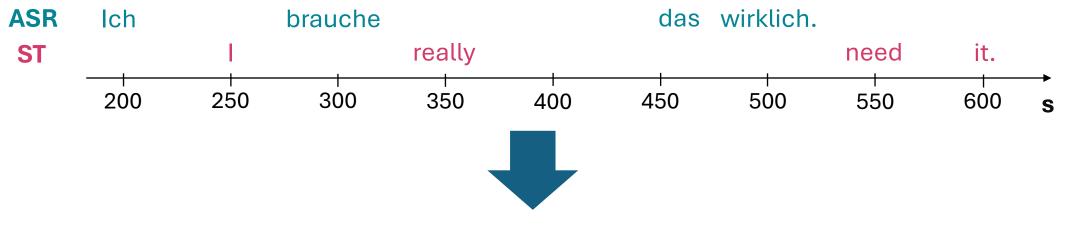
• We leverage the word-level timestamps obtained by applying the Viterbi algorithm on streaming ASR and ST models starting from the reference transcriptions or translations

Transcription:	Ich brauche das wirklich.
Translation:	I really need it.

Timestamps (ms):

200, 300, 460, 500 250, 350, 550, 600

• We interleave ASR and ST words based on their timestamps in ascending order



INTER TIME:

#ASR# Ich #ST# I #ASR# brauche #ST# really #ASR# das wirklich. #ST# need it.

Evaluation Benchmark and Metrics Setup

• Evaluation Benchmark

• CoVoST 2 for the Many-To-English Scenario ({it, es, de} \rightarrow en)

Metrics

- WER for the transcription quality \downarrow
- BLEU for the translation quality \uparrow
- LAAL for the latency (in milliseconds) \downarrow

	# inf.		it-	en			es	en		de-en			
	steps	WER	LAAL	BLEU	LAAL	WER	LAAL	BLEU	LAAL	WER	LAAL	BLEU	LAAL
Separate ASR & ST	2	25.83	1191	16.41	1844	22.69	1149	19.24	1682	23.11	1071	19.11	1613
Multilingual ASR & ST	2	23.48	1181	21.06	1663	22.84	1147	22.76	1622	21.82	1133	21.51	1642

	# inf.		it-	en			es	-en			de-	en	
	steps	WER	LAAL	BLEU	LAAL	WER	LAAL	BLEU	LAAL	WER	LAAL	BLEU	LAAL
Separate ASR & ST	2	25.83	1191	16.41	1844	22.69	1149	19.24	1682	23.11	1071	19.11	1613
Multilingual ASR & ST	2	23.48	1181	21.06	1663	22.84	1147	22.76	1622	21.82	1133	21.51	1642

Multilingual models are overall better than mono/bilingual models

	# inf.	it-en					es	-en		de-en			
	steps	WER	LAAL	BLEU	LAAL	WER	LAAL	BLEU	LAAL	WER	LAAL	BLEU	LAAL
Multilingual ASR & ST	2	23.48	1181	21.06	1663	22.84	1147	22.76	1622	21.82	1133	21.51	1642
Joint t-SOT INTER 0.0	1	21.81	1228	20.42	3894	20.76	1196	23.26	3752	20.82	1168	21.53	3647
Joint t-SOT INTER 1.0	1	26.05	3389	22.17	1743	23.45	2172	23.99	1683	26.88	3234	21.85	1964
Joint t-SOT INTER 0.5	1	22.35	1110	20.22	1515	21.19	1126	22.25	1468	21.25	1051	20.19	1547

	# inf.	it-en					es	-en		de-en				
	steps	WER	LAAL	BLEU	LAAL	WER	LAAL	BLEU	LAAL	WER	LAAL	BLEU	LAAL	
Multilingual ASR & ST	2	23.48	1181	21.06	1663	22.84	1147	22.76	1622	21.82	1133	21.51	1642	
Joint t-SOT INTER 0.0	1	21.81	1228	20.42	3894	20.76	1196	23.26	3752	20.82	1168	21.53	3647	
Joint t-SOT INTER 1.0	1	26.05	3389	22.17	1743	23.45	2172	23.99	1683	26.88	3234	21.85	1964	
Joint t-SOT INTER 0.5	1	22.35	1110	20.22	1515	21.19	1126	22.25	1468	21.25	1051	20.19	1547	

→ INTER 0.0 and 1.0 show **high latency** for one of the two modalities

	# inf.	# inf. it-en					es	-en		de-en			
step	steps	WER	LAAL	BLEU	LAAL	WER	LAAL	BLEU	LAAL	WER	LAAL	BLEU	LAAL
Multilingual ASR & ST	2	23.48	1181	21.06	1663	22.84	1147	22.76	1622	21.82	1133	21.51	1642
Joint t-SOT INTER 0.5	1	22.35	1110	20.22	1515	21.19	1126	22.25	1468	21.25	1051	20.19	1547

→ Joint t-SOT INTER 0.5 achieves similar or better results compared to multilingual ASR and ST

	# inf.	it-en					es	-en		de-en			
	steps	WER	LAAL	BLEU	LAAL	WER	LAAL	BLEU	LAAL	WER	LAAL	BLEU	LAAL
Multilingual ASR & ST	2	23.48	1181	21.06	1663	22.84	1147	22.76	1622	21.82	1133	21.51	1642
Joint t-SOT INTER 0.5	1	22.35	1110	20.22	1515	21.19	1126	22.25	1468	21.25	1051	20.19	1547
Joint t-SOT INTER ALIGN	1	21.74	1092	21.80	1355	21.04	1094	23.42	1341	22.07	1043	<u>21.36</u>	<u>1335</u>
Joint t-SOT INTER TIME	1	<u>21.11</u>	<u>1141</u>	21.70	1442	19.79	1143	23.38	1452	<u>21.16</u>	<u>1112</u>	19.96	1719

	# inf.	it-en					es	-en		de-en			
	steps	WER	LAAL	BLEU	LAAL	WER	LAAL	BLEU	LAAL	WER	LAAL	BLEU	LAAL
Multilingual ASR & ST	2	23.48	1181	21.06	1663	22.84	1147	22.76	1622	21.82	1133	21.51	1642
Joint t-SOT INTER 0.5	1	22.35	1110	20.22	1515	21.19	1126	22.25	1468	21.25	1051	20.19	1547
Joint t-SOT INTER ALIGN	1	21.74	1092	21.80	1355	21.04	1094	23.42	1341	22.07	1043	<u>21.36</u>	<u>1335</u>
Joint t-SOT INTER TIME	1	<u>21.11</u>	<u>1141</u>	21.70	1442	19.79	1143	23.38	1452	<u>21.16</u>	<u>1112</u>	19.96	1719

→ INTER TIME shows improvements on ASR while being comparable on ST (except for de-en) when compared with INTER ALIGN

Conclusions

- We proposed to use T-T for streaming E2E speech translation, with low latency/computation cost.
- We built a multilingual E2E speech translation model, which can be easily extended with zero-shot capability.
- We proposed an erase-free decoding method to improve the stability of translation results.
- We proposed joint t-SOT model can jointly output ASR and ST results.