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Abstract— Detecting air flows caused by phenomena such
as heat convection is valuable in multiple scenarios, including
leak identification and locating thermal updrafts for extending
UAVs’ flight duration. Unfortunately, these flows’ heat signature
is often too subtle to be seen by a thermal camera. While
convection also leads to fluctuations in air density and hence
causes so-called schlieren – intensity and color variations in
images – existing techniques such as Background-oriented
schlieren (BOS) allow detecting them only against a known
background and from a static camera, making these approaches
unsuitable for moving vehicles. In this work we demonstrate
the feasibility of visualizing air movement by predicting the
corresponding schlieren-induced optical flow from a single
greyscale image captured by a moving camera against an
unfamiliar background. We first record and label a set of optical
flows in an indoor setup using standard BOS techniques. We
then train a convolutional neural network (CNN) by applying
the previously collected optical flow distortions to a dataset
containing a mixture of real and synthetically generated images
to predict the two-dimensional optical flow from a single image.
Finally, we evaluate our approach on the task of extracting the
optical flow caused by schlieren from both a static and moving
camera on previously unseen flow patterns and background
images.

I. INTRODUCTION

Visualizing air flow patterns caused by heating [1], physi-
cal absorption [2], chemical reactions [3], or shock waves [4]
is valuable in multiple fields such as leak detection, the
study of boundary layer detachment, heat transfer, or locating
thermal updrafts for extending small uncrewed aerial vehicle
(sUAV) flight duration. In the latter case, for example,
existing flight controllers allow a fixed-wing sUAV to exploit
thermal updrafts for soaring, the way birds [5]–[8] and
human glider pilots do, if the sUAV happens to stumble upon
such an updraft [9]–[12]. However, actually finding these
updrafts presents a problem. Predicting their locations using
consistent thermal infrared (TIR)-optical mapping techniques
such as MultiPoint [13] based on the ground temperature and
color comes with significant uncertainty. Directly observing
the thermal columns in the sUAV’s vicinity using an onboard
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Fig. 1: The difference in the refractive index between the thermal
and surrounding air causes schlieren in the optical image. Detecting
these patterns enables sUAVs detecting thermal updrafts from far
away.

sensor could be very helpful. In our work, we take a step
towards making this a reality.

The air flows such as thermals give rise to variations
in the air’s refractive index and lead to subtle bending
of light rays according to Snell’s Law [14] as the rays
traverse through these fluctuations. The resulting brightness
and color changes are called schlieren, from the German
word for ‘streaks’ [15]. Usually, schlieren are invisible to the
human eye unless they are caused by very large temperature
differences, e.g., immediately above a road surface on a hot
sunny day. However, they can be visualized in a controlled
lab setup using multiple lenses and a point light source
as a shadowgraph measuring the second derivative of the
density [16]. BOS methods visualize the schlieren with a
more generic setup, only requiring one camera but assuming
a known, high-texture background [17], [18]. Optical flow
techniques based on intensity variations, between successive
frames or compared against an undisturbed reference frame,
can then be used to extract the image distortion caused by
the schlieren.

In scenarios such as sUAV flight, however, the background
is generally not known, and BOS methods are not applicable
directly: although they have been applied aboard aircraft,
they have required multiple passes over the recording area
to capture the background [19]. Reference-free BOS tech-
niques, not requiring a reference background, use a stereo
setup of high-quality cameras to detect the schlieren but
are computationally complex and require high-texture back-
grounds [20]. Since we are interested in simply identifying
areas with schlieren and do not specifically require the true
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Fig. 2: The controlled indoor setup to record thermally induced
flows. The known high-texture background provides optimal con-
ditions for computing the optical flows caused by hot air above the
heat source. The background is a greyscale image with sinusoidal
brightness changes in both directions with a wavelength of 8.7mm,
equivalent to 8 px in the captured image.

flow, computing the optical flow between two consecutive
frames could serve as a viable approximation. However,
movement of the sUAV causes viewpoint changes between
consecutive frames. Perfect alignment of the two frames is
impossible in a three-dimensional environment resulting in
artifacts in the optical flow overshadowing the sub-pixel flow
of the schlieren.

In this work we propose a method called DYBS
(DYnamic-Background Schlieren) for detecting the optical
flow of the schlieren from a single optical greyscale image
using a CNN. We first collect a dataset of observed schlieren
in an ideal indoor lab setting using a static camera and
various high-texture backgrounds and different heat sources.
We extract the optical flow due to the schlieren with tra-
ditional BOS techniques using the known undistorted back-
ground. Then we generate a dataset of imagery containing
schlieren with the respective label optical flows. The dataset
is composed of real imagery from the indoor setting and
synthetically generated images. In the latter case we treat
the optical flow of the schlieren as a distortion map that is
applied to images from the Places dataset [21] to simulate
the appearance of schlieren on different backgrounds and
textures. We train the network with a mixture of the real and
synthetic images and finally evaluate it on held-back data
and real-world imagery.

II. LABEL FLOW GENERATION

We optimized our indoor setting to generate high-quality
labelled data of different schlieren patterns with multiple
high-texture backgrounds. We used a global shutter optical
camera (UI-5261SE Rev. 4 with a 16mm focal length lens)
to capture images at 25Hz. We used two different heat
sources, a larger and a smaller electric heat plate at different
temperature settings to generate various shapes of thermal
updrafts. The high-texture backgrounds allow for accurate
computation of the sub-pixel optical flow [22]. The setup is
shown in Fig. 2.

We evaluated different background patterns and optical
flow algorithms to optimally capture the schlieren pat-
terns and reduce the measurement noise. Since even in
our controlled setup we don’t have access to ground truth

schlieren we subjectively evaluated the different approaches
by their signal to noise ratio and whether they could generate
the sub-pixel optical flow of the schlieren. The greyscale
backgrounds used were checkerboard patterns of different
sizes, Perlin noise [23], sinusoidal patterns, and a pattern
consisting of multiscale black and white squares. In our
tests, all selected background patterns were sufficient for
computing the small scale optical flows. To compute the
optical flow of the schlieren we tested the Farnebäck [24],
Horn-Schunck [25], Lucas-Kanade [26], PCAFlow [27], and
SPyNet [28] algorithms. SPyNet, PCAFlow and Lucas-
Kanade failed to compute the small-scale optical flow, and
the magnitude of the noise was higher than the flow due
to the schlieren. Farnebäck, DeepFlow, and Horn-Schunck
were all able to capture the schlieren. However, DeepFlow
produced an overly smooth image and failed to pick up some
of the small scale details. Farnebäck exhibited the highest
noise levels of these three algorithms. Finally we selected
the Horn-Schunck algorithm to compute the label flow data.

By varying the distance between the camera and the heat
source while keeping the distance to the background constant
and using different heat sources we could record varying
shapes and magnitudes of schlieren. Small vibrations or
movements of the camera relative to the background during
the recordings introduced small optical flow biases in each
direction in the order of 0.0 px to 0.2 px. Since only a small
portion of the recorded image contained schlieren we could
determine the bias by computing the median flow value in
each direction and subsequently subtract the bias to correct
the flow values.

In total we recorded imagery with 11 different background
patterns and for each setting used the large heat source in
three and the small one in two different heat settings. We
also varied the distance between the heat source and the
camera, once placing it close to the camera and once closer
to the background. In total this results in 110 different setups
with observed schlieren of different shapes and magnitudes.
A few examples for the different flow shapes are shown in
Fig. 3 where the hue indicates the direction and saturation
the magnitude of the flow. We observed that for the same
heat source the optical flow magnitudes increase when the

Fig. 3: Examples of different types of label flows recorded in the
indoor setting. The left flow pattern is generated from the large
heatplate close to the camera, in the middle with the same heat
source far away from the camera. The flow on the right is captured
from the small heatplate close to the camera. The maximum flow
norm in pixels is shown in the top left corner for each image.
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Fig. 4: Pipeline overview to train DYBS with synthetic and real
images. The input data to the DYBS are either real samples from
the indoor setting or synthetically generated samples with a random
background distorted with a label flow.

heat source is closer to the camera than the background. The
flow generated by the large heat plate is almost immediately
turbulent while the flow above the small heat plate is laminar
until approximately the middle of the captured image. The
maximum flow magnitude per image varies throughout the
dataset between 0.07 px to 1.08 px.

Certain setups showed strong artifacts in the optical flows
computed by the Horn-Schunck algorithm due to movement
of the camera, the background or slight illumination changes
to the calibration image. These cases were manually detected
and the data discarded. After filtering out these cases we had
81785 optical flow and background pairs that we split across
the different cases into a training and test dataset containing
61879 and 19906 samples, respectively.

III. NEURAL NETWORK TRAINING FOR SINGLE
FRAME SCHLIEREN DETECTION

We developed the pipeline to train the DYBS to predict
the optical flow due to schlieren using only one single
grayscale image as input. The full pipeline is displayed in
Fig. 4.

Network Architecture. We chose a CNN-based architecture
due to efficiency and the nature of such models extracting
local spatial features. The architecture used in this work
is based on the UNet with minor changes [29]. We have
the same depth as the original UNet (four pooling and
upsampling layers) and utilize the skip connections but
replace the fully connected layers at the bottleneck with
convolutions. This change results in a fully convolutional
network that can handle inputs of varying sizes above the

minimum of 16 px × 16 px. We extend the nonlinearity
after each convolution with a BatchNorm layer to stabilize
the training by reducing the internal covariance shift [30].
The input to the CNN is a single greyscale image. The
pixel values are mapped to [0, 1]. The model predicts the
two-dimensional optical flow for each input pixel.

Dataset We trained the neural network on the dataset of
recorded schlieren flows. We used a combination of samples
that already contain the schlieren (associated pairs of the
recorded high-texture background with schlieren and the
corresponding flow collected to generate the label flows)
and generated samples with the schlieren distortions (label
flows) applied to existing images from the Places Stan-
dard dataset [21]. Using the 1.8 million images from the
Places dataset with widely varying textures and scenes as
background did prevent the network overfitting to the high-
texture backgrounds used during data collection that exhibit
much less variety with only 11 different patterns. We utilized
the high-resolution images from the Places Standard dataset
above the minimum size of 480 px× 480 px.

A sample with a background from the Places dataset was
constructed in the following way: Since the background
images are smaller than the label flow we randomly cropped
the flows to the same size as the background image. To
randomize the flow directions we flipped the cropped label
flow in the x- and y-directions with a probability of 0.5. In
the final step to generate the synthetic sample we warped
the background image according to the flow label. The real
samples already contained the schlieren and did not require
preprocessing. Finally we randomized the orientation of the
image-flow pair by flipping the flow and the image randomly
along each axis with a probability of 0.5.

During training, we randomly selected the sample type. A
sample from the data collection was chosen with probability
pR and a sample with a background from the Places Dataset
with probability 1 − pR. This allowed us to balance the
training between the real samples with the limited variety
background texture but including the camera sensor noise
and the synthetic images with highly variable backgrounds.

Loss. We used a regular mean squared error (MSE) loss
between the optical flow predicted by the network and the
label flow to train the network.

Learning Framework Setup. The training pipeline was
implemented with the PyTorch framework [31] using the
Adam optimizer [32] with a batch size of 20 samples to
optimize the model weights. We set pR to 0.5 resulting in
the CNN observing an equal amount of synthetic and real
samples during training.

DYBS Training Schedule. Training DYBS directly on the
dataset containing all different flow patterns resulted in
strong overfitting of the real samples and no progress on
the synthetically generated ones. By training the model with
a curriculum learning strategy [33] we were able to mitigate
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Fig. 5: The training and validation MSE loss during the first stage
of the curriculum learning. The training losses are averaged over
10’000 update steps equalling one epoch. The validation loss is
computed every fifth epoch.

the overfitting and trained DYBS to predict the flow for both
background types.

In a first stage we trained the model only on a limited set
of flow patterns from only one background setting with the
large heat plate (7231 flows, 11.6% of all recorded flows)
for five million update steps with a learning rate of 1×10−4

(500 epochs) and another five million steps with a decreased
learning rate of 2.5×10−5. The training and validation MSE
loss over the 1000 training epochs of the first stage of the
curriculum learning are shown in Fig. 5. The training loss
was averaged over one epoch composed of 10’000 batches.
We computed the validation loss every fifth epoch. After an
initial decline, the loss values stagnated at around 0.01 until
roughly epoch 330. Up to this point the model learned to
predict samples from the data collection well but failed on
the constructed samples with the background images from
the Places dataset. The second decline in MSE loss shows
the model learning to predict the latter samples as well. This
phenomenon was consistent across different training runs,
though the starting epoch for learning to predict both sample
types was slightly different in each run.

In the second stage we let the model train for another 5
million update steps with a learning rate of 1× 10−4 on the
full dataset. This forced the model to generalize to different
flow shapes and real background images.

IV. EXPERIMENTS

We evaluated DYBS in a series of experiments with
increasing difficulty. In the first set of experiments we
used held back flow data recorded with our indoor setup
together with images from the Places Validation Standard
dataset to compare the DYBS predictions to the optical
flow from the BOS algorithm. In the second experiment
we tested if the network could generalize to different flow
patterns in an indoor setting with a static camera and a high
texture background. We generated different flow patterns
by deflecting the flow with wind or directly with a plate
over the heat source. In the last set of experiments we used
recordings from a moving camera in an indoor and outdoor
setting to test how well the network can generalize to camera
motion, lighting changes and various real backgrounds.

Experiment 1: Test Dataset. We evaluated DYBS on sam-
ples with the different background types separately with

Input Image Label Flow Predicted Flow Error

Fig. 6: Qualitative prediction results of DYBS on previously unob-
served samples using images from the Places dataset as background
(previously unseen images with previously unseen flow distortions
applied). The maximum flow magnitude in pixels for each picture
is indicated in the top left corner.

previously unobserved flow patterns and background images.
DYBS predicts the flow for the sample images from the

Places dataset with a mean magnitude prediction error of
0.017 px at a mean flow magnitude of 0.022 px. At first
glance the prediction error seems relatively high but some
representative predictions displayed in Fig. 6 show that
DYBS detects the sub-pixel flow accurately for different
flow shapes and magnitudes as well as highly varying back-
grounds. The label flows contain small magnitude artifacts
corresponding with the background patterns as evident from
the top four examples in Fig. 6. The DYBS predictions do
not contain such artifacts, thus are much smoother than the
label flows, contributing to a higher error metric but arguably
predicting the flow well. In case of no texture, such as the
sky in the bottom two rows of Fig. 6, DYBS can not detect
the distortions but also does not hallucinate. However, even
little texture, such as the beach or road in the same cases, is
sufficient for DYBS.

The average magnitude prediction error on the samples
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Fig. 7: Qualitative prediction results of the DYBS on previously
unobserved samples from the data collection process (images con-
taining real schlieren from a heat source). The maximum flow
magnitude in pixels for each picture is indicated in the top left
corner.

from the data collection is significantly higher compared
to the synthetically constructed ones with 0.034 px. As
evident based on the DYBS predictions in Fig. 7 there are
two modes. The top three cases, where the background
is similar to the ones observed during the training (same
pattern but different distance between the camera and the
background), are reasonably well predicted. However, DYBS
struggles with the bottom three cases where the background
differs more by either predicting zero or showing strong
artifacts along the borders of the individual background
sheets. Therefore, the success in detecting the schlieren for
backgrounds from the Places dataset does not transfer to
the various backgrounds used in the data collection.

Experiment 2: Flow Shape Variation. In our static
indoor setup with the high-texture background, as shown
in Fig. 2, we recorded a test set containing different flow
patterns compared to those observed during training. We
generated these different flow shapes using the same large

Input Image Predicted Flow HS Flow

Fig. 8: Images with schlieren recorded in the indoor setup with
different flow patterns than those observed during training. The
flows are deflected by objects above the heat plate or sideways
wind. For a sequence of frames refer to the accompanying video.
We compare the DYBS predictions to the BOS optical flow.

heat plate used for training, but with the flow disturbed by
wind or objects deflecting the flow. We compare the CNN
predictions to the BOS Horn-Schunck optical flow, where
we used the average of the first 50 frames as the known
background image, and show the results for select frames
in Fig. 8. It is important to note that this data contains
objects and flow patterns that are completely novel to the
prediction network and do not appear in any of the training
data. Nevertheless, DYBS manages to predict the new
optical flow patterns well, such as the vortices at the plate
tip, with minor artifacts at the border of the high-texture
background and the objects. The flow quality from DYBS
using a single image frame is arguably better than the flows
from the two-frame BOS algorithm, which exhibits artifacts
around the objects multiple times larger than the optical
flow due to the schlieren. Nevertheless, we can still see
that the BOS and DYBS flow patterns have similar shapes,
demonstrating that the network generalizes well to different
flow patterns than those observed during training. Finally,



the proposed method shows the highly-desirable property of
primarily returning the optical flow due to schlieren, rather
than all elements of the scene motion that are extracted by
the standard BOS optical flow.

Experiment 3: Moving Camera. We recorded images
containing schlieren with a moving camera in an indoor
setting with a high-texture background, and outdoors with
a natural background. The moving camera rules out using
the traditional BOS algorithm to provide a reference flow,
as it relies on a known undistorted background image, and
introduces additional challenges such as motion blur and
varying viewpoints. The DYBS predictions together with
the input image for select frames are shown in Fig. 9.
In the indoor setting the network was able to predict the
optical flows from different viewpoints on the high-texture
background. However, we also highlight some failure cases
(rows 4 and 5). Row 5 shows an example from an outdoor
setting where the heat source is several meters from the
camera. Here the distances between the background, heat
source and camera are very different to those used during
training and therefore DYBS struggles to produce accurate
predictions. These findings are consistent with our previous
results and demonstrates a need for further investigation to
improve generalization performance.

V. DISCUSSION AND LIMITATIONS

The ability to capture schlieren from a single image frame
is a particularly valuable property, as it permits moving cam-
eras in a way that was not previously possible. Remaining
single-frame effects from camera motion, such as motion
blur and changes in intensity due to aperture or exposure
time variations, remain to be fully explored, but the results
from this paper already show strong promise in this direction.
Further, detecting schlieren with a moving camera from
different viewpoints potentially allows 3D triangulation of
the location of these flows to autonomously locate thermal
updrafts or gas/heat leaks with a mobile robot.

Currently the results with the varying backgrounds on
the Places Standard dataset do not transfer to unseen back-
grounds captured with a camera. We reason that the low
number of backgrounds (11) compared to the synthetic ones
(1.8 million) in combination with different noise properties
cause this performance difference. Generating a dataset of
schlieren images through geometric-optics ray-tracing [34],
[35] could help to generate a wider variety of flow pattern.
Together with enhancing these images with photogrammetric
noise, such as Gaussian noise, salt-and-pepper noise, motion
blur, brightness, or contrast changes, a trained network might
be able to better generalize to natural backgrounds captured
with different cameras.

In our work we used a single greyscale image as the
input and extracted the label flows from greyscale images.
Refraction indices are slightly different with varying wave-
lengths [36]. A standard optical camera captures the visible
light in the range of 400 nm to 700 nm wavelength, thus
for each channel the schlieren shapes should be unique.

Input Image Predicted Flow

Fig. 9: Images with schlieren recorded with indoor and outdoor
backgrounds and a moving camera and the corresponding DYBS
predictions.

The neural network might be able to use this additional
information to predict the optical flow more precisely if we
extend the input to a multi-channel optical image.

VI. CONCLUSIONS

In this work we developed DYBS, a CNN-based ap-
proach, that is capable of predicting the sub-pixel image
distortions due to schlieren from a single greyscale image.
We recorded schlieren flow patterns in a controlled static
indoor environment with a traditional BOS method and then
trained the network with a mixture of real and synthetic
samples by applying the extracted flows to new images.
The resulting network learned to predict the sub-pixel flow
patterns well with the random backgrounds from the Places
Standard dataset and previously unseen flow patterns. While
the current model does not generalize well to setups where
the environments differ too much from the training images in
terms of background texture and distances to the background
and heat source, this should be addressable by collecting
more diverse training data – the main avenue for future work.
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