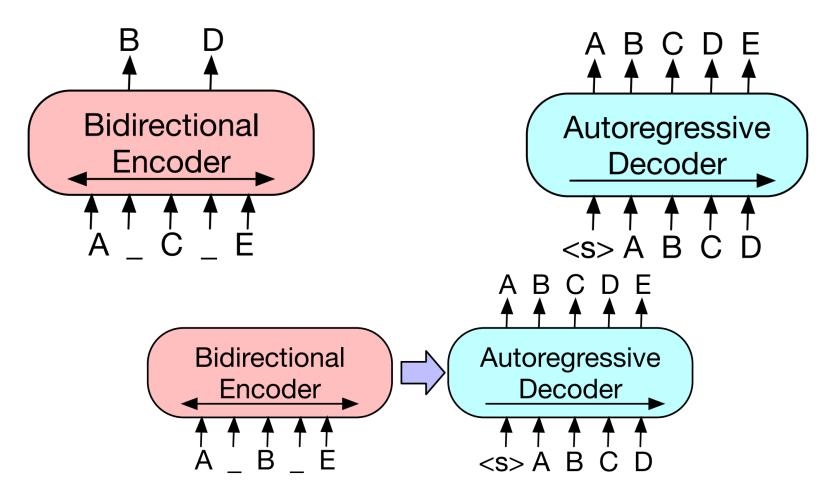


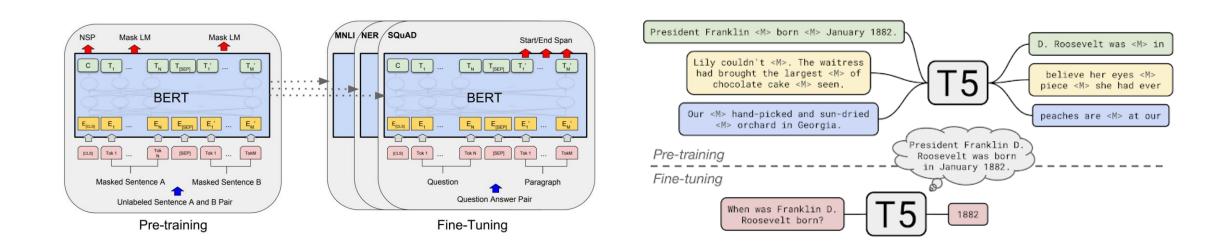
Decoder-only Modeling for Speech

Foundation Models



Why Decoder-only?

• Enc-only and Enc-Dec were very successful in the transfer-learning era.



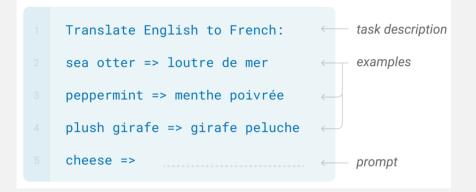
Why Decoderonly?

 Dec-only models exhibited zeroshot or few-shot generalization (in-context learning)

• A task could be anything that the prompt could describe.

Few-shot

In addition to the task description, the model sees a few examples of the task. No gradient updates are performed.



Input: 2014-06-01 -	1
Output: !06!01!2014!	
Input: 2007-12-13	in contout
Output: !12!13!2007!	in-context
Input: 2010-09-23	examples
Output: !09!23!2010!	J
Input: 2005-07-23	test example
Output: !07!23!2005!	
L model	completion

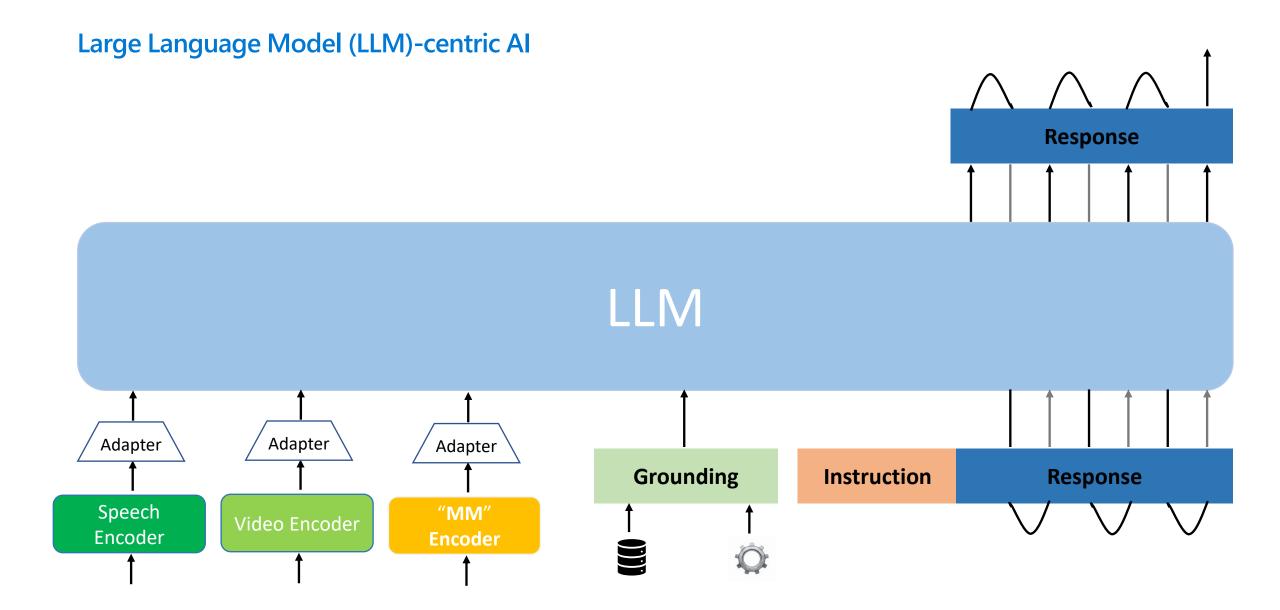
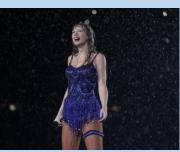


Image credit to XD Huang

GPT-V The image shows a close-up of a person's foot wearing a white Nike Air Force 1 sneaker. The sneaker is a low-top style with a white rubber sole and white laces. ...

TASKObject CountingImage: Image: Ima

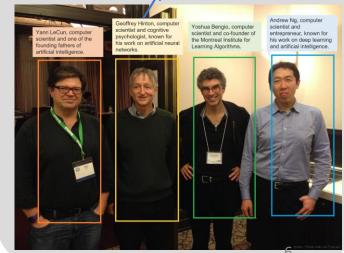
TASK Object Localization/Detection



There is only one person in the image, so the bounding box for this person would be: - Top left: (254, 118)

- Bottom right: (731, 693)

Geoffrey Hinton, computer scientist and cognitive psychologist, known for his work on artificial neural networks.



Yang, Z., et al. The dawn of LMMs: Preliminary explorations with GPT-4V(ision). *arXiv:2309.17421*, 2023. Image credit to Lijuan Wang

GPT-V The object in the image is a **traffic light**.

TASK Celebrity Recognition

GPT-V The person in the image is **Jensen Huang**, the CEO and co-founder of NVIDIA. He is holding and presenting a product from NVIDIA, likely a graphics processing unit (GPU).

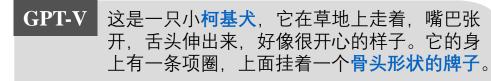
The landmark in the image is the **Space Needle**, an observation tower located in Seattle, Washington. It stands 605 feet tall and offers panoramic views of the city and surrounding areas. ...

GPT-V This dish is called a **Cajun Sampler**. It is a sampler platter that consists of four small bowls of traditional Cajun dishes - gumbo, jambalaya, red beans and rice, and crawfish étouffée. ...

GPT-V The scene text in the image are:

- Vacation Beach Smile
- Summer Watermelon
- Flip flops Lemonade

TASK Multilingual Image Description



TASK Document Reasoning

Which country has the highest profit margin?

Country	Sales Volume	Revenue	Profit	Profit Margin
USA	40.080	\$15.971.880	\$3.086.421	19,3%
China	35.070	\$15.866.670	\$3.032.162	19,1%
Australia	27.054	\$14.812.566	\$2.868.636	19,4%
India	23.046	\$10.608.174	\$1.853.710	17,5%
South Korea	16.032	\$10.494.948	\$1.975.844	18,8%
Total / Avg	141.282	\$67.754.238	\$12.816.772	18,8%

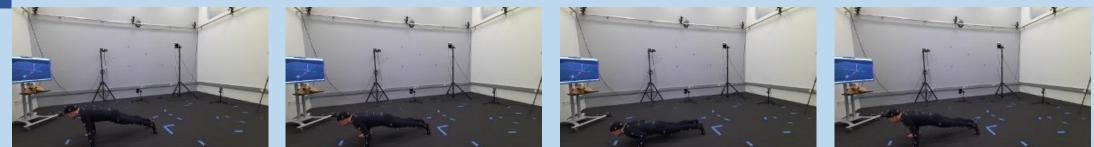
GPT-V Based on the data provided, the country with the highest profit margin is **Australia**, with a profit margin of 19,4%.

TASK Multilingual Text Recognition

GPT-V The text in the image is in Chinese and translates to "Mapo Tofu." Mapo tofu is a popular Chinese dish made with tofu and minced meat in a spicy sauce.

Video Activity Anticipation

GPT-V The images show the process of making sushi rolls. The first image shows rice being mixed with vinegar in a bowl. The second image shows the rice being spread onto a sheet of seaweed. The third image shows the addition of salmon and cucumber to the roll. The next steps would be to roll the sushi using a bamboo mat, cut the roll into smaller pieces, and serve with soy sauce and wasabi.



GPT-V The images show a person in a motion capture suit in a studio with multiple cameras and sensors. The person is performing a pushup exercise. In the first image, the person is in the starting position with their arms extended and body in a straight line. In the second image, the person is lowering their body towards the ground. In the third image, the person is at the bottom of the push-up with their chest close to the ground. In the fourth image, the person is pushing their body back up to the starting position.

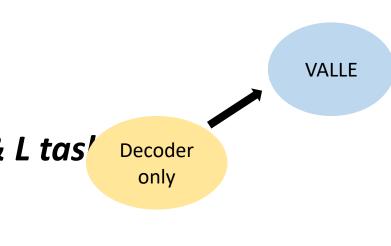
Image credit to Lijuan Wang

Why Decoder-only *for speech*?

- We are starting to see a variety of tasks, across modalities, converge to Decoder-only architecture. They use similar
 - Architectures
 - training & pre-training objectives
 - Inference methods
- Might better leverage off-the-shelf pretrained LLMs
 - Which are also decoder-only..
- Put us in a better place for doing more effective in-context learning
- Runtime is not complicated
 - Can leverage runtime developed for serving (L)LMs.

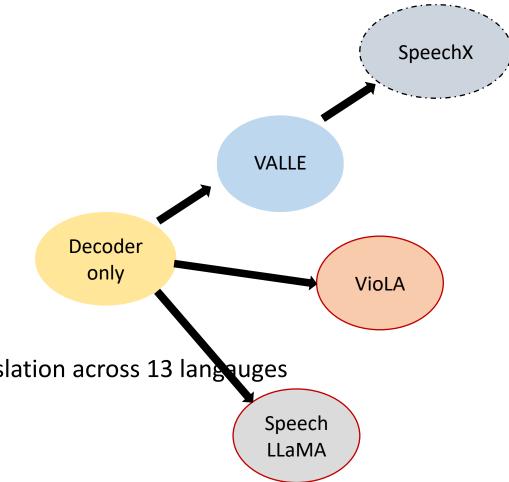
Decoder-only for speech modeling

- VALL-E:
 - Neural codec LM
 - TTS
 - Strong in-context abilities
- Decoder-only arch for all S & L tas' Deco
 - Param efficiency?
 - Data efficiency?
 - Learn across tasks?
 - Fusion with off-the-shelf LLM?



Decoder-only for speech modeling

- 2 new decoder-only models:
 - VioLA:
 - Multi-task decoder-only model
 - ASR, TTS, MT, ST, S2ST
 - Benefits from cross task learning
 - Better parameter efficiency
 - SpeechLLaMA
 - Seamless Integration with LLM
 - Better performance on speech translation across 13 languages

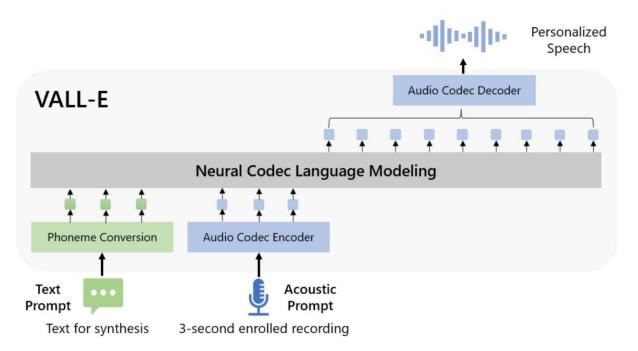


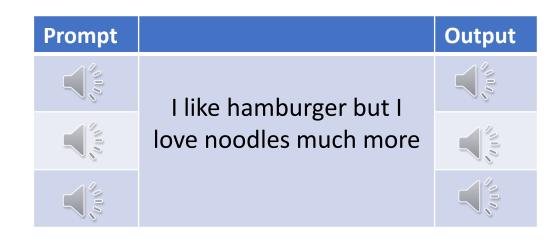
VALL-E: Neural codec language model

• High quality Zero shot TTS: In context learning through prompts

"Steal voice from 3 second's prompt"

Model Overview





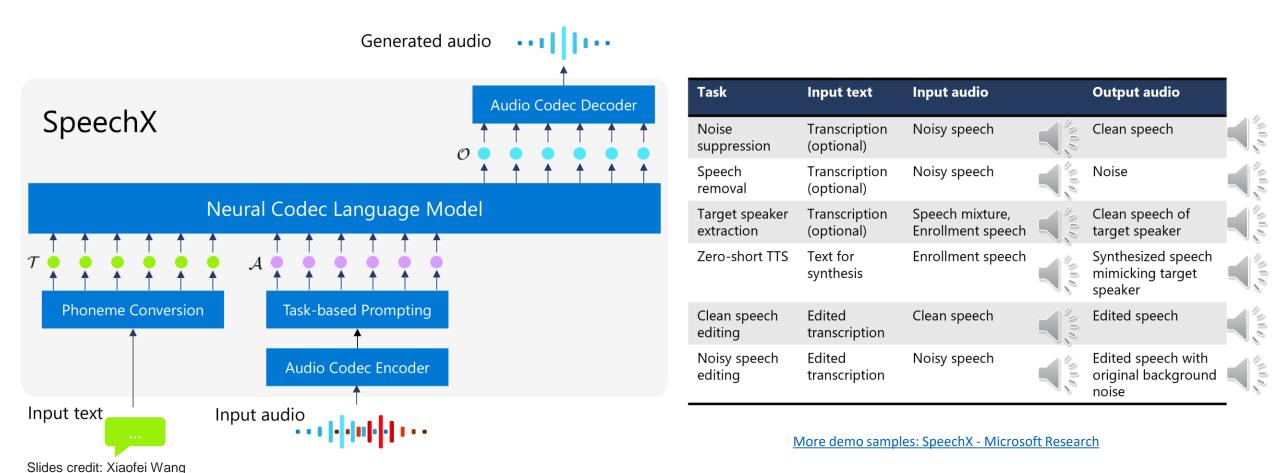
Wang, C., et al. Neural codec language models are zero-shot text to speech synthesizers. arXiv:2301.02111, 2023.

SpeechX – A versatile speech generation model

Versatility: able to handle a wide range of tasks from audio and text inputs.

Robustness: applicable in various acoustic distortions, especially in real-world scenarios where background sounds are prevalent.

Extensibility: flexible architectures, allowing for seamless extensions of task support.

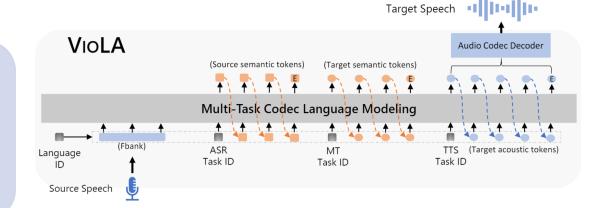


Wang, X., et al. Speechx: Neural codec language model as a versatile speech transformer. arXiv:2308.06873, 2023.

VioLA: A multi-modal model with discrete audio inputs

Speech and text can freely serve as input and output

- An extension to audio codec language model
- Naturally merge speech-language tasks
- Speech recognition
- Machine translation
- Speech generation



Attempt to answer questions:

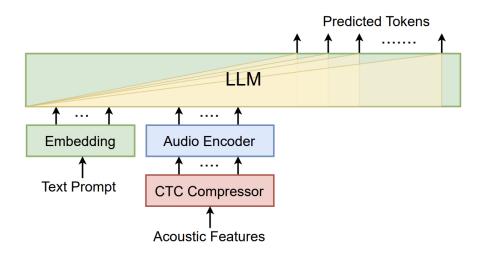
• Enc-	dec	or de	coder?
• Cod	ec o	r Fbar	nk?
_	-	~	10

• Expert or General?

Input	Output	Typical Tasks
Speech	Text	ASR, ST
Text	Text	MT, LM
Text	Speech	multilingual TTS

Speech-LLaMA: From decoder to LLM

- Intuition: Decoder and LLM shares similar architecture, can we combine them?
 - Leveraging the generalization capabilities of LLM
 - ➤Tight integration between the speech and LLM



Speech-LLaMA: Overview

• Task

➤X to EN speech translation

• LLM

Pretrained and keep frozenLLaMA-7B

CTC Compressor

➢ Reduce the acoustic feature length

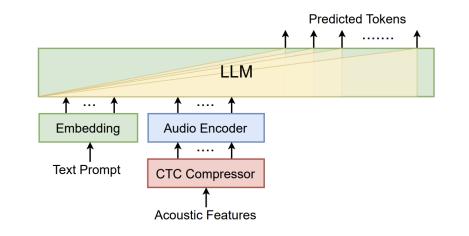
➢ Pretrained on 14 language ASR/AST task

➢ Remove blank frames or average frames within same unit

Audio Encoder

Few transformer layers to further process the CTC compressor output

 \succ Learn the shared representations within the space of the LLaMA embeddings



Speech-LLaMA: Training

- Instruct learning
 - Sample text prompt from a list for each training example, with or without locale information
 - ➤Use fixed one during evaluation ("translate the audio into English")
- LoRA finetuning
 - >Only introduce small amount of training parameters for efficient LLM adaptation
- Training scheme
 - Two-stage: training the audio encoder and then with LoRA finetuning
 One-stage: training audio encoder together with LoRA parameters
- Training and evaluation data
 - ➢ 14 languages (each 1K hours) with ST transcriptions
 - ➤13 languages on CoVOST 2 test set

Speech-LLaMA: Experiments

• Baselines

Seq2seq ST model with Whisper structure (240M, 12-layer encoder + 12layer decoder)

➤Training with CE loss on the decoder and CTC loss on the encoder

Use LLaMA scores for the re-ranking

System	AR	DE	ZH	ES				JA	RU	РТ	ET	SV	SL	AVG
Enc-dec	22.8	22.6	7.0	23.7	21.8	20.7	34.6	15.3	26.4	28.9	9.4	24.4	13.3	20.8
+ LLaMA Rescore	24.9	23.6	7.2	24.9	22.7	21.6	36.0	15.7	27.7	30.2	9.4	25.6	12.7	21.7

Speech-LLaMA: Experiments

• Whether CTC compressor helps

≻4-layer Transformer(15.8M) and pretrained on 14K ASR corpus

For comparison, we use a convolution 1D on the top of the audio encoder for a subsampling rate of 32

≻Using CTC compressor is better (18.2 to 22.5/24.0)

>Frame averaging is better than simply removing the blank frames

CTC-Comp.	AR	DE	ZH	ES	FR	IT	NL	JA	RU	РТ	ET	SV	SL	AVG
w/o	16.9	16.9	3.4	19.6	15.4	16.7	28.3	10.3	22.8	22.8	15.4	26.3	22.2	18.2
Remove blank	24.6	22.6	9.6	23.5	20.9	21.4	32.4	17.5	31.0	26.8	17.0	25.3	20.3	22.5
Average frames	24.6	24.3	10.1	25.4	22.6	23.7	34.1	17.7	33.3	29.2	17.2	26.7	22.8	24.0

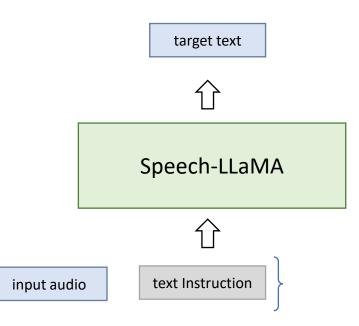
Speech-LLaMA: Experiments

- What kind of CTC compressor helps
 - We compared the CTC compressor on 14K training data with ASR and AST labels
 - Pretraining CTC compressor with ASR labels is significantly better than AST labels

System	AR	DE	ZH	ES	FR	IT	NL	JA	RU	РТ	ET	SV	SL	AVG
CTC-C-AST	14.2	14.4	2.9	14.7	11.9	13.0	29.7	4.4	22.1	15.9	9.9	21.2	13.3	14.43
CTC-C-ASR	26.6	24.9	11.0	26.4	23.2	23.8	36.6	19.3	33.7	30.1	18.6	29.0	22.6	25.1

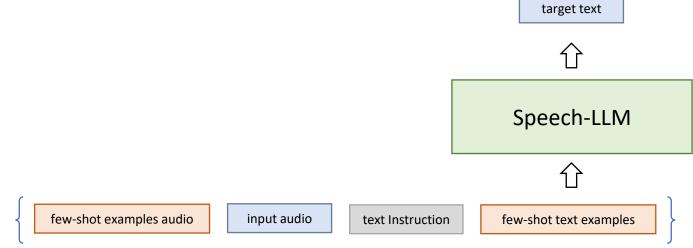
Speech-LLaMA: Instruction-following

- We train the Speech-LLaMA to do text generation according to instruction.
- Instruction could be task indicator, or the question targeting at the speech content.
- Training diagram:



Advancing Speech-LLM For In-context Learning

- Trained tasks (EN only)
 - ASR
 - Speech-based Question Answering
- Emergent Capable tasks
 - 0-shot and 1-shot En->X ST
 - 1-shot domain adaptation
 - Instruction-followed ASR



Instruction-following example: Contextual Biasing

• Speech Reference:

• ...you know until we're tested we don't know what we're made of maybe that's what **adversity** gives ... give ourselves a gift we can re imagine **adversity** as something...

• Regular ASR instruction:

- Instruction: *Transcribe the audio to text.*
- Output: ...perhaps until tested we don't know where we're made of maybe that diversity gives ... give ourselves the gift we can reimagine diversity as something...

• ASR instruction with contextual biasing

- Instruction: Transcribe the audio to text. As context, the speaker talks about what hardship can bring us.
- Output: ...perhaps until we're tested we don't know where we're made of maybe that adversity gives ... give ourselves the gift we can reimagine adversity as something...

In-context learning example

- With the cross-lingual capabilities of LLM and in-context learning capability of Speech-LLaMA, it is able to achieve EN->X translation despite only being trained with EN data.
- We randomly pick 1 utterance from train set and provide it as 1-shot example along with its corresponding translation.* Table 2. In-domain EN→X S2TT on TED-I JUM 3 test sets

Model	#Example	EN- ES	→X Ta FR	rget DE
Cascaded-7B	0-shot	26.07	22.61	15.53
COSMIC-ASR-7B	0-shot 1-shot		2.32 2.32	
COSMIC-7B	0-shot 1-shot		$20.88 \\ 26.45$	
COSMIC-13B	0-shot 1-shot		13.24 28.41	

* The model is trained and tested on Tedlium3 dataset. The ES/FR/DE translation reference during testing is generated by GPT-3.5 based on the English transcripts.

In-context learning example

Table 3. Cross-domain EN \rightarrow X S2TT on FLEURS test sets

Model	#Example	E	N→X	Targe	Farget		
Model	#Example	ES	FR	DE	ZH		
Cascaded-7B	0-shot	6.55	9.07	4.68	11.11		
COSMIC-7B	0-shot 1-shot						
COSMIC-13B	0-shot 1-shot			4.98 12.00			