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ABSTRACT

End-to-end speech translation (ST) for conversation recordings
involves several under-explored challenges such as speaker diariza-
tion (SD) without accurate word time stamps and handling of over-
lapping speech in a streaming fashion. In this work, we propose
DiariST, the first streaming ST and SD solution. It is built upon a
neural transducer-based streaming ST system and integrates token-
level serialized output training and t-vector, which were originally
developed for multi-talker speech recognition. Due to the absence
of evaluation benchmarks in this area, we develop a new evalua-
tion dataset, DiariST-AliMeeting, by translating the reference Chi-
nese transcriptions of the AliMeeting corpus into English. We also
propose new metrics, called speaker-agnostic BLEU and speaker-
attributed BLEU, to measure the ST quality while taking SD ac-
curacy into account. Our system achieves a strong ST and SD ca-
pability compared to offline systems based on Whisper, while per-
forming streaming inference for overlapping speech. To facilitate
the research in this new direction, we release the evaluation data, the
offline baseline systems, and the evaluation code.

Index Terms— Speech translation, speaker diarization, stream-
ing inference, overlapping speech

1. INTRODUCTION

Speech translation (ST) is a task to convert speech signals into texts
in other languages. The field of ST has been extensively studied
with the aim of reducing language barriers. Traditionally, ST has
been implemented by cascading two separate processes: automatic
speech recognition (ASR) and machine translation (MT) [1, 2, 3].
However, such a cascaded system has several limitations.

Firstly, errors originating from the ASR may propagate to the
MT. Secondly, the non-linguistic information, such as short pauses
and prosody, may not be fully leveraged because of the text-based in-
termediate representation. Lastly, the latency of the cascaded system
tends to be large because the MT system needs to wait for the ASR
result to be generated. To overcome these shortcomings, end-to-
end (E2E) ST systems that directly convert speech signals into text
without a separate ASR stage have been extensively studied (e.g.,
[4, 5, 6, 7]). With the recent advancements in deep learning, neural
E2E ST systems have achieved significantly better accuracy on mul-
tilingual translation using a single model [8], compared to strong
cascaded systems. Furthermore, E2E ST systems based on neu-
ral transducer [9, 10, 11] have succeeded in achieving low-latency
ST while maintaining higher accuracy compared to traditional, non-
streaming cascaded systems.

†Work performed during an internship at Microsoft.

In conversational translation scenarios, accurately identifying
the speaker of each utterance is of great importance to end users.
This is known as the speaker diarization (SD) problem [12], which
has been long studied in the context of speaker-attributed ASR [13,
14]. For a cascaded ST system that uses separate ASR and MT com-
ponents, conventional SD techniques employing word-level times-
tamps (e.g. [15, 16]) can be leveraged. However, unlike ASR, it
is not straightforward to obtain word-level time stamps for E2E ST
systems where the neural networks implicitly learn the mapping be-
tween input audio signals and output translated texts. Note that, al-
though a few techniques have recently been proposed for E2E ASR
to estimate word-level time stamps [7, 17], they assume a monotonic
alignment between the input and output, which does not hold in the
ST task. Adding to the complexity of the SD, the presence of the
overlapping speech in conversations [18, 14, 19] further makes the
development of the ST systems challenging. While there have been
a lot of studies for ASR and SD, to the best of our knowledge, no
prior works have investigated the integration of ST and SD for con-
versational recordings.

In this work, we propose DiariST, the first streaming ST and SD
system specifically designed for conversational recordings. Due to
the lack of prior work in this area, we first develop a new evaluation
dataset for the task of translating Chinese audio to English text. This
dataset, named DiariST-AliMeeting, is developed by translating the
Mandarin Chinese meeting recordings, AliMeeting corpus [19, 20],
into English. We also establish an evaluation scheme consisting
of two novel metrics, named speaker-agnostic BLEU (SAgBLEU)
and speaker-attributed BLEU (SAtBLEU), to measure the transla-
tion quality by taking the SD accuracy into account. We develop a
streaming multi-talker ST and SD system, dubbed DiariST, by in-
tegrating the token-level serialized output training (t-SOT) [21] and
t-vector [22], both originally developed for speaker-attributed ASR,
into the neural transducer-based ST system. The proposed system
shows a strong ST and SD capability compared to the offline base-
line systems based on Whisper [7] while allowing for streaming in-
ference, even for overlapping speech. To facilitate the research in
this new direction, we release the evaluation data, the offline base-
line systems, and the evaluation code.1

2. EVALUATION DATA AND METRIC

2.1. DiariST-AliMeeting
We have developed a new evaluation data, named DiariST-AliMeeting,
for the task of Mandarin Chinese audio to English text ST. DiariST-
AliMeeting is based on the AliMeeting corpus [19, 20], which

1https://github.com/Mu-Y/DiariST
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consists of Mandarin Chinese meeting recordings recorded by an
8-channel microphone array, as well as independent headset micro-
phones (IHM) worn by each participant. The training, development
2, and test sets include 209 sessions (104 hr), 8 sessions (4 hr), and
20 sessions (10 hr), respectively.3 Each meeting session consists of
a 15 to 30-min discussion by 2 to 4 participants, and all sessions are
transcribed. Notably, the recordings contain a substantial amount of
speech overlaps with an overlapping ratio over 30%, which makes
the data challenging for ASR and SD.

In order to leverage the AliMeeting corpus for ST and SD evalu-
ation, we created the English translation of the original Mandarin
Chinese transcription. We asked human translators to create the
translation for development and test set while we utilized GPT-4
[23]4 to translate the training set.

We leveraged the audio recorded by different recording devices
to create three levels of difficulties for development/evaluation sets:
(1) single distant microphone (SDM) audio, for which we used the
first channel of the distant microphone array; (2) mixture of IHM
audio (IHM-MIX), where we simply mixed all the IHM signals
for each meeting session; (3) concatenation of utterances from IHM
audio (IHM-CAT), where the utterances are sorted based on their
start times. Among the three levels, SDM audio presents the great-
est challenge due to its inclusion of overlapping speech and rela-
tively low Signal-to-Noise Ratio (SNR). IHM-MIX is less challeng-
ing compared to SDM, as it features a higher SNR while still con-
taining overlapping speech. IHM-CAT is the least challenging be-
cause of the high-SNR signals without overlapping speech. Note
that, even though IHM-CAT is the least challenging of the three,
performing SD on IHM-CAT audio is non-trivial due to the frequent
speaker turns.

In addition, we divided the original long-form recordings into
shorter segments, ranging from 3 to 6 minutes, for both the devel-
opment and evaluation sets. This is because the BLEU score [24] is
computed based on the precision of N-grams, which tends to be over-
estimated when the length of the ground truth translation is long. As
a result, we created the development and evaluation sets containing
76 mini-sessions and 195 mini-sessions, respectively.

2.2. SAgBLEU and SAtBLEU
The ST quality of conventional single-talker speech-to-text systems
is usually evaluated by the BLEU score [24]. In the multi-talker
case, it is desired to evaluate the ST quality, considering the SD er-
rors as well. Such an evaluation scheme has been studied in the con-
text of ASR, where prior works proposed several extensions to word
error rate (WER) such as speaker-attributed WER [13] and concate-
nated minimum permutation WER (cpWER) [14]. In this work, we
propose speaker-agnostic BLEU (SAgBLEU) and speaker-attributed
BLEU (SAtBLEU) to assess the ST performance without and with
considering the SD quality. Our proposed metric is inspired by the
cpWER, which does not require precise time stamps for each word.

The evaluation problem is formulated as follows: in each mini-
session, we assume that reference utterances are indexed in the order
of their start times, and the reference translation for i-th utterance is
denoted as rsii , where si ∈ S represents the speaker index of i-th
utterance, and S denotes the set of unique reference speaker indices

2We renamed the “evaluation set” in the original paper [19, 20] to “devel-
opment set” to follow a standard naming convention.

3Originally, [19] reported 212 sessions in the training set. However, we
found only 209 distributed sessions in https://www.openslr.org/
119/. We report the statistics based on the distributed data.

4The API of “gpt-4-0613” was used.

in the mini-session. We also assume that the ST and SD system out-
puts a hypothesis containing multiple translated utterances, where
the translated utterances are indexed in the order of their start times.
We denote the j-th hypothesis utterance as hpj

j , where pj ∈ P de-
notes the predicted speaker index for the j-th utterance, and P repre-
sents the set of unique predicted speaker indices in the mini-session.

SAgBLEU computes the BLEU score without considering the
SD errors. Here, we first form a concatenated reference translation
r = rs11 rs22 ...rsMM , where M denotes the total number of reference
utterances in this mini-session. We also form a concatenated hy-
pothesis translation h = hp1

1 hp2
2 ...hpN

N , where N denotes the total
number of hypothesis utterances. The BLEU score is then computed
at the corpus level by aggregating h and their corresponding r across
all mini-sessions.5

SAtBLEU computes the BLEU score while considering the SD
errors. Here, we first form speaker-wise references. More specif-
ically, a speaker-wise reference rs for speaker s ∈ S is made by
concatenating rsii for all i ∈ M where si = s. In the same way,
a speaker-wise hypothesis hp for speaker p ∈ P can be made by
concatenating h

pj
j for all j ∈ N where pj = p. Then, we find

the speaker permutation that maximizes the BLEU score between
speaker-wise hypotheses {hp}p∈P and the speaker-wise references
{rs}s∈S . Note that, when the numbers of speakers in S and P do
not match, empty (NULL) strings are added to the speaker-wise hy-
potheses or references to ensure the matching number of speakers.
Finally, we compute corpus-level BLEU score [24, 25] by aggregat-
ing the speaker-wise hypotheses and the corresponding speaker-wise
references from all mini-sessions, with the identified session-level
permutations applied.

3. DIARIST: STREAMING ST AND SD SYSTEM

3.1. ST with neural transducer
In this work, we adopt neural transducer as the backbone of our
ST model [9]. Unlike many E2E ST methods based on attention
encoder-decoder (e.g. [7, 8]), a neural transducer-based ST model
has the advantage of streaming inference while naturally perform-
ing word reordering. It was shown that the neural transducer-based
ST model outperforms offline cascaded ST systems while maintain-
ing the streaming inference capability. For additional details, please
refer to [9].

3.2. Streaming multi-talker ST with t-SOT
The idea of t-SOT was originally proposed in the streaming ASR
task for handling overlapping speech [21], which is common in con-
versational recordings [18, 14, 19]. In the t-SOT framework, given
audio with multiple active speakers, the ASR model is trained to gen-
erate the transcriptions of all speakers in chronological order based
on the end time of each token. To distinguish the transcriptions of
different speakers in the regions of overlapping speech, a special sep-
arator symbol ⟨cc⟩ is inserted when the adjacent tokens belong to dif-
ferent speakers. In inference, the ASR model generates a sequence
of tokens including ⟨cc⟩, which is subsequently deserialized into
multiple sequences that are supposed to contain non-overlapping to-
kens. The t-SOT framework achieved highly accurate multi-talker
speech recognition performance while retaining the streaming infer-
ence capability [21].

In this work, we adopt the t-SOT framework to handle overlap-
ping speech in the ST task for its simplicity and proven accuracy on
the ASR task. The challenge of using the t-SOT framework for ST

5SacreBLEU [25] version 2.3.1 is used in our implementation.
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lies in the fact that, unlike ASR, the physical emission time for each
word is unknown, making it difficult to sort the tokens in chronolog-
ical order.

To overcome this challenge, we propose a two-step approach.
First, we train a neural transducer-based single-talker ST model.
Next, this single-talker ST model is used to generate the Viterbi
alignment between the training audio sample and ground-truth trans-
lation. In this way, we are able to obtain the model-based token
emission time for the training data, which is then used to sort the
tokens for the training of the t-SOT-based ST model.

3.3. Streaming SD with t-vector
The challenge of SD in the context of ST is that it is difficult to
obtain word-level time stamps, which are often the basis for con-
ventional SD with ASR systems [15, 16]. SD becomes further chal-
lenging when handling overlapping speech, which contaminates one
speaker’s representation with other speakers’ characteristics.

To tackle these challenges, we leverage t-vector [22], a token-
level speaker embedding, which was originally developed for neu-
ral transducer-based ASR. The t-vector model comprises a speaker
encoder and a speaker decoder. The speaker encoder consists of a
Res2Net module [26, 27] followed by a stack of multi-head atten-
tion (MHA) layers. The MHA layers in the speaker encoder work in
tandem with the ASR encoder on a frame-by-frame basis, where the
key and query of the MHA in the ASR encoder is reused as the key
and query of the MHA in the speaker encoder. On the other hand, the
speaker decoder consists of two long short-term memory (LSTM)
layers and generates a t-vector for each token given the speaker en-
coder output and the target token embedding. During inference, t-
vectors are estimated in a streaming fashion, in parallel with token
estimation. These t-vectors are then fed into the online clustering
algorithm for speaker diarization. Refer to [22] for more details.

4. EXPERIMENTS

4.1. Configurations of offline baseline systems
We first benchmark the performance of representative ST and SD
methods on our proposed evaluation dataset, DiariST-AliMeeting
(Section 2.1). These serve as the reference points to indicate the
dataset’s level of difficulty. For this purpose, we developed two
offline ST and SD systems using Whisper as the ST backbone [7].
Specifically, all our experiments employed the “Whisper Small”
model (244M parameters), whose parameter size is the closest to
our neural transducer-based ST model (216M parameters).

The first offline system executed the clustering-based SD, fol-
lowed by a Whisper-based ST for each region detected by SD. We
call it “SD→ST system”. More specifically, we first applied voice
activity detection (VAD) [28]. Next, we uniformly segmented the
speech region by a 1.2-second sliding window with a 0.6-second
shift, from which we extracted ECAPA-TDNN-based speaker em-
bedding [29, 28]. We then applied normalized maximum eigengap-
based spectral clustering (NME-SC) [30] with the maximum number
of speakers set to 6. Finally, we segmented the audio based on the
SD result and applied Whisper ST for each segment independently.

The second offline baseline system first applied the Whisper-
based ST on the long-form audio. Then the clustering-based SD was
applied based on the segmentation information estimated by Whis-
per. We call it “ST→SD system”. Specifically, we applied Whisper-
based ST for the long-form audio with a sliding window of 30 sec-
onds [7]. We turned off the context biasing from the hypothesis of
the prior recognition window because we found it sometimes pro-
duced repetitive hallucination errors. Whisper ST produces a list of

{translation of utterance, start time, end time}. We then extracted
ECAPA-TDNN-based speaker embedding based on the start time
and end time of each translation, and applied NME-SC-based clus-
tering with a maximum number of speakers of 6.

4.2. Configurations of streaming ST and SD systems
We developed the streaming ST and SD system based on the neu-
ral transducer with t-SOT and t-vector, as proposed in Section 3. For
the ST model, we used Conformer [31] based transducer with chunk-
wise look-ahead [32]. We set the chunk size to be 1,000 msec. The
encoder of the ST model consists of two convolutional layers fol-
lowed by 18 Conformer layers, where each Conformer layer con-
sisted of a 512-dim MHA with 8 heads and two 3,072-dim point-
wise feedforward layers. The prediction network consisted of 2 lay-
ers of 1,024-dim LSTM. 5,854 word pieces plus blank, ⟨eos⟩[11]
and ⟨cc⟩ tokens were used as the recognition units. The input feature
was an 80-dim log mel-filterbank extracted for every 10 msec. Fur-
thermore, the encoder of the t-vector extractor consisted of Res2Net
[26, 27] followed by 18 layers of 128-dim 8-head MHA. The decoder
of the t-vector extractor consisted of a 2-layer 512-dim LSTM.
Training of the t-SOT-based streaming ST model. The stream-
ing ST model was pre-trained on our in-house data which contains
{audio, English-text} pairs originating from 14 languages (ar, de,
es, et, fr, it, ja, nl, pt, ru, sl, sv, zh, en). Subsequently, we fine-tuned
the ST model on the training data from DiariST-AliMeeting. This
fine-tuning was informed by our preliminary experiment where we
observed that the t-SOT framework became effective for real-world
evaluation data only after being fine-tuned with a modest amount
of real-world training data, as observed in multi-talker ASR exper-
iments [33, 34]. 6 The pre-training data contains approximately
1,000 hours of audio for each language, leading to 14,000 hours
of data in total. We use multilingual pre-training data because (i)
a multilingual model showed better accuracy than a monolingual
model [36] and (ii) our preliminary experiments showed its efficacy
in training the t-vector model using the VoxCeleb dataset, which
also contains multi-lingual recordings. To train the t-SOT model,
training instances are constructed by randomly sampling 1 to 5 sam-
ples from the training data, and mixing them by randomly delaying
each sample under the constraint of having up to 2 active speak-
ers at the same time frame. We performed 600K training iterations
with 16 GPUs, where each mini-batch contains multiple samples
such that the # of frames × # of labels roughly equals to 600,000.
An AdamW optimizer was used with a linear decay learning rate
schedule, peaking at 3e-4 after 75,000 warm-up iterations. After
pre-training, we fine-tune the ST model for 2,500 iterations with 8
GPUs on the training data from DiariST-AliMeeting. An AdamW
optimizer with a linear decay learning rate schedule with a peak
learning rate of 3e-5 was used.
Training of t-vector. After training the streaming ST model, we
trained the t-vector model using VoxCeleb [37, 38], following the
same training configuration used in [22]. Training instances are con-
structed in the same way as those used for t-SOT-based streaming
ST model training. We performed 125K training iterations with 16
GPUs, each of which consumed mini-batches of 6,000 frames. We
used an AdamW optimizer with a linear decay learning rate schedule
with a peak learning rate of 2e-4 after 12,500 warm-up iterations.

Finally, to highlight the importance of t-SOT based multi-talker
modeling, we trained a single-talker streaming ST model with t-
vector as a baseline system. This model was trained by using a con-
figuration nearly identical to that of the t-SOT-based model except

6In multi-talker ASR experiments, such a fine-tuning significantly im-
proved the overlapping speech handling even for unseen domain [34, 35].



Table 1. SAgBLEU, DER and SAtBLEU of the offline ST and SD
systems based on Whisper.

(a) SAgBLEU (↑)

dev test

System IHM-CAT IHM-MIX SDM IHM-CAT IHM-MIX SDM

SD→ST 13.56 10.71 8.67 14.47 10.40 7.88
ST→SD 15.42 14.48 9.81 18.45 13.68 10.51

(b) DER (↓)

dev test

System IHM-CAT IHM-MIX SDM IHM-CAT IHM-MIX SDM

SD→ST 8.23 21.75 28.77 9.22 22.39 26.71
ST→SD 3.70 19.01 23.57 3.15 18.50 24.49

(c) SAtBLEU (↑)

dev test

System IHM-CAT IHM-MIX SDM IHM-CAT IHM-MIX SDM

SD→ST 11.58 9.21 7.39 12.94 9.31 6.80
ST→SD 13.26 11.96 8.21 16.81 12.10 9.02

that the pre-training of ST was conducted without multi-talker data
simulation, and the fine-tuning of ST was conducted on the original
IHM and SDM utterances without mixing. T-vector model was then
trained on top of this single-talker ST model with the same training
configuration.

4.3. Results
4.3.1. Comparison of the offline ST and SD systems
Table 1 shows the SAgBLEU and SAtBLEU results for the two
Whisper-based offline systems. Because these two systems provide
utterance-level timestamps, we also computed diarization error rate
(DER) with a tolerance collar of 0.25 seconds.

From Table 1 (a) and (b), we first observed that the ST→SD sys-
tem outperformed the SD→ST system across all conditions in SAg-
BLEU and DER. The better result on SAgBLEU can be attributed to
the fact that the ST→SD system can leverage long-context informa-
tion up to 30 second in the ST task. On the other hand, the SD→ST
system does not have this advantage as the input audio is segmented
before ST processing. For DER, the substantially better results by
the ST→SD system may be due to its utilization of the linguistic in-
formation for segmentation, consistent with the findings in the ASR
and SD works [39, 40, 41].

As expected from the results of SAgBLEU and DER, the
ST→SD system showed a significantly better SAtBLEU score
compared to the SD→ST system for all conditions as shown in
Table 1 (c). However, we noticed that the correlation between DER
and {SAgBLEU - SAtBLEU} is not very high although both are
indicators of SD accuracy. For example, the difference between
SAgBLEU and SAtBLEU on IHM-CAT dev set for the ST→SD
system is 2.16 (= 15.42 - 13.26) points while that on IHM-MIX
dev set is 2.52 (= 14.48 - 11.96) points. This difference does not
correlate well with the DER difference of 3.70% vs. 19.01%. One
possible reason may be that DER is impacted by many missing voice
activities for overlapping speech in IHM-MIX and SDM sets while
{SAgBLEU - SAtBLEU} is not impacted by missing translations.

Finally, we observed a substantial degradation in the SAtBLEU
scores from IHM-CAT to IHM-MIX, and from IHM-MIX to SDM.
The former indicates the impact of overlapping speech, and the latter
indicates the impact of the low SNR signals.

Table 2. SAgBLEU and SAtBLEU of the streaming ST and SD
systems. The system with t-SOT ST and t-vector is our proposed
system, DiariST. Note that DER was not computed because the sys-
tem does not produce time stamps for each word or utterance.

(a) SAgBLEU (↑)

dev test

System IHM-CAT IHM-MIX SDM IHM-CAT IHM-MIX SDM

1spk ST 15.45 14.73 12.21 20.63 16.15 13.46
t-SOT ST 18.45 16.05 13.47 19.80 16.62 13.52

(b) SAtBLEU (↑)

dev test

System IHM-CAT IHM-MIX SDM IHM-CAT IHM-MIX SDM

1spk ST + d-vec 12.54 12.01 9.67 17.38 13.39 10.77
1spk ST + t-vec 12.43 12.00 10.01 16.99 13.22 10.91

t-SOT ST + d-vec 14.61 13.15 10.78 16.67 13.85 10.76
t-SOT ST + t-vec 15.16 13.91 11.44 17.07 14.76 11.67

4.3.2. Comparison of the streaming ST and SD systems
Table 2 shows the comparison of various streaming ST and SD sys-
tems. For the comparison, we experimented with single-speaker
(1spk) ST and t-SOT ST, in combination with either d-vector or t-
vector. Here, d-vector was extracted by a 0.8-second window based
on the token emission time from the ST models. We used Res2Net
trained by VoxCeleb [27] as the d-vector extractor, which was also
used for the training target of t-vector.

First, from Table 2 (a) we can observe that t-SOT ST surpassed
1spk ST in terms of SAgBLEU for 5 out of the 6 tested conditions
with IHM-CAT test set as the exception. It is noteworthy that t-
SOT ST achieved significantly better SAgBLEU for IHM-MIX and
SDM for both development and test sets, which are the real con-
versational recordings with speech overlaps. We also observed that
the degradation of SAgBLEU from IHM-CAT to IHM-MIX condi-
tions was significantly smaller compared to the offline systems that
do not handle overlapping speech. For example, t-SOT ST showed
a 16.1% (19.80 to 16.62) degradation from IHM-CAT to IHM-MIX
on the test set while the ST→SD system showed a 25.9% (18.45 to
13.68) degradation in the same condition. This indicates that t-SOT
ST effectively handled overlapping speech based on the ⟨cc⟩ token.

From Table 2 (b), we observed that the combination of t-SOT
ST and t-vector achieved the best result for 5 out of the 6 conditions.
Particularly, it achieved the best results on IHM-MIX and SDM. We
observed that t-vector becomes specifically effective when combined
with t-SOT ST. For 1spk ST, t-vector was competitive with d-vector.
We believe that it is because t-vector can better utilize ⟨cc⟩ token
emitted by the t-SOT ST model as the clue to estimate speaker em-
beddings. Overall, our proposed system, DiariST, achieved a strong
SAtBLEU score compared to the offline baselines as well as the
naive streaming ST system based on 1-spk ST and d-vector.

5. CONCLUSION

This paper presented DiariST, the first streaming ST and SD sys-
tem built upon t-SOT and t-vector. We also presented a new dataset
DiariST-AliMeeting, and new evaluation metrics of SAgBLEU and
SAtBLEU to comprehensively assess the quality of ST in conjunc-
tion with the SD task. From the experiments on DiariST-AliMeeting,
we showed that the proposed system can achieve a strong ST and SD
capability compared to various baseline systems while maintaining
the streaming inference for overlapping speech.
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