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use a large language model trained on code, such as Codex (a version of GPT), to build an APR system – PyDex
– for introductory Python programming assignments. Our system can fix both syntactic and semantic mistakes
by combining multi-modal prompts, iterative querying, test-case-based selection of few-shots, and program
chunking. We evaluate PyDex on 286 real student programs and compare to three baselines, including one
that combines a state-of-the-art Python syntax repair engine, BIFI, and a state-of-the-art Python semantic
repair engine for student assignments, Refactory. We find that PyDex can fix more programs and produce
smaller patches on average.
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1 INTRODUCTION
Programming education has grown substantially in popularity in the past decade [Singer 2019]. A
key challenge associated with this growth is the need to provide novice students with effective
and efficient learning support. In an ideal world, teaching assistants would monitor students’
learning process, and when students’ code is not correct, they would then help them to derive a
correct solution. However, this approach does not scale and educational institutions struggle to
find teaching assistants. As a result, there is an interest in developing automated tools that students
can use for feedback instead. These tools provide custom repairs for their programming mistakes.
The field of automated program repair (APR), which has a long history in the software engineering
community [Ahmed et al. 2022a; Le Goues et al. 2012, 2019; Long et al. 2017; Long and Rinard
2016; Mechtaev et al. 2016], has introduced different approaches [Gulwani et al. 2018; Hu et al.
2019; Pu et al. 2016; Rolim et al. 2017] to produce such automated repairs for student mistakes in
introductory assignments. Given a buggy student program, the APR system aims to produce a
patch that satisfies a specification (typically the instructor-provided test cases). The patch must
also minimize the number of changes made, with the goal of facilitating student learning [Hu et al.
2019].

Prior automated program repair systems for student programming assignments have generally
been implemented using purely symbolic [Gulwani et al. 2018; Hu et al. 2019; Rolim et al. 2017;
Wang et al. 2018a] or purely neural [Ahmed et al. 2018; Pu et al. 2016] techniques. Symbolic ap-
proaches require substantial engineering efforts to develop, typically requiring significant program
analysis/repair experience, as well as custom repair strategies tailored to the language domain in
which students implement their assignments. Neural approaches mitigate some of the engineering
challenges but typically require substantial amounts of data, often leading to specialized use cases
for Massive Open Online Courses (MOOCs). Furthermore, these systems are typically tailored to
focus exclusively on syntax repair or exclusively on semantic repair. For the latter, the assumption
is the code to be repaired contains no syntactic errors.
In this paper, we introduce PyDex, a Python repair tool built on top of Codex, a version of

the popular LLM GPT-3 [Brown et al. 2020b] that was further trained on code. PyDex is a unified
syntactic and semantic repair engine for introductory Python programming assignments. Using a
large language model trained on code (LLMC) removes the need for custom symbolic repair logic or
retraining of a new neural model, and it allows us to handle both syntactic and semantic mistakes.
While LLMCs have been successfully applied to tasks such as code generation [cop 2024], their
impact in the education domain remains controversial [Berger 2022]. Using an LLMC for repair
provides an opportunity to produce a positive impact in this domain.

We follow the approach of recent work [Joshi et al. 2022; Xia and Zhang 2022] in framing program
repair as a code generation task that can be tackled with an LLMC. However, using LLMCs to
produce student repairs requires addressing three challenges. First, the system must be able to
handle multi-modality: the instructor may provide test cases, a description of the task in natural
language, and language tooling (e.g. a compiler) may provide further information. Second, APR
patches in the education domain need to reduce the number of changes to support learning – this
requires that we limit the extent to which the LLM can generate more code than necessary or make
changes to parts of the program that are not incorrect. Third, incorporating the LLMC as a core
(but black box) component in our design requires that we adapt traditional prompt engineering
techniques to our setting.
PyDex ensembles multi-modal prompts to generate complementary repair candidates. It employs

prompts in an iterative querying strategy that first uses syntax-targeted prompts and then semantics-
targeted prompts. To reduce the number of changes induced by syntax errors that should have
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relatively simple fixes, PyDex uses the program’s structure to extract a subprogram to give as
input to the LLMC. By reducing the code surface exposed to the LLMC, PyDex biases repairs
towards fewer edits. When fixing semantics, PyDex takes inspiration from existing symbolic repair
literature [Gulwani et al. 2018; Ke et al. 2015; Wang et al. 2018a] and leverages few-shot learning,
which adds task-related examples to the prompt, by retrieving other students’ programs that
have similar mistakes (and eventual corrections). To identify these programs, PyDex computes a
similarity metric over test-suite outcomes.

We evaluated PyDex on student programs from an introductory Python programming course at a
major university in India. Our evaluation has 15 programming tasks, totalling 286 student programs.
These student programs contain both syntactic and semantic mistakes. As there is currently no tool
that can solve both errors simultaneously, we compare PyDex to three baselines built by composing:
BIFI [Yasunaga and Liang 2021], a state-of-the-art syntax repair tool for Python; Refactory [Hu
et al. 2019], a state-of-the-art semantic repair tool for education Python programs; and GenProg, a
canonical semantic repair tool based on genetic programming. Specifically, we compare PyDex to
BIFI+Refactory, PyDex+Refactory, and PyDex+GenProg, where for the latter two baselines we use
PyDex to produce syntactic fixes before applying the corresponding semantic repair tool.
Our results show that PyDex can effectively repair student programs in our benchmark set.

PyDex without few-shot learning can repair 86.71% of the student programs. This repair rate climbs
to 96.5% with few-shots. Meanwhile, BIFI+Refactory, PyDex+Refactory, and PyDex+GenProg repair
67.13%, 83.57%, and 49.30%, respectively. Our statistical analysis shows that the improvement over
BIFI+Refactory and PyDex+GenProg is statistically significant.
The average token edit distance associated with PyDex patches is smaller (28.59 without few-

shots and 29.68 with few-shots) compared to the patches produced by the baselines BIFI+Refactory
(70.39) and PyDex+Refactory (73.53). We found that PyDex+GenProg (22.82) produces slightly
smaller patches, but the difference is not statistically significant. Our statistical analysis shows that
the improvement over BIFI+Refactory and PyDex+Refactory is statistically significant.
We carried out an ablation study to understand the impact of our design decisions. Our results

indicate that by performing iterative querying the repair rate rises from 82.87% to 86.71%. Further-
more, adding few-shots raises the repair success rate to 96.5%. The evaluation also shows that our
techniques are important for maintaining the repaired program similar to the buggy input program.
For example, removing the program chunker, which selects subprograms in the syntax repair phase,
raises the average token edit distance from 5.46 to 9.38 in the syntax phase. We also show that
different multi-modal prompts have varying performance, but if we combine their candidates as
we do in PyDex, we obtain the best performance.

To summarize, we make the following contributions:

• We propose an approach to automatically repair mistakes in students’ Python programming
assignments using a large language model trained on code (LLMC). Our approach uses
multimodal prompts, iterative querying, test-case-based few-shot selection, and structure-
based program chunking to repair student mistakes. In contrast to prior work, our approach
uses the same underlying LLMC to repair both syntactic and semantic mistakes.

• We implement this approach in PyDex, which uses OpenAI’s popular Codex as the LLMC. We
evaluate PyDex on a dataset of 286 real student Python programs drawn from an introductory
Python programming course in India. We compare performance to three baselines, that
leverage popular repair systems such as BIFI, Refactory, and GenProg. Our results show that
PyDex yields a statistically significant higher repair rate than 2 of our 3 baselines, and a
statistically significant smaller average token edit distance (i.e. smaller patches) than 2 of our
3 baselines.
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The remainder of the paper is structured as follows. Section 2 walks through multiple examples
of real student mistakes, as well as associated PyDex patches. Section 3 provides a brief background
on concepts related to large language models. Section 4 describes our approach in detail. Section 5
provides experimental results on our dataset of student Python programs. Section 6 details further
discussions and limitations. We discuss related work in Section 7. Finally, we conclude with
takeaways in Section 8.

2 MOTIVATING EXAMPLE
2.1 Understanding Challenges in Repairing Introductory-level Programs
Consider Figure 1, which shows a student’s incorrect program, along with a solution generated by
PyDex. The student is solving the task of reading two numbers from stdin and printing different
results depending on whether both, either, or neither are prime.
The student has made both syntactic and semantic mistakes. Lines 1 and 2 call input twice to

read from stdin, and parse these values as integers using int. However, this constitutes a semantic
mistake, as the assignment input format consists of two values on the same line separated by a
comma. Furthermore, a traditional semantic repair engine would fail to fix this student’s assignment
as there is also a syntactic mistake at line 30. The student used a single = for comparison in the elif

clause (the correct syntax would be a double equals).
The PyDex solution, shown alongside it, fixes the input processing (semantic mistake) by reading

from stdin, splitting on the comma, and applying int (to parse as integer) using the map combinator.
Line 23 fixes the syntax error by replacing single equals with double equals (for comparison).
Interestingly, the underlying LLMC (Codex) also refactored the student’s program. In this case,
lines 8 through 17 correspond to a function to check if a number is prime. This function is called
twice, at lines 18 and 19. This replaces the repeated code in the original program, which spanned
lines 9-17 and lines 18-26.
The edit distance between the PyDex repair and the original student program is 95, while the

distance between the instructor’s reference solution and the original student program is 188. A
smaller edit distance is a key goal for APR in the educational domain, as this can help the student
understand the repair with respect to their own mistakes.
Figure 2 presents another example of an incorrect student program and a solution generated

by PyDex. In this assignment, the students need to check whether a string, read from stdin, is
a palindrome or not, and print out a message accordingly to stdout. For this student’s program,
PyDex has to generate a complex repair that fixes four syntax mistakes and multiple semantic bugs.
The student has made syntax errors on lines 4, 8, 10, and 12, where they have left off the colon

symbol necessary for control flow statements in Python. On line 2, the student called a non-existent
function lower. The student has used standard division on lines 5, 6, 13, and 14 when they should
have used integer division. The student has included two spurious print statements, at lines 7 and
15, which will interfere with the instructor’s test-suite execution, as the suite checks values printed
to stdout for correctness. Finally, the student has omitted the expected print statements (along with
the equality check) for the case where the input string is of even length.
While the student’s program has many mistakes, the overall structure and key concepts are

there. Looking at the PyDex solution shown alongside, it resolves these mistakes but preserves the
student’s overall structure. In particular, PyDex replaces the non-existent lower function with a
call to the string method with the same name. It replaces the division operator (/) throughout the
program with the intended floor division operator (//), comments out the extra print statements,
and adds the missing equality check and print statements in the case of even-length inputs.
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1 a=int(input())

2 b=int(input())

3 n=str(a)

4 m=str(b)

5 n1=n[::-1]

6 m1=m[::-1]

7 x=int(n1)

8 y=int(m1)

9 if x>1:

10 for i in range(2, x):

11 if (x%i)==0:

12 p=0

13 break

14 else:

15 p=1

16 else:

17 p=0

18 if y>1:

19 for j in range(2, y):

20 if (y%j)==0:

21 q=0

22 break

23 else:

24 q=1

25 else:

26 q=0

27 if p==1 and q==1:

28 g=x+y

29 print(g)

30 elif p=1 or q=1:

31 h=a+b

32 print(h)

33 else:

34 print(a*b)

(a) Incorrect Program

1 a,b = map(int, input().split(’,’))

2 n=str(a)

3 m=str(b)

4 n1=n[::-1]

5 m1=m[::-1]

6 x=int(n1)

7 y=int(m1)

8 def prime(z):

9 if z>1:

10 for i in range(2,z):

11 if (z%i)==0:

12 return 0

13 break

14 else:

15 return 1

16 else:

17 return 0

18 p=prime(x)

19 q=prime(y)

20 if p==1 and q==1:

21 g=x+y

22 print(g)

23 elif p==1 or q==1:

24 h=a+b

25 print(h)

26 else:

27 print(a*b)

(b) PyDex’s Repair

Fig. 1. A student’s submission contains both syntactic and semantic mistakes (red). PyDex’s fixes (blue) the
original issues and also refactors part of the student’s code into a function (lines 8 - 17 in (b)) that avoids
code duplication (lines 9-17, 18-26 in (a)).

The edit distance between the PyDex repair and the original student program is 52, while the
distance between the instructor’s reference solution and the original student program is 97. The
reference solution is a standard one-line program for palindrome. Once again, the PyDex repair is
closer to the student submission than the instructor’s reference solution.

2.2 Insights
Based on our observation of errors in student’s introductory-level programs, we extract the fol-
lowing insights guiding our solution design. First, incorrect introductory-level programs often
contain both syntactic and semantics errors at the same time, and this is an extremely challenging
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1 i = input()

2 S = lower(i)

3 l = len(S)

4 if(l%2!=0)

5 B = S[:(l+1)/2]

6 E = S[:(l+1)/2:-1]

7 print(B,E)

8 if(B==E)

9 print(i,'is␣a␣palindrome.')

10 else

11 print(i,'is␣NOT␣a␣

palindrome.')

12 else

13 B = S[:l/2]

14 E = S[:l/2:-1]

15 print(B,E)

(a) Incorrect Program

1 i = input()

2 S = i.lower()

3 l = len(S)

4 if(l%2!=0):

5 B = S[:(l+1)//2]

6 E = S[:l//2-1:-1]

7 #print(B,E)

8 if(B==E):

9 print(i,'is␣a␣palindrome.')

10 else:

11 print(i,'is␣NOT␣a␣

palindrome.')

12 else:

13 B = S[:l//2]

14 E = S[:l//2-1:-1]

15 #print(B,E)

16 if(B==E):

17 print(i,’is␣a␣palindrome.’)

18 else:

19 print(i,’is␣NOT␣a␣palindrome.’)

(b) PyDex’s Repair

Fig. 2. A complex repair (blue) that fixes multiple syntactic and semantic mistakes (red). The repair produced
by PyDex, which preserves the overall structure of the student’s program, makes fewer changes to the
student’s program than a patch with respect to the instructor’s (one-liner) reference solution.

scenario for existing APR tools to handle alone as they are tailored to focus exclusively on syntax
repair [Rolim et al. 2017; Yasunaga and Liang 2021] or exclusively on semantic repair [Mechtaev
et al. 2018, 2016]. While combining a state-of-the-art syntactic fixer and semantic fixer to repair
programs is possible, we detail the (lower) performance and challenges in Section 5 and Section 6.1.
Second, an introductory-level program can have many mistakes, which require complex repairs.
Such cases are difficult to address by traditional existing APR techniques [Le Goues et al. 2012;
Long and Rinard 2015; Mechtaev et al. 2018, 2016; Qi et al. 2014a; Xuan et al. 2017], as they often
focus on specific error types, are limited to a small number of edits, and target specific types of
statements (such as conditionals). For example, the repairs (e.g., control-flow changes, in-lined
function addition) shown in this section are out-of-scope for traditional APR tools. Third, because
the eventual consumer of the generated patches are introductory-level programmers, we should
minimize the cognitive load associated with many changes where possible. Finally, because students
themselves may want to run the repair tool (enabling them to learn independently), the engineering
efforts associated with running the APR tool should be minimized as much as possible.

3 BACKGROUND
We now provide a short background on concepts related to large language models.
Large language model. A large language model (LLM) can be viewed as a probability distribution
over sequences of words. This distribution is learned using a deep neural network with a large
number of parameters. These networks are typically trained on large amounts of text (or code)
with objectives such as predicting particular masked-out tokens or autoregressive objectives such as
predicting the next token given the preceding tokens. When the LLM has been trained on significant
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amounts of code, we refer to it as a large language model trained on code (LLMC). In practice, most
LLMs are now trained on code as well, so the functional difference between the two categories has
become increasingly less relevant.
Often, LLMs are pre-trained and then fine-tuned, meaning trained further on more specialized

data or tasks. A particularly popular LLMC is OpenAI’s Codex [Chen et al. 2021], a variant of
GPT-3 [Brown et al. 2020a] that is fine-tuned on code frommore than 50 million GitHub repositories.
Few- (or zero-)shot learning. In contrast to traditional supervised machine learning, LLMs have
shown to be effective for few- and even zero-shot learning. This means that the LLM can perform
tasks it was not explicitly trained for just by giving it a few examples of the task or even no examples,
respectively, at inference time.

In this setting of few- (or zero-)shot learning, the LLM is typically employed using what is termed
prompt-based learning [Liu et al. 2021]. A prompt is a textual template that can be given as input to
the LLM to obtain a sequence of iteratively predicted next tokens, called a generation. A prompt
typically consists of a query and possibly zero or more examples of the task, called shots. For
example, the prompt below includes a specific query to fix a syntax error. One valid generation,
that fixes the syntax error, would be print().
# Fix the syntax error of the program #

# Buggy program #

print(

In practice, a prompt can incorporate anything that can be captured in textual format. In particular,
multi-modal prompts are those that incorporate different modalities of inputs, such as natural
language, code, and data.1
Different prompts may result in different LLM completions. Other factors may also affect the

completions produced, such as the sampling strategy or hyperparameters for the sampling strategy.
One important hyperparameter is temperature, which controls the extent to which we sample less
likely completions.
LLM selection. While we use OpenAI’s Codex in this work, other LLMs could be used such as
Salesforce’s CodeGen [Nijkamp et al. 2022] or OpenScience’s BLOOM [Laurençon et al. [n. d.]]. Even
within OpenAI’s Codex there are different underlying models offered, including Codex-Edit [Open
AI 2022]. We found performance to be better with the standard Codex completion model. We now
leverage these concepts to describe our approach.

4 METHODOLOGY
Figure 3 provides an overview of PyDex’s architecture. The student’s buggy program first enters a
syntax repair phase. In this phase, we extract subprograms from the original program that have a
syntax error. Each such subprogram is fed to a syntax prompt generator that produces multiple
syntax-oriented prompts. The LLMC then generates repair candidates, which are validated by the
syntax oracle. This process is repeated until all syntax errors are removed. Any candidate that has
no syntax errors moves on to the semantic phase. In this phase, PyDex uses a semantic prompt
generator to produce semantics-oriented prompts. If it has access to other student’s assignment
history, PyDex can also add few-shots to these prompts. These prompts are fed to the LLMC, which
generates new program candidates. These are validated by the test-suite-based semantic oracle. If
multiple candidates satisfy all tests, PyDex returns the one with the smallest token edit distance
with respect to the student’s original program. We now describe each step in detail.
1The term multi-modality, in the context of LLMs, is also used for combinations of image/text/audio. In our setting, all
inputs are text but they come from different distributions, such as code versus natural language.
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Fig. 3. PyDex architecture. A buggy program first enters a syntax repair phase. In this phase, PyDex transforms
the program using a program chunker, which performs a structure-based subsetting of code lines to narrow
the focus for the LLMC. Multiple syntax-oriented prompts are generated using this subprogram, fed to an
LLMC, and any patches are integrated into the original program. If any candidate satisfies the syntax oracle,
it can move on to the semantic phase. In the semantic phase, PyDex leverages both the natural language
description of the assignment and the instructor-provided test cases to create various prompts. In addition, if
available, PyDex can use other peers’ solutions as few-shots by selecting them using test-case-based selection
to identify failures that resemble the current student’s program, along with eventually correct solutions.
Prompts are fed to the LLMC to generate candidates. If multiple candidates satisfy the test suite, PyDex
returns the one with the smallest edit distance with respect to the original student program.

4.1 Syntax Phase
Students typically first resolve syntax errors in their assignments, and then move on to resolve
semantic errors (such as test case failures). PyDex takes inspiration from this approach and similarly
splits its repair into syntax and semantic phases.
In the first phase, PyDex receives the student’s buggy program. A syntax oracle, for example,

the underlying Python parser2, is used to determine if there is a syntactic mistake. If there is no
such mistake, the program can move into the semantic phase. However, if there is a mistake, PyDex
must produce a patch that resolves it, before moving to the semantic phase.

While our syntax prompt generator could directly include the original program in its entirety in
the prompt, we have found that doing so can result in spurious edits that are not actually necessary
to resolve the syntax error. Existing work has also observed similar phenomena in the related area
of natural language to code generation [Poesia et al. 2022]. As a result, we introduced a component
we call the program chunker to mitigate this challenge by reducing the amount of code included in
the prompt.

2Some errors such as repeated function parameters throw a SyntaxError but are not checked until bytecode compilation
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4.1.1 Program Chunking. For each syntax mistake in the original buggy program, the program
chunker extracts a subset of lines that contains (1) the oracle-reported syntax error location and
(2) the nearest encompassing control-flow statement. These chunks are a heuristic approximation
of a basic block, and allow us to restrict the code input given to the LLMC. Note that we perform
this heuristic approximation as a standard analysis to extract basic blocks typically requires a
syntactically correct input program.

Algorithm 1 Chunker: extracting the code chunk that contains the error message
Input: sC : Program Source Code
Input: msg : Compiler Message
Output: chunkedCode : Chunked Program Source Code
1: procedure chunker(𝑠𝐶,𝑚𝑠𝑔)
2: lineIndex, errorLine = locateError(𝑠𝐶,𝑚𝑠𝑔)
3: errIndent = getIndentationLevel(𝑠𝐶, 𝑒𝑟𝑟𝑜𝑟𝐿𝑖𝑛𝑒)
4: ⊲ move up until find a line with a smaller indentation level
5: startIndex, startIndent = pointerUp(𝑠𝐶, 𝑙𝑖𝑛𝑒𝐼𝑛𝑑𝑒𝑥, 𝑒𝑟𝑟𝐼𝑛𝑑𝑒𝑛𝑡 )
6: ⊲ move down according to both indentation level and control-flow structure
7: if 𝑠𝐶 [𝑠𝑡𝑎𝑟𝑡𝐼𝑛𝑑𝑒𝑥].startswith(𝑐 𝑓 𝐾𝑒𝑦𝑤𝑜𝑟𝑑) then ⊲ control-flow related keywords
8: endIndex = pointerDown(𝑠𝐶, 𝑠𝑡𝑎𝑟𝑡𝐼𝑛𝑑𝑒𝑥, 𝑠𝑡𝑎𝑟𝑡𝐼𝑛𝑑𝑒𝑛𝑡, 𝑐 𝑓 𝐾𝑒𝑦𝑤𝑜𝑟𝑑)
9: else
10: endIndex = pointerDown(𝑠𝐶, 𝑠𝑡𝑎𝑟𝑡𝐼𝑛𝑑𝑒𝑥, 𝑠𝑡𝑎𝑟𝑡𝐼𝑛𝑑𝑒𝑛𝑡 )
11: return chunkedCode = slice(𝑠𝑡𝑎𝑟𝑡𝐼𝑛𝑑𝑒𝑥, 𝑒𝑛𝑑𝐼𝑛𝑑𝑒𝑥 )

PyDex extracts the program chunk for the first (top-down) syntax error reported. Algorithm 1
outlines the procedure used to produce this program chunk. It takes advantage of both control-
flow structure (based on Python keywords) and indentation, which are meaningful in the Python
language. The program chunker first identifies the adjacent code that has the same or larger
indentation level as the line with the syntax error. Then, if the code chunk contains control-flow
related keywords, such as if and elif, PyDex makes sure the associated keywords (such as elif
or else) for the same control flow statement are also in the chunk. This code chunk is then provided
to the syntax prompt generator.

1 ...

2 if (condition1):

3 x = (0 # syntax error

4 x = 1

5 else

6 x = 2

7 if (condition2):

8 x = 3

9 ...

Fig. 4. An illustrated example of program chucking. Lines 3 and 4 have an indentation level of four, line 6 has
an indentation level of two, and the rest of the lines have an indentation level of zero. Line 3 has the initial
syntax error flagged by the interpreter. PyDex uses such indentation (along with control flow keywords) to
heuristically extract program chunks for syntax repair.

For example, in Figure 4, the algorithm starts at line 3, setting the indentation level (errIndent)
to 4. Subsequently, it moves up to traverse lower-indexed code lines, takes any line between
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1 # Buggy Program #

2 while (n > 0):

3 a = n % 10

4 ...

(a) without error message

1 ### Error Msg ###

2 File "<unknown>",line 2

3 a = n % 10

4 ^

5 IndentationError: expected an

indented block

6
7 # Buggy Program #

8 while (n > 0):

9 a = n % 10

10 ...

(b) with error message

Fig. 5. The syntax prompt generator produces prompts that can include the buggy program or the error
message. We elide portions of the code fragments for brevity.

this error line and stops upon encountering the first line with an indentation level smaller than
errIndent. The algorithm sets this as the starting line of the code chunk and then mark its
indentation level as startIndent, which in this example is 0. At this starting line, if the line starts
with a control-flow keyword (such as the if at line 2), the process moves down until reaching the
first unmatched control-flow statement at an indentation level less than or equal to startIndent.
Otherwise, if at the starting line, the code chunk does not start with a control-flow keyword, the
algorithm simply moves down to higher-indexed code lines, including any consecutive line with an
indentation level greater than or equal to startIndent until it finds a line with less indentation.
In the provided example, the algorithm stops at line 7, resulting in a final code chunk spanning
from line 2 to line 6. This example shows the algorithm’s ability to selectively extract code chunk
based on both indentation levels and control-flow structures, as depicted in Figure 4.

4.1.2 Syntax Prompt Generator. The syntax prompt generator produces two (multimodal) prompts,
one with and one without the syntax error message reported by the syntax oracle. An example of
both is shown in Figure 5. Because the syntax oracle is available, we do not need to choose a single
prompt template for all programs, but instead we query the LLMC with both prompts, extract
the code portion from each generation, merge it into the original program by replacing the lines
corresponding to the current program chunk, and then rely on the syntax oracle to filter out invalid
repairs.

If a program candidate has no syntax errors, it can move on to the semantic phase. If any syntax
errors remain, the syntax phase is repeated. This iteration allows the repair of multiple, spatially-
independent, syntax errors. For our evaluation, we allow this procedure to iterate at most two times
to limit repair times.

4.2 Semantic Phase
After PyDex has generated syntactically valid candidate programs, the repair procedure moves to a
semantic repair phase. Intuitively, this phase incorporates information that allows the LLMC to
generate candidate programs that satisfy the programming assignment task, as determined by a
semantic oracle. Following the approach of existing work in automated repair for programming
assignments [Gulwani et al. 2018; Hu et al. 2019], we use the instructor’s test suite (inputs and
expected outputs) as the semantic oracle. We say a program is repaired if it produces the expected
outputs for the given inputs.
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1 [[Buggy Program]]

2 ### Buggy Program ###

3 x=input()

4 y=int(x)

5 z = number % 10

6 y = 10 * y + z

7 number = number / 10

8 number = int(number)

9 print("Reverse:␣{}".format(x[::-1]))

10 print("Sum:␣{}".format(Sum))

11
12
13 [[Problem Description]]

14 #Write a program to read a number (int) from the user. Print the

number in reverse. Also print the sum of the number and its

reverse in a separate line. See the examples.

15 #NOTE: Do not print any prompt in the input().

16
17 [[Test Suite]]

18 #input:

19 43

20 #output:

21 Reverse: 34

22 Sum: 77

23
24 #input:

25 500

26 #output:

27 Reverse: 5

28 Sum: 505

29
30 ### Correct Program ###

Fig. 6. An example multimodal prompt (in zero-shot setting for brevity) produced by the semantic prompt
generator. This prompt includes code, natural language, and test cases. Lines starting with the double brackets
are shown only for clarity, they are not part of the prompt itself.

4.2.1 Semantic Prompt Generator. The semantic prompt generator takes advantage of the rich set
of signals available in the education domain. In particular, we exploit the fact that programming
assignments typically have available: (1) a natural language description of the task, (2) a set of test
cases, and (3) peers’ programming solutions.

The semantic prompt generator takes as input a syntactically valid program, the task description
in natural language, and the set of instructor-provided test cases. The generator then produces
prompts with different combinations of this information. Figure 6 shows an example of such a
multimodal prompt. This prompt includes the student’s buggy code, the natural language description
of the assignment, as well as the input-output-based test cases.
If PyDex has access to other student’s assignment solution history, then it can also employ

few-shot learning, described in the following Section 4.2.2, in each of these prompts.
Similarly to the syntax phase, rather than picking a single prompt template, we use all prompts

generated and rely on the semantic oracle to identify viable repair candidates. Each prompt given
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1 [[Shot Starts]]

2 # Incorrect Program #

3 print (m+n)

4 # Correct Program #

5 print (m*n)

6 [Shot Ends]

7
8 [[Buggy Program Starts]]

9 ### Buggy Program ###

10 sum = m

11 i = 0

12 while i < n:

13 sum += 1

14 i += 1

15 print (sum)

16 [[Buggy Program Ends]]

17
18 [[Test Suite Starts]]

19 #input:

20 2 2

21 #output:

22 4

23
24 #input:

25 2 3

26 #output:

27 6

28 [[Test Suite Ends]]

29
30 ### Correct Program ###

Fig. 7. An illustrative example of few-shot learning in PyDex. The incorrect program in the shot and the
target buggy program have the same test suite execution [pass, fail].

to the LLMC can generate up to 𝐾 candidates, where we heuristically set 𝐾 to ten to balance
the exploration of candidates with search space explosion. Each of these candidates is given to
the semantic oracle, which executes that candidate on the test suite. We remove any candidate
programs that result in a runtime exception or fail to satisfy any test cases.

If there are multiple valid candidate programs after the semantic phase, we return the one with
the smallest token-based edit distance [Yasunaga and Liang 2021] to the student’s submission as
the repaired program.

4.2.2 Few-Shot Learning. If PyDex has access to other students’ programs it can employ few-shot
learning. In contrast to other repair systems, such as Refactory [Hu et al. 2019], that typically
employ only correct programs, PyDex’s few-shots consist of both correct and incorrect programs.
In particular, PyDex’s few-shot learning example bank consists of pairs of program versions

(𝑝, 𝑝 ′) where both 𝑝 and 𝑝 ′ satisfy the syntax oracle, 𝑝 ′ satisfies the semantic oracle but 𝑝 does not,
and 𝑝 is a historical edit-version ancestor of 𝑝 ′. Given a candidate program produced by the syntax
phase of PyDex, we retrieve the three most similar 𝑝 and their associated correct versions 𝑝 ′ to
include as shots in the LLMC prompts produced by the semantic prompt generator.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 133. Publication date: April 2024.



PyDex: Repairing Bugs in Introductory Python Assignments using LLMs 133:13

We take inspiration from traditional automated program repair and say two programs are similar
if they result in similar test suite executions [Perry et al. 2019].We define a test suite execution vector
for program 𝑝 that captures test failures as 𝑇𝑝 ∈ B𝑛 = (𝑡0, · · · , 𝑡𝑛) where 𝑛 is the number of test
cases, and 𝑡𝑖 is the boolean failure status of the 𝑖th test. We define the similarity function between 𝑝1
and 𝑝2 as 1−Hamming(𝑇𝑝1 ,𝑇𝑝2 ), where Hamming is the normalized Hamming distance [Hamming
1950] between the two vectors.

Figure 7 is an illustrative example (note this is not an actual student problem, we have created a
simplified example) of a prompt structure for our few-shot learning setting. In this prompt example,
we lay out in few-shots as a prefix, followed by the target buggy program, the test suite information,
and then a prefix to prompt the model to return a corrected version of the buggy program. Note
that if PyDex does not have access to peer programs, then it can still query the LLMC using a
zero-shot approach. In our evaluation (Section 5) we show that this ablated strategy still performs
competitively.

5 EVALUATION
We explore the following two research questions in our evaluation of PyDex:

• (RQ1) How does PyDex’s overall performance compare to different baselines, which combine
state-of-the-art syntactic and semantic repair approaches?

• (RQ2)What is the impact of the underlying design decisions in PyDex? Specifically, what
is the impact of the structure-based program chunking, iterative querying, test-case-based
few-shot selection, and multi-modal ensembled prompts?

Implementation. We have built a PyDex prototype using a mix of Python and open-source
software libraries. The core of PyDex’s implementation consists of approximately 600 lines of
Python code, which is 5 to 10 times less than a typical symbolic repair system in the education
domain [Gulwani et al. 2018; Hu et al. 2019; Rolim et al. 2017]. In addition to the reduced engineering
efforts, PyDex can handle both syntactic and semantic bugs in one system, while most systems
address one type.
We selected the top 10 program candidates in each syntax and semantics phase based on the

average token log probabilities produced by the LLMC. We used OpenAI’s Codex as our LLMC.
Specifically, we used the completion model. We found that other models, such as Codex Edit [Open
AI 2022], did not perform as well. We set the temperature to 0.8 based on preliminary experiments.
We ran experiments on a Windows VM (Intel i7 CPU, 32GB RAM).
Benchmarks.We derived a benchmark set by selecting programs from a collection of introductory
Python assignments collected by third-party authors in a large Indian university [H. Padmanabha
et al. 2023]. This dataset is a Python-version of the dataset described in [Chhatbar et al. 2020].

The dataset contains 18 assignments, each with a problem description, the test suite, and students’
authoring history. A student’s history consists of an ordered collection of program versions, where
each version can be an explicit submission to the testing server, or a periodic (passive) snapshot –
the dataset does not have a way to distinguish between these. For each assignment, we selected the
students that had an eventually correct program. For each such student, we followed the standard
practice [Rolim et al. 2017] of collecting the latest (closest to the correct version in time) version
that had a syntactic mistake as our repair target. This results in a total of 286 program pairs, each
consisting of a buggy and a ground-truth correct program version. We make available our filtered
evaluation dataset here: https://github.com/microsoft/prose-benchmarks/tree/main/PyDex.

We removed three assignments that required reading files that are not reported in the dataset or
that asked students to generate a PDF plot, which makes assessing correctness difficult without
extra manual inspection. We manually checked the students’ submissions and we found their errors
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Table 1. Statistics of 286 syntax errors reported in the datasets.

Error Type Appearance
Misspelling, missing, or misusing parentheses and brackets 68
Incorrect indentation 52
Misspelling, missing, or misusing comma, colon and semicolon 41
Misspelling, missing, or misusing Python keywords 11
Misspelling, missing, or misusing quotation marks 10
Misspelling, missing, or misusing assignment operator (=) 5
Errors on defining and calling functions 5
Using Python 2 syntax 3
Others 91
In total 286

were diverse. The repaired syntax errors in PyDex benchmarks include incorrect indentation, illegal
usage of an empty block, misspelling a keyword, undefined symbols, and unmatched delimiters
such as parentheses, among others. Table 1 shows a summary of these errors.
Baselines. Most repair systems focus on either syntactic or semantic repairs.3 To create a state-of-
the-art baseline that performs both, we combined BIFI, a state-of-the-art transformer-based Python
syntax repair tool, and Refactory, a state-of-the-art semantics repair tool designed for introductory
Python assignments.

To run this baseline, we gave BIFI the original student program with syntax errors and generated
50 candidate programs for each buggy program. For each candidate, we ran the syntax oracle and
checked for syntactic correctness. For each candidate that passed the syntax check, we called Refac-
tory along with the instructor’s reference solution.4 If Refactory can repair any of the candidates,
we say it has repaired the student’s program. If there are multiple candidate programs that passed
the test suite, we choose the one with the smallest token edit distance from the original.
We also consider two additional baselines. We use PyDex to produce syntax repairs and then

apply Refactory to solve any semantic repairs, as described previously. We refer to this baseline as
PyDex+Refactory.

Finally, we consider a baseline that uses a version of GenProg [Le Goues et al. 2012] for semantic
repairs. Because there is no official implementation of GenProg for Python programs, we took a
publicly available implementation [Zeller 2023] that adapts portions of the algorithm to better
match Python syntax. This approach evolves a student’s buggy submission and can also incorporate
statements from the instructor’s reference solution. Like Refactory, GenProg assumes the input
program does not contain syntax errors. So to run our comparison, we use PyDex to produce syntax
repairs and then apply GenProg. We use GenProg to generate up to 10 candidates with a 30-second
timeout for each repair attempt. We refer to this baseline as PyDex+GenProg.

5.1 RQ1: Overall Repair Performance
Table 2 shows that without few-shot learning PyDex can repair 86.71% of student programs. This
repair rate climbs to 96.5% if we incorporate few shots. In contrast, BIFI+Refactory, PyDex+Refactory,
and PyDex+GenProg repair 67.13%, 83.57%, and 49.30% of student programs, respectively.

3A notable exception in the education domain is sk_p[Pu et al. 2016], however, this tool is not publicly available and the
repair rate (29%) described in the paper is low compared to our baselines.
4The original Refactory paper shows that there is little-to-no performance difference between providing one and multiple
correct reference programs.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 133. Publication date: April 2024.



PyDex: Repairing Bugs in Introductory Python Assignments using LLMs 133:15

Table 2. PyDex (without few shots) repairs a larger fraction of programs (86.71%) compared to our baselines
(67.13%, 83.57%, 49.3%). On average, PyDex repairs are closer in terms of token edit distance (TED) to the
original student program compared to two of the three baselines. Adding few-shots based on other peers’
programs raises PyDex’s repair rate to 96.50% while keeping a comparable average token edit distance (29.68).
To save space in the table, “ID” represents the problem ID in the dataset, “# Sub” means the number of
submissions of this problem, and “RR” is short for repair rate.

Method PyDex (without few-shot) PyDex (with few-shot) BIFI + Refactory PyDex(syntax) + Refactory PyDex(syntax) + GenProg
ID # Sub RR (%) Mean TED (SD) RR (%) Mean TED (SD) RR (%) Mean TED (SD) RR (%) Mean TED (SD) RR (%) Mean TED (SD)
2865 11 100.00 6.45 (4.74) 100.00 6.45 (4.74) 100.00 16.45 (7.00) 100.00 20.55 (6.08) 90.91 16.10 (6.08)
2868 28 85.71 8.79 (8.94) 100.00 8.64 (8.49) 82.14 36.35 (19.26) 96.43 35.15 (19.24) 96.43 26.00 (9.06)
2869 23 95.65 16.68 (18.47) 100.00 10.30 (10.99) 69.57 47.75 (20.27) 100.00 42.35 (19.77) 30.43 20.29 (12.85)
2870 27 74.07 10.00 (13.33) 100.00 15.00 (19.35) 85.19 39.48 (31.38) 92.59 35.72 (31.78) 33.33 20.22 (21.35)
2872 18 100.00 8.33 (15.15) 100.00 7.39 (13.01) 72.22 105.08 (34.58) 100.00 103.06 (38.65) 88.89 15.94 (6.56)
2873 32 78.13 12.00 (16.18) 90.63 12.93 (15.47) 84.38 75.00 (19.75) 100.00 71.41 (20.37) 25.00 18.63 (5.48)
2874 16 100.00 9.56 (12.50) 100.00 8.50 (11.76) 87.50 35.79 (18.63) 100.00 38.94 (31.43) 75.00 15.83 (5.48)
2875 23 86.96 14.75 (19.97) 100.00 11.52 (12.52) 78.26 63.22 (28.97) 100.00 58.65 (28.55) 47.83 17.09 (7.94)
2877 21 100.00 9.71 (16.82) 100.00 9.14 (16.79) 80.95 67.47 (27.87) 100.00 57.95 (32.19) 85.71 19.44 (11.49)
2878 25 100.00 37.00 (60.16) 100.00 36.32 (59.53) 68.00 138.18 (44.17) 88.00 167.50 (66.11) 52.00 21.46 (15.49)
2879 21 76.19 131.19 (51.62) 85.71 132.78 (52.61) 52.38 183.45 (40.90) 71.43 195.33 (55.24) 4.76 229.00 (N/A)
2882 23 60.87 90.64 (71.76) 91.30 106.57 (77.57) 0.00 N/A 0.0 N/A 17.39 42.00 (18.30)
2883 5 100.00 17.40 (14.67) 100.00 17.40 (14.67) 40.00 141.00 (8.49) 100.00 103.60 (39.37) 60.00 46.00 (19.47)
2920 10 80.00 84.38 (67.62) 80.00 53.50 (66.05) 0.00 N/A 10.00 69.00 (N/A) 20.00 42.00 (5.66)
2921 3 100.00 28.00 (3.61) 100.00 28.00 (3.61) 0.00 N/A 0.0 N/A 0.0 N/A

Overall 86.71 28.59 96.50 29.68 67.13 70.39 83.57 73.53 49.30 22.82

The mean token edit distance between the buggy program and our repaired program is 28.59 (no
few-shot) and 29.68 (with few shots) compared to 70.39 for BIFI+Refactory, 73.53 for PyDex+Re-
factory, and 22.82 for PyDex+GenProg.
We carry out a statistical analysis to compare performance across these systems. We exclude

PyDex without few-shots as this is effectively an ablation. We compare the repair rate and mean
token edit distance across assignments and systems by using paired t-tests. We use paired tests
as performance is paired at the assignment level. We carry out the paired t-tests using pairwise
comparisons with a Bonferroni adjustment for repeated comparisons. For the repair rate, we
consider a 1-sided test with an alternative hypothesis of performance being greater for PyDex. For
the mean token edit distance (TED), we consider a 1-sided test with an alternative hypothesis of
PyDex’s TED being smaller. Because TED can be undefined if a system fails to repair any programs,
we exclude assignments where any baseline has a repair rate of zero (i.e. assignments 2882, 2920,
2921).

For repair rates, we find that the comparison between PyDex and BIFI+Refactory (and similarly
between PyDex+Refactory and BIFI+Refactory) is statistically significant (at 0.01), and so we reject
the null hypothesis. We find that the comparison between PyDex and PyDex+Refactory results in a
p-value of 0.057 (after Bonferroni adjustment), so we do not reject the null hypothesis in this case
(though if we reduce the number of pair-wise comparisons it is significant). Finally, the comparison
between PyDex and PyDex+GenProg is statistically significant at 0.01.
For mean TED, we find that the comparison between PyDex and BIFI+Refactory (as well as

between PyDex and PyDex+Refactory) is significant at p=0.01. We also find that the comparison
between PyDex and PyDex+GenProg is not statistically significant.
From this analysis, we conclude5 that PyDex outperforms the baseline BIFI+Refactory on both

repair rate (higher) and size of repair (smaller), PyDex+Refactory on the size of repair but not
necessarily on repair rate, and PyDex+GenProg on repair rate but not on the size of repair.

5We arrived at similar conclusions with two-sided tests.
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Table 3. The first stage in the repair process is to fix syntax errors. PyDex can produce a syntactically valid
candidate for all programs in our benchmark, compared to 80.07% for BIFI. On average, PyDex’s repairs are
also closer to the original program (edit distance of 5.46 versus 25.07).

Method PyDex BIFI
ID # Sub Mean TED (SD) Repair rate (%) Mean TED (SD)
2865 11 2.18 (1.25) 100.00 1.82 (0.75)
2868 28 2.75 (2.17) 82.14 1.83 (1.11)
2869 23 2.91 (2.41) 73.91 1.47 (0.80)
2870 27 2.33 (2.18) 85.19 2.04 (1.89)
2872 18 2.39 (1.2) 72.22 1.62 (0.87)
2873 32 2.84 (2.58) 84.38 2.56 (2.04)
2874 16 2.06 (1.84) 87.50 2.07 (2.02)
2875 23 2.78 (2.71) 78.26 1.78 (1.56)
2877 21 2.19 (1.29) 80.95 3.18 (7.47)
2878 25 4.84 (8.58) 0.00 40.2 (60.65)
2879 21 18.86 (21.24) 66.67 117.00 (58.15)
2882 23 17.39 (23.23) 86.96 127.65 (74.76)
2883 5 5.60 (9.74) 80.00 36.25 (37.98)
2920 10 10.30 (18.68) 50.00 51.75 (54.90)
2921 3 1.67 (0.58) 100.00 1.33 (0.58)

Overall 5.46 80.07 25.07

Repairing semantic errors typically depends on first resolving any syntactic errors. Indeed,
students often focus on resolving mistakes reported by the parser/compiler before they move on
to debugging test cases. PyDex’s architecture reflects this approach. As a result, we also want to
understand syntax repair performance by comparing just PyDex and BIFI.

Table 3 summarizes the syntax repair rates across assignments and approaches. Our results show
that PyDex repairs the syntax bugs in all of the 286 programs, with a 100% syntax repair rate. This
outperforms the state-of-the-art BIFI, which has a syntax repair rate of 80.07%. In addition, PyDex’s
syntax repairs have a substantially lower mean token edit distance (5.46 versus 25.07), meaning
our repairs on average introduce fewer changes to the original programs, which may facilitate
understanding of the fixes.

We also observed that in 17 out of 286 cases, BIFI fails to handle the input program, potentially
due to lexer issues. This highlights another advantage of using PyDex to repair programs because
PyDex does not have any constraints over the input as a result of its prompt-based learning strategy.
BIFI is very effective at repairing small syntax mistakes in assignments of lower difficulty. For

example, in assignment 2865, BIFI repairs all syntax errors and does so with a smaller average token
edit distance (1.82 versus 2.18) compared to PyDex. One interesting direction for future work is to
combine BIFI with PyDex, as the repairs can be complementary. In this case, PyDex could focus
on generating more complex repairs and BIFI could focus on small edits for simpler tasks such as
missing a quote in a string.

5.2 RQ2: Ablation Study
We now present the results of experiments to analyze different design choices in PyDex. PyDex uses
multimodal prompts, iterative querying, test-case-based few-shot selection, and structure-based
program chunking to repair student mistakes. The power of few-shot selection was already shown
in Table 2. We will now present the results of the other three design choices.
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Table 4. Chunking reduces the average token edit distance across all assignments. PG is short for performance
gain.

Method PyDex (no chunking) PyDex (with chunking)
ID Mean TED (SD) Mean TED (SD) PG (%)
2865 2.45 (1.21) 2.18 (1.25) 11.11
2868 2.82 (2.14) 2.75 (2.17) 2.53
2869 2.91 (2.41) 2.91 (2.41) 0.00
2870 2.33 (2.18) 2.33 (2.18) 0.00
2872 2.44 (1.2) 2.39 (1.2) 2.27
2873 3.09 (2.61) 2.84 (2.58) 8.08
2874 2.25 (2.08) 2.06 (1.84) 8.33
2875 3.52 (4.13) 2.78 (2.71) 20.99
2877 2.29 (1.27) 2.19 (1.29) 4.17
2878 11.08 (20.3) 4.84 (8.58) 56.32
2879 33.14 (24.91) 18.86 (21.24) 43.10
2882 42.57 (41.54) 17.39 (23.23) 59.14
2883 6.20 (11.08) 5.60 (9.74) 9.68
2920 15.20 (19.45) 10.30 (18.68) 32.24
2921 1.67 (0.58) 1.67 (0.58) 0.00

Overall 9.38 5.46 41.79

5.2.1 ProgramChunking. In the syntax stage, PyDex first extracts program chunks from the original
buggy program as detailed in Section 4. The intuition is that these chunks contain the syntax error
we want to fix, along with the surrounding context, while excluding code lines that are not relevant
to the fix. Our goal is to reduce the number of (spurious) edits produced by the LLMC by reducing
the code surface in the prompt.
To evaluate the impact of program chunking on the syntax repair stage, we removed it from

PyDex and compared syntax repair performance to the original approach. Table 4 shows the average
token edit distance produced in the syntax phase with and without program chunking. We found
that program chunking can reduce the average token edit distance up to 56.32% (problem assignment
2878). Overall, the average token edit distance is reduced from 9.38 to 5.46 (41.79%) by adding
program chunking.

5.2.2 IterativeQuerying. Students typically resolve syntax errors first and thenmove on to resolving
semantic mistakes. PyDex’s architecture follows this same intuition. To compare the effectiveness
of this iterative approach, we ran a variant of PyDex that addresses both syntax and semantic
bugs in a single round. Table 5 shows the results of this ablated variant and full PyDex (without
few-shots). We find that splitting concerns into two phases results in an increase in the overall
repair rate from 82.87% to 86.71%. Using two phases increases the average TED slightly (26.79 to
28.59). However, for the majority of the problems (10 out of 15), PyDex (with iterative) has a smaller
or equal mean TED than PyDex (no iterative). In the remaining 5 problems, we found PyDex with
iterative querying has a larger mean TED because it successfully generates repairs for challenging
buggy submissions where PyDex (no iterative) is unable to repair.

5.2.3 Multimodal Prompts. PyDex combines different types of input (code, natural language, test
cases) into its prompts. This richness of inputs is a particular advantage of the educational setting.
PyDex ensembles these various prompts by querying the LLMC and then relying on the (syntax or
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Table 5. PyDex performs iterative querying, splitting the repair procedure into a syntactic and a semantic
phase. We find that this iterative approach raises the overall repair rate (RR) from 82.87% to 86.71% (without
few-shots).

Method PyDex (no iterative) PyDex (with iterative)
ID RR (%) Mean TED (SD) RR (%) Mean TED (SD)
2865 100.00 6.45 (4.74) 100.00 6.45 (4.74)
2868 85.71 8.92 (8.88) 85.71 8.79 (8.94)
2869 86.96 13.35 (12.36) 95.65 16.68 (18.47)
2870 70.37 11.42 (13.87) 74.07 10.00 (13.33)
2872 100.00 8.50 (15.22) 100.00 8.33 (15.15)
2873 71.88 9.48 (11.63) 78.13 12.00 (16.18)
2874 100.00 9.75 (12.51) 100.00 9.56 (12.50)
2875 82.61 13.16 (18.69) 86.96 14.75 (19.97)
2877 100.00 9.71 (16.82) 100.00 9.71 (16.82)
2878 100.00 38.16 (62.24) 100.00 37.00 (60.16)
2879 71.43 130.07 (53.23) 76.19 131.19 (51.62)
2882 56.52 97.85 (72.64) 60.87 90.64 (71.76)
2883 100.00 17.40 (14.67) 100.00 17.40 (14.67)
2920 50.00 50.20 (48.9) 80.00 84.38 (67.62)
2921 100.00 28.00 (3.61) 100.00 28.00 (3.61)

Overall 82.87 26.79 86.71 28.59

semantics) oracle to filter out candidates. This approach is based on the idea that different prompts
may produce complementary candidates.
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Fig. 8. PyDex ensembles multiple prompts, by querying and then relying on the (syntax and semantic) oracles
to rule out invalid candidates. Ensembling complementary prompts outperforms any particular prompt.

Figure 8 shows that different prompt structures result in different overall performances in terms
of fix rate. If a single prompt structure needs to be chosen, Program + Diagnostics + Description +

Tests structure is most effective in this experiment. However, if we ensemble the candidates, these
are complementary.

6 DISCUSSION
We now discuss two important points. First, we provide details on why simply combining a state-
of-the-art syntax repair tool and a separate semantics repair tool is not as effective as using PyDex.
Second, we discuss important limitations.
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6.1 Why Not Combine a State-of-the-Art Syntactic Fixer and Semantics Fixer to Repair
Programs?

We investigated why BIFI+Refactory, which combines two state-of-the-art repair systems, produces
repairs that (on average) have a larger token edit distance compared to PyDex. We found that in
some cases, BIFI produces repairs by deleting a portion of the code snippet that contains the syntax
errors. Although this is an effective way to deal with syntax errors, it makes repairing semantic
errors harder by deleting parts that may capture crucial logic.
Below is one such example from our evaluation. The code snippet contains a syntax mistake

in the last line. The parser complains that the “Expression cannot contain an assignment =”. In
particular, the student has written an equal (highlighted below in red) when they should have used
a plus operator (which corresponds to the repair produced by PyDex).
1 marksSum={}

2 for i in total:

3 if int(i[0])not in marksSum:

4 marksSum[int(i[0])]= int(i[2])

5 else:

6 k=int(i[2])

7 marksSum[int(i[0])]+=k

8 for i in sorted(marksSum):

9 print(str(i)=":"+str(marksSum[i]))

However, BIFI produced a different fix by removing the second for loop (lines 8-9) completely.
This deletion introduced challenges for Refactory in the later semantic repair phase. Although
Refactory in the end successfully repaired this program, the repair it generated is syntactically
equivalent to the reference solution and is effectively completely rewritten with respect to the
original incorrect program.
Overall, our comparison between PyDex and BIFI+Refactory highlights the challenges in com-

bining state-of-the-art syntax and semantics tools to repair incorrect introductory programming
assignments. BIFI and Refactory each focus on their targets, syntactic bug repair and semantic
bug repair, respectively, and combining them may result in unexpected performance. Additionally,
combining BIFI and Refactory required non-trivial engineering efforts (approximately 3 weeks of
effort from one Python expert). This further motivates the need for a unified approach that can
handle both types of bugs for introductory Python programmers.

6.2 Limitations
PyDex validates candidate repairs by comparing execution results on the test suite with the reference
program given by instructors. Validating program correctness through tests is not as strong as
formal verification. To the best of our knowledge, the use of tests as a proxy for correctness is
standard in the educational domain [Gulwani et al. 2018; Singh et al. 2013].
We carried out our evaluation on one particular set of 286 student programs. The size of the

dataset is on par with literature on state-of-the-art automated program repair [Ahmed et al. 2022a;
Li et al. 2022b], but increasing the size of the evaluation dataset may provide additional insights
and present an opportunity for future work.
PyDex relies on an LLM so it inherits its limitations. PyDex (like the LLM it uses) does not have

a soundness or completeness guarantee. Also, we acknowledge randomness is another limitation
in PyDex and we sampled and picked the top repair candidates to mitigate the effect caused by
randomness. These limitations might be addressed by requesting further information from the
students, and it remains future work.
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Language requirement.We scoped PyDex to introductory Python assignments as that is the only
domain where we have a suitable dataset and carry out an evaluation. Other education tools [Bhatia
et al. 2018; Wang et al. 2018b] share this same limitation of focusing on one programming language.
However, the principles behind the design of PyDex apply to programs written in other imperative
languages, as conceptually none of our prompt engineeringmethods are language-specific. Applying
PyDex to education assignments in these other languages would require reimplementation of
the chunking procedure, test-case execution harness, and swapping the syntax oracle for the
corresponding domain. For example, if we were to apply PyDex to Java programs, the chunker can
rely on control-flow keywords (if, for, while), but indentation may no longer be meaningful; the
execution harness could be replaced with JUnit, and the syntax oracle could be replaced with javac.
Data leakage. Data leakage is also a threat to validity in PyDex. PyDex is built on top of Codex,
and Codex is trained on public internet data. To have a fair comparison, we only use a non-public
dataset as our evaluation target to mitigate the data leakage problem (all our results are on this
dataset). Using a public dataset could otherwise inflate performance. This limitation is unfortunately
shared by all existing work that uses LLMs. Using a non-public dataset is our best effort, but we
agree that data leakage cannot be completely avoided at this stage. For example, "determine if a
string is a palindrome" is a question used in our evaluation, but we also found "determine if a string
is a palindrome" is also one of the questions in the HumanEval dataset (the human-written dataset
used to evaluate the original Codex model).
Moreover, for introductory programming assignments, PyDex provides unique value in that it

can craft and customize the solution to the student’s errors (i.e., smaller edit distance patches, as
shown in our evaluation). Students can always search for reference solutions as repairs, but we
observe that this is not a good option in practice because the differences between buggy program
and reference program can be large, as we show in Section 2.
Why can students benefit pedagogically from a tool that automatically repairs their buggy
programs? Automatically fixing students’ submissions is not the same as providing an explanation
for their mistakes. However, human feedback, in the form of a student-tailored corrected solution,
represents a substantial time investment [Keuning et al. 2016; Singh et al. 2013]. Absent such time
investment, students typically must rely on a reference solution. This is the starting motivation for
employing automated repair in this context. In this way, PyDex provides a preferable alternative to
comparing to a standard answer key. Furthermore, a repaired solution is often a starting point for
more meaningful feedback. For example, Tung et al [Phung et al. 2023a] produced a syntax repair
to then generate a natural language explanation of the error and needed changes.
Runtimes of the different tools. We use tools with substantially different environments. PyDex
relies on an API (so network time plays a role), BIFI requires GPU-based computing for inference,
and GenProg is done on a CPU. Therefore, we did not compare runtimes as they would be hard to
interpret. More importantly, from our analysis, the lower repair rate of the baselines is due to the
repair capability, not tool timeouts.

7 RELATEDWORK

Automated Program Repair. The programming languages and software engineering community
has a long history of developing tools for automatically repairing errors in buggy programs. Existing
approaches have applied a variety of technical ideas, including program analysis [Mechtaev et al.
2018, 2016; Shariffdeen et al. 2021;Wan et al. 2023; Zhang et al. 2021], search-based techniques [Wong
et al. 2021] like genetic programming [Kim et al. 2013; Le Goues et al. 2012; Qi et al. 2014b], machine
learning [Ahmed et al. 2022b; Bhatia et al. 2018; Long et al. 2017; Long and Rinard 2016; Santolucito
et al. 2022; Wang et al. 2018b; Zhang et al. 2020] and more recently LLM [Xia and Zhang 2023a,b].
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A particularly popular approach to APR consists of generating many program candidates, typically
derived by performing syntactic transformations of the original buggy program, and then validating
these candidates using a test suite as an oracle [Le Goues et al. 2012]. Similarly, PyDex uses a syntax
oracle (the Python parser) and semantic oracle (test cases) to validate candidate programs produced.
However, state-of-the-art APR tools are limited to repairing either syntax [Joshi et al. 2022] or
semantic errors [Fan et al. 2023], but not both. PyDex significantly differs from these existing tools
by automatically repairing both syntax and semantic errors in buggy programs.

In addition, PyDex employs a large language model (Codex) as the main program transformation
module and uses an ensemble of multi-modal prompts to improve its success rate. Therefore, PyDex
is able to generate complex repairs, which are difficult to address by existing traditional APR
techniques [Le Goues et al. 2012; Long and Rinard 2015; Mechtaev et al. 2018, 2016; Qi et al. 2014a;
Xuan et al. 2017], which often focus on specific error types, are limited to a small number of edits,
and repair specific statements (such as conditionals) exclusively. Moreover, PyDex targets students’
incorrect submissions, rather than professional developers’ production bugs or LLM-generated
bugs [Chen et al. 2023; Fan et al. 2023]. As a result, PyDex has two additional requirements: 1)
minimizing the size of the change made to allow students to better learn from the repaired program,
and 2) reducing the engineering efforts to run the APR tool.
AI for Programming Education. AI has been extensively applied to the domain of educa-
tion [Finnie-Ansley et al. 2022; Li et al. 2022a]. Past programming education research has explored
topics including feedback generation [Gulwani et al. 2018; Hu et al. 2021, 2019; Phung et al. 2023b;
Rolim et al. 2017; Singh et al. 2013; Song et al. 2021; Wang et al. 2018a; Zhang et al. 2023] and
program repair [Dinella et al. 2020; Lu et al. 2021; Wang et al. 2018b; Xin and Reiss 2017; Yasunaga
and Liang 2021; Yi et al. 2017]. PyDex is complementary to this work, showing that the task of
program repair in this domain can be successfully tackled using an LLMC.
LLMs for Code Intelligence. Large pre-trained language models, such as OpenAI’s Codex,
Salesforce CodeGen [Nijkamp et al. 2022], and BigScience’s BLOOM[Laurençon et al. [n. d.]],
have been shown to be effective for a range of code intelligence tasks. For example, Microsoft’s
Copilot[cop 2024] builds on Codex to produce more effective single-line and multi-line code
completion suggestions. Prior work has shown that such LLMs can also be used for repairing
programs outside of the educational context [Dinella et al. 2022; Lian et al. 2023; Rahmani et al.
2021; Verbruggen et al. 2021; Xiang et al. 2023; Zhang et al. 2022]. Using these models to perform
code generation from informal specifications, such as natural language, has also been a topic of
active research [Li et al. 2022a]. Similarly to this work, PyDex uses an LLM but is designed to focus
on student programming, and as such our design decisions (e.g., reducing token edit distance) may
not apply to other domains such as professional developers.

8 CONCLUSION
We introduced an approach to repair syntactic and semantic mistakes in introductory Python
assignments. At the core of our approach sits a large language model trained on code. We leverage
multi-modal prompts, iterative querying, test-case-based few-shot selection, and program chunking
to produce repairs. We implement our approach using Codex in a system called PyDex and evaluate
it on real student programs. Our results show that our unified system PyDex can effectively repair
real student programs, while producing smaller patches.
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