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Abstract— As a promising fashion for visual localization, scene
coordinate regression (SCR) has seen tremendous progress in
the past decade. Most recent methods usually adopt neural
networks to learn the mapping from image pixels to 3D scene
coordinates, which requires a vast amount of annotated training
data. We propose to leverage Neural Radiance Fields (NeRF) to
generate training samples for SCR. Despite NeRF’s efficiency in
rendering, many of the rendered data are polluted by artifacts
or only contain minimal information gain, which can hinder the
regression accuracy or bring unnecessary computational costs
with redundant data. These challenges are addressed in three
folds in this paper: (1) A NeRF is designed to separately predict
uncertainties for the rendered color and depth images, which
reveal data reliability at the pixel level. (2) SCR is formulated as
deep evidential learning with epistemic uncertainty, which is used
to evaluate information gain and scene coordinate quality. (3)
Based on the three arts of uncertainties, a novel view selection
policy is formed that significantly improves data efficiency.
Experiments on public datasets demonstrate that our method
could select the samples that bring the most information gain
and promote the performance with the highest efficiency.

I. INTRODUCTION

Visual localization, which addresses the problem of estimat-
ing the camera pose of a query image in a known environment,
is a key component in many robotics applications. One way
to tackle it is through correspondences between image pixels
and 3D map points, which can be obtained by Structure
from Motion (SfM) and matching the sparse landmarks to
image features. Another popular option is scene coordinate
regression (SCR) which directly predicts pixelwise scene
coordinates. Empowered by deep learning, recent methods of
this category have achieved state-of-the-art performances in
small or medium scale scenes [1]–[3]. Nevertheless, major
challenges remain: (1) obtaining 2D-3D ground truth with
sufficient diversity is still computationally and economically
expensive in practice, especially using a robot with limited
battery or storage; (2) learning an accurate and thorough
mapping can be inefficient as it requires training with large
amounts of samples for each independent scene.

Recently, Neural Radiance Fields (NeRF) [4] has emerged
as a powerful paradigm for scene representation. The learned
implicit function expresses a compact scene representation and
enables realistic view synthesis through differentiable volume
rendering. We therefore see a great potential in using NeRF
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Fig. 1: NeRF-enhanced SCR with uncertainty awareness. (a) We first train
U-NeRF and E-SCRNet to perform informative data augmentation based on
the uncertainties of rendered RGB-D images and predicted scene coordinates.
(b) The E-SCRNet is finetuned on the augmented dataset considering
pixelwise reliability. (c) Finally, the predicted 2D-3D correspondences with
uncertainty are fed into PnP to estimate the camera poses.

to enhance the data diversity for SCR through synthetic data
augmentation. One critical limitation, though, remains to be
addressed: the rendered images usually contain artifacts that
may mislead or confuse the network in training. Besides, when
rendered randomly, the data may contain large redundancy.

In this paper, we present a novel pipeline that leverages
NeRF to address the aforementioned challenges in learning
SCR, as shown in Fig. 1. We train an uncertainty-aware
NeRF (U-NeRF) to render RGB-D data with color and
depth uncertainties. The rendered data are used to train
the SCR network, where the uncertainties are first used to
filter out poorly rendered images and then weigh pixels in
the regression learning losses. Scene coordinate regression
is formulated as evidential deep learning to model the
uncertainty of the predicted 3D coordinates. We then present
an uncertainty-guided novel view selection policy that selects
samples with the most information gain and promotes the
network performance with the highest efficiency. As a result,
our method requires only a small portion of the training set
but delivers comparable or even better performances than its
counterpart trained on the full set. Our method is the first
attempt to separately model color and depth uncertainties
for NeRF and utilize them for learning SCR. Also for the
first time, we formulate SCR as evidential deep learning and
propose an uncertainty-guided policy to filter the rendered
data for model evidence. Our method is orthogonal to SCR
networks and can serve as a plug-and-play module.

II. RELATED WORKS

Visual localization methods can be roughly categorized into
three groups: Direct pose regression using Convolutional
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Neural Networks (CNN) [5]–[10]; Image retrieval with
reference images tagged with known poses [11]–[14]; Pose
estimation from 2D-3D correspondences which are usually ob-
tained by sparse feature matching [15]–[26]. Scene coordinate
regression adds another important branch to the third category.
It obtains the correspondences by regressing dense 3D scene
coordinates for the query image using random forests or neural
networks, then calculates the final camera pose via RANSAC-
PnP. Shotton et al. [20] propose to regress scene coordinates
using a Random Forest, followed by several variants [27]–
[31]. DSAC [32] and its follow-ups [21], [33] employ CNNs
to predict the coordinate map and propose a differentiable
approximation of RANSAC for end-to-end training. Li et
al. [1] partition the scene into regions and hierarchically
predict scene coordinates by adding several classification
layers into a regression network. Huang et al. [2] partition
the 3D surfaces into 3D patches and train a segmentation
network to obtain correspondences between image pixels and
patch centers. As a main bottleneck, these methods require
large amounts of posed images to train their models.

NeRF [4] was introduced as a powerful technique for synthe-
sizing novel views of complex scenes. Follow-up works try
to add depth supervision to enhance quality [34]–[36], reduce
data requirement [37]–[39], handle noisy or unknown camera
pose [40], [41], speed up optimization or rendering [42]–[46]
and extend to large-scale environments [47]–[49]. NeRF has
been widely adopted for applications like navigation [50],
manipulation [51], active 3D object reconstuction [52], data
augmentation for learning object descriptors [53]. Sharing our
spirit of adopting NeRF to synthesize novel views for visual
localization, Zhang et al. iteratively refine camera poses based
on feature matching between rendered and real images [54].
iNeRF [55] leverages NeRF’s differentiability and estimates
camera poses in an analysis-by-synthesis manner. Chen et al.
combine NeRF with pose regression by directly comparing
the query and the rendered image [9]. The work is extended
by adding feature matching with a random view synthesis
strategy [10]. LENS [56] deploys NeRF-W [57] to synthesize
views uniformly within the scene boundary to train a pose
regression network. In this work, we propose to use NeRF
to render data with high information gain for learning SCR.

Uncertainty estimation for neural networks is relevant to
assessing confidence, information gain and capturing out-
liers [58]–[60]. Bayesian neural networks [58], [61], [62] learn
the posterior distribution of network weights and estimate it
using variational inference, which can be approximated by
Dropout or Deep Ensembles [63]–[66]. However, they require
expensive sampling during inference. Recently, evidential
theory is incorporated into neural networks [67], [68], where
training data add support to a learned higher-order evidential
distribution. By learning the distribution hyperparameters,
uncertainty can be estimated by a single forward pass,
circumventing sampling during inference. For NeRF, NeRF-
W [57] integrates uncertainty to attenuate transient scene
elements. S-NeRF [69] encodes the posterior distribution
over all the possible radiance fields and estimates uncertainty

by sampling. CF-NeRF [70] follows a similar strategy and
learns the radiance field distributions by coupling Latent
Variable Modelling and Conditional Normalizing Flows.
ActiveNeRF [71] models scene point radiance as Gaussian
and uses uncertainty as a criterion for capturing new inputs.

III. METHOD

SCR methods rely on large amounts of annotated training
data that are hard to obtain in practice. To leverage synthetic
data, NeRF can be used to render samples for arbitrary
viewpoints using just a few posed images. However, the
images rendered may be of low quality or highly redundant,
which can lower the SCR network’s accuracy and efficiency.
This motivates us to assess the quality and information gain
of each view to make the best use of the synthetic data.

We first design U-NeRF and E-SCRNet. U-NeRF predicts
color and depth uncertainties, reflecting the image quality,
while E-SCRNet estimates the epistemic uncertainty of the
predicted scene coordinates. Given a small set of real posed
RGB-D images Sreal , we train U-NeRF and an initial version
of E-SCRNet. U-NeRF is used to generate a novel view
dataset Snew by synthesizing more views within the scene
boundary (Sec. III-A). We feed Snew to E-SCRNet to get the
epistemic uncertainties, which reflect the information gain
of each sample (Sec. III-B). We prune invalid views from
Snew based on U-NeRF’s uncertainties, then select views with
high information gain Shigh. The final augmented dataset,
Saug = Sreal ∪Shigh, is used to finetune E-SCRNet, increasing
localization performance with higher data efficiency (Sec. III-
C). Our overall pipeline is illustrated in Fig. 2.

A. View synthesis with uncertainty estimation

Preliminaries on NeRF. NeRF models the scene as a
continuous function using a multilayer perceptron (MLP). For
a 3D position x and a viewing direction d that are transformed
using positional encoding φ(·), the learned implicit function
outputs a volume density τ and a view-dependent RGB color
c. To obtain the color of a pixel, consider the ray r(t) = o+td
emanating from the camera center o ∈ R3 and traversing the
range [tn, t f ]. Volume rendering computes light radiance by
integrating the radiance along the ray. NeRF approximates
it using hierarchical stratified sampling [72] by partitioning
[tn, t f ] into N bins and sampling uniformly in each bin. The
expected color Ĉ(r) can be approximated by

Ĉ(r) =
N

∑
i=1

Ti (1− exp(−τiδi)) ci =
N

∑
i=1

wici, (1)

where Ti = exp(−∑
i−1
j=1 τ jδ j) and δi = ti+1−ti. Ĉ(r) therefore

is a weighted sum of the color samples ci.
We aim to use NeRF to synthesize novel views for training

the SCR network. However, the synthesized views may
contain noises, blur, and other artifacts caused by varied
imaging conditions of inputs. Training with such noisy
samples can mislead the network from clean distribution and
decrease its performance. To reason about the reliability of
the rendered data, we formulate our scene representation with
uncertainty estimation, named U-NeRF. One key observation



Fig. 2: Overview. We first train an uncertainty-aware NeRF model and the evidential scene coordinate regression network (E-SCRNet) with the available
data. We then render novel views with corresponding color and depth uncertainty maps. We apply an uncertainty-guided policy to select new views and
gather them with the available data to finetune the E-SCRNet.

is that the uncertainties of the rendered color and depth images
should be modeled separately, as they present quite different
distributions as shown in Fig. 4.
Color uncertainty. To estimate the color uncertainty, we
assume the radiance value of a scene point to be Gaussian
ci ∼N

(
c̄i, σ̄

2
ci

)
. The mean c̄i is the predicted radiance and the

variance σ̄2
ci

captures the color uncertainty of a certain scene
point. Employing Bayesian learning [57], [58], [71], we add
an additional branch to predict σ̄2

ci
after injecting viewing

directions: (τ, c̄, σ̃2
c ) = MLP(φ (x,d)). σ̃2

c is processed by
a Softplus to obtain valid variance σ̄2

c . When performing
volume rendering as in Eq.1, the rendered pixel color can be
viewed as a weighted sum of radiance colors ci. By assuming
that the distributions of different sampled scene points on
one ray are independent, and the distributions of sampled
rays are independent, we can derive that the rendered pixel
color follows a Gaussian distribution: Ĉ ∼ N

(
C̄, σ̄2

C
)
∼

N
(
∑

N
i=1 wic̄i,∑

N
i=1 w2

i σ̄2
ci

)
, where wi is defined in Eq.1, N is

the number of sampled points along the ray. C̄ and σ̄2
C are

the mean and variance of the rendered pixel color (see Fig. 3).
From a maximum likelihood perspective, we can optimize
the model by minimizing the negative log-likelihood (NLL)
loss for sampled rays r [57], [71]:

LNLL = ∑
r∈R

(
∥C(r)− Ĉ(r)∥2

2

σ̂2
C (r)

+ log σ̂
2
C (r)

)
︸ ︷︷ ︸

L (r)

. (2)

However, it leads to sub-optimal mean fits and premature
convergence as badly-fit regions receive increasingly less
weights. To address the ignorance of hard-to-fit regions, we
add a variance-weighting term σ

2ζ

C that acts as a factor
on the gradient [73] as Lcolor = ∑r∈R

⌊
σ̂

2ζ

C

⌋
L (r), where

⌊·⌋ denotes the stop gradient operation which prevents the
gradient from flowing through inside the parenthesis, making
the variance-weighting term an adaptive learning rate. The
parameter ζ interpolates between NLL (ζ = 0) and MSE
(ζ = 1) while providing well-behaved uncertainty estimates.
Note that NeRF-W [57] applies the volume rendering over
σC instead of σ2

C, which is not theoretically grounded. Our
approach is similar to ActiveNeRF [71], but we adopt a
ζ -NLL loss to cope with sub-optimal performance.

Fig. 3: U-NeRF. If the distribution of a scene point’s radiance is Gaussian,
the rendered pixel color is the weighted sum of Gaussians, thus still a
Gaussian. We also assume the ray termination distribution z to be Gaussian.
Depth uncertainty. Eq.1 can be slightly modified to ob-
tain the expected depth ẑ(r) of each ray and its variance
σ̂z(r)2: ẑ(r) = ∑

N
i=1 witi, σ̂z(r)2 = ∑

N
i=1 wi (ti − ẑ(r))2 . [36]

demonstrates that adding depth supervision improves the
reconstruction quality and leads to a change in the weight
distribution from multimodal to unimodal. We assume the ray
termination distribution to be Gaussian zi ∼ N

(
ẑi, σ̂z(r)2

)
and adopt a NLL on the output depth [34]:

Ldepth = ∑
r∈R

(
∥ẑ(r))− z(r))∥2

2
σ̂z(r)2 + log σ̂z(r)2

)
, (3)

where z(r) is the target depth. The variance σ̂z(r)2 captures
the uncertainty of the rendered depth (see Fig. 3).
Training U-NeRF. We optimize our scene representation
with the objective function

Loverall = Lcolor +λLdepth. (4)

To reduce the training cost, we adopt a single MLP and
optimize with depth-guided sampling [34].

B. Evidential scene coordinate regression

For evaluating the potential contribution of each synthetic
sample, we consider not only the rendering quality (reflected
by uncertainties from U-NeRF) but also how informative
the sample is for learning SCR. To this end, the epistemic
uncertainty [59], [60], [74], [75] can be adopted to reflect
the information gain the sample brings to the network.
Compared to aleatoric uncertainty which represents the
inherent randomness in data that cannot be explained away,
epistemic uncertainty captures the uncertainty over network
parameters and describes the confidence of the prediction [58].
Therefore, data samples with high epistemic uncertainty are
associated with increased information gain. We propose to



formulate scene coordinate regression from the perspective
of evidential deep learning [67], [68], which enables fast
sampling-free estimation of epistemic uncertainty. Since we
aim to develop a general pipeline that can be applied to any
SCR network, we take the simple regression-only baseline
(SCRNet) from [1] as an example in this paper.

We assume the observed scene coordinates qi are drawn
i.i.d. from an underlying Gaussian distribution with un-
known mean µq and variance σq

2. To estimate the pos-
terior distribution p

(
µq,σq

2 | q1, . . . ,qN
)
, we place priors

over the likelihood variables with a Gaussian prior on
µq ∼ N

(
γ,σq

2v−1
)

and an Inverse-Gamma prior on σq
2 ∼

Γ−1(α,β ). Assuming that the posterior distribution can be
factorized, we can approximate it with a Normal Inverse-
Gamma (NIG) distribution [68] Sampling an instance from
the NIG distribution yields a Gaussian distribution from which
scene coordinates q j are drawn. Hence, the NIG distribution
can be interpreted as the evidential distribution on top of the
unknown likelihood distribution from which observations are
drawn. By estimating the NIG hyperparameters (γ,v,α,β ), we
can compute the prediction E[µ] = γ and epistemic uncertainty
Var[µ] = β/(v(α − 1)). To train a network to output the
correct scene coordinates and the hyperparameters of the
corresponding NIG distribution, we modify the last layer of
SCRNet to predict (γ,v,α,β ), and maximize the model fit
while minimizing evidence on errors [68]:

Lcoord = ∑
q∈S

[
(α +1/2) log

(
(q− γ)2

ν +2β (1+ν)
)]

+ ∑
q∈S

[
(1/2) log

(
π

ν

)
−α log(2β (1+ν))

]
+ ∑

q∈S

[
log
(

Γ(α)

Γ(α +1/2)

)
+ |q− γ| · (2ν +α)

]
.

(5)

In this way, the E-SCRNet regresses the scene coordinates
for each pixel with corresponding uncertainty. We consider
the epistemic uncertainty as a proxy for information gain and
therefore a score in the following novel view selection policy.
In addition, the uncertainty also reflects the confidence of the
predicted 2D-3D correspondences. We can use it to filter out
unreliable correspondences in RANSAC-PnP.

C. Selection policy of novel views

With color and depth uncertainties from U-NeRF and
epistemic uncertainty from E-SCRNet prepared, we are ready
to select the most informative samples to boost the localization
performance without introducing much computational cost.
To generate the initial synthetic training data Snew, we use
U-NeRF to render RGB-D images with uncertainty estimation
from different viewpoints within the scene. Note that this view
synthesizing process can be very fast with highly efficient
NeRF rendering [44], [46], [76]. We then propose the
following two steps for data selection, i.e., rendering quality
based pruning and information gain based selection.
Pruning based on rendering quality. Given the rendered
color and depth uncertainties, we use the following criteria
to remove inferior candidates: (1) views with rendered depth
smaller than zmin are too close to the scene structure and are

considered invalid; (2) views with large depth uncertainty
carry incorrect geometric information of the scene; (3) views
with large color uncertainty contain noisy image texture
that would confuse the SCRNet. This first round of pruning
improves the overall quality of the rendered novel view set,
but Snew may still contain unnecessary redundancy. E.g., given
a new view, if the SCRNet has already learned it well from
Sreal and is very confident in its prediction, we know that
the new view will bring little information gain. Therefore,
another view selection step is performed.
Selection based on information gain. As mentioned in
Sec. III-B, the epistemic uncertainty can be used as a proxy
for information gain. We therefore propose a view selection
policy guided by the scene coordinate epistemic uncertainty.
For each of the rendered images in Snew, we apply the E-
SCRNet pre-trained from Sreal to get the epistemic uncertainty
map (together with the scene coordinate map). We aim to
use the mean epistemic uncertainty as a novel view score.
To remove the influence of rendered artifacts, the color and
depth uncertainties provided by U-NeRF are used to filter
out unreliable pixels. The images with the top-k scores are
considered to provide high information gain and are selected
to form the novel view set Shigh.
Training with pixelwise uncertainty. In addition to bad
sample pruning and view selection on image level, RGB-D
uncertainties also indicate noises and artifacts on the pixel
level. To alleviate the influences of these noisy rendered
signals, we further adopt the pixel-wise RGB-D uncertainties
into loss design. Firstly, pixels with uncertainties beyond the
predefined thresholds are ignored in the loss. Secondly, they
are used to weigh the remaining pixels. Since E-SCRNet is
trained with color-depth pairs, we consider both uncertainties
and formulate the weighting function as κ = e−2(σc

2+σz
2),

then replace (q− γ) with κ (q− γ) in Eq.5. This weighting
encourages E-SCRNet to memorize well-rendered regions
better while paying less attention to uncertain regions.

IV. EXPERIMENTS

In this section, we conduct experiments to evaluate our
pipeline. The results show that U-NeRF and E-SCRNet could
provide meaningful uncertainties and our pipeline is able to
improve camera pose estimation accuracy by a large margin.

A. Uncertainties of novel view synthesis

Fig. 4 qualitatively shows the error maps of the rendered
RGB and depth images, as well as our predicted color and
depth uncertainty maps. A comparison of the RGB and depth
error maps reveals distinct distributions. E.g., in the example
of the first row, large depth errors are mainly at structure
borders, whereas large RGB errors mostly appear in highly
textured areas. This observation verifies our idea of treating
color and depth uncertainties separately. Further, a comparison
of the error maps with the corresponding uncertainty maps ((c)
to (d), (e) to (f)) shows a notable correlation, demonstrating
the effectiveness of our estimated uncertainties. When using
the rendered RGB-D data for other tasks, the uncertainty maps
can provide valuable hints on the quality of the rendered data.



(a) GT color (b) Rendered color (c) Color error (d) Color uncertainty (e) Depth error (f) Depth uncertainty

Fig. 4: Qualitative results of U-NeRF uncertainty estimation.

TABLE I: Visual localization results on Replica. We report median and mean translation and rotation errors (cm,◦). We also report the sum of the L1
distance between predicted scene coordinates and ground truth in m. The best results under the few views training are labeled in bold.

SCRNet [1] SCRNet-ID [77] SRC [78] Ours
Median↓ Mean↓ Dist. Median↓ Mean↓ Dist.↓ Median↓ Mean↓ Median↓ Mean↓ Dist.↓

room 0 2.05, 0.33 2.38, 0.36 0.27 2.33, 0.28 2.55, 0.32 0.24 2.78, 0.54 3.11, 0.64 1.53, 0.24 1.98, 0.27 0.22
room 1 1.84, 0.34 2.21, 0.42 0.21 1.83, 0.35 2.22, 0.42 0.20 1.92, 0.35 3.40, 0.74 1.96, 0.31 2.19, 0.38 0.17
room 2 1.31, 0.26 2.69, 0.65 0.37 1.78, 0.29 3.15, 0.69 0.39 2.97, 0.63 13.0, 3.44 1.34, 0.22 2.57, 0.55 0.30
office 0 1.69, 0.34 2.01, 0.45 0.17 1.79, 0.37 2.24, 0.51 0.19 1.45, 0.30 1.92, 0.43 1.61, 0.35 1.97, 0.44 0.15
office 1 2.10, 0.52 2.23, 0.63 0.34 1.65, 0.42 1.99, 0.55 0.26 2.07, 0.53 2.22, 0.59 1.54, 0.44 1.74, 0.53 0.22
office 2 2.21, 0.41 2.54, 0.49 0.29 2.07, 0.37 2.28, 0.41 0.27 2.53, 0.51 3.20, 0.64 1.69, 0.33 1.93, 0.37 0.25
office 3 2.13, 0.37 4.91, 0.94 0.44 1.79, 0.28 5.72, 1.14 0.40 3.44, 0.63 21.5, 7.95 2.40, 0.38 4.25, 0.86 0.36
office 4 2.25, 0.43 3.29, 1.03 0.40 2.42, 0.35 3.57, 0.95 0.38 4.84, 0.90 24.3, 6.18 1.69. 0.32 2.50, 0.86 0.35

B. Camera pose estimation
Datasets. We evaluate our method on Replica [79], 12-
Scenes [31], and 7-Scenes [20] datasets. Replica contains
high-fidelity indoor scenes and is widely used by recent works
of NeRFs and localization [80]–[83]. We use the sequences
recorded in [80], choosing the first sequence of each scene for
training and the second for testing. 12-Scenes and 7-Scenes
are both real-world indoor RGB-D datasets while the former
has significantly larger environments.
Evaluation. Instead of using thousands of training images,
we conduct the few views training experiments. We first
sample a small fraction of the original data to build Sreal .
We create few-view datasets with a simple strategy: select
one sequence from the training sequences of each scene and
uniformly sample from it. For Replica, we uniformly sample
1/5 frames for the selected sequence. For 12-Scenes, given
that the sequences have varying numbers of frames, we adhere
to uniform sampling but aim to achieve comparable sizes
(∼200, which is about 5%∼20% frames for each scene) for
all scenes as for other datasets. For 7-Scenes, we choose one
training sequence and uniformly sample 1/4 of its frames. The
numbers of selected novel views Shigh for Replica, 12-Scenes,
and 7-Scenes are 150, 120, and 100, respectively.
Baselines. We compare our method with SCRNet [1],
SCRNet-ID [77], and SRC [78]. SCRNet is the regression-
only baseline proposed by [1], based on which we built
SCRNet-ID and E-SCRNet. SCRNet-ID utilizes the In-
Distribution novel view selection policy proposed by [77] to
obtain new synthetic views. SRC [78] is a recently proposed
classification-based method for few-views scene-specific local-
ization. We skip the experiments on 12-Scenes for SRC [78]
since they leveraged the dataset to pre-train the classification
network with Reptile [84] for model initialization.
Localization results. As shown in Table I and Table II, across
all three datasets, our method achieves the best performance

TABLE II: Visual localization results on 7-Scenes and 12-Scenes. We report
median translation and rotation errors (cm,◦), and accuracy as the percentages
of error <5cm, 5◦. The best results are labeled in bold.

SCRNet [1] SCRNet-ID [77] SRC [78] Ours
Acc.↑ Med.↓ Acc.↑ Med.↓ Acc.↑ Med.↓ Acc.↑ Med.↓

7S

chess 78.1 3.0, 1.1 76.1 3.1, 1.1 77.5 3.6, 1.1 80.2 2.7, 0.9
fire 75.9 3.4, 1.4 74.1 3.3, 1.3 96.0 1.7, 0.6 85.3 2.6, 1.1

heads 97.8 1.4, 0.9 96.0 1.4, 1.1 99.0 1.8, 1.2 97.0 1.3, 1.0
office 59.0 4.3, 1.2 45.2 5.5, 1.5 42.3 5.6, 1.4 63.8 3.8, 1.1

pumpkin 44.9 5.4, 1.3 43.0 5.6, 1.3 42.0 5.8, 1.5 47.3 5.2, 1.3
redkitchen 31.6 7.1, 2.0 33.5 7.0, 2.1 25.6 6.9, 1.8 34.8 6.8, 1.9

stairs 43.3 5.5, 1.5 50.9 4.9, 1.3 48.2 5.1, 1.4 61.3 4.5, 1.1

12S

kitchen-1 90.4 2.3, 1.3 87.1 2.6, 1.4 - - 100 0.9, 0.5
living-1 92.6 2.4, 0.8 91.4 2.0, 0.8 - - 97.6 2.1, 0.6

Bed 73.5 3.3, 1.5 82.3 2.0, 0.8 - - 97.5 1.6, 0.7
kitchen-2 88.5 2.1, 1.0 90.5 1.8, 0.9 - - 97.1 1.2, 0.5
living-2 61.8 4.2, 1.8 79.9 3.0, 1.2 - - 95.1 2.0, 0.8

luke 58.6 4.4, 1.4 73.3 3.7, 1.3 - - 90.0 2.6, 1.0
gates362 88.6 2.6, 0.8 87.6 2.1, 1.0 - - 91.0 2.0, 0.8
gates381 76.3 3.4, 1.4 82.8 2.9, 1.2 - - 81.4 2.7, 1.2
lounge 86.9 2.7, 0.9 78.9 3.4, 1.1 - - 97.0 1.8, 0.6
manolis 84.0 1.8, 1.0 85.3 2.6, 1.2 - - 94.1 1.6, 0.7

5a 65.9 3.6, 1.5 72.8 3.3, 1.2 - - 80.3 2.5, 0.9
5b 64.7 3.4, 1.2 66.7 3.8, 1.3 - - 81.5 2.6, 0.8

compared with all baselines. Our method significantly out-
performs SCRNet, showing that incorporating synthesized
novel views could effectively enhance performance by a
large margin. A comparison between ours and SCRNet-ID
indicates that our novel view selection policy can select more
informative samples. Additionally, compared with SRC, it
can be seen that our method makes better use of the available
data and boosts the localization performance more.

C. Analysis

Novel views selection. We compare different selection
policies of novel views on the Replica dataset. For each scene,
we sort all the rendered views according to the epistemic
uncertainty, then select the top 150 novel views with the
highest score (High score policy), 150 novel views with the
lowest score (Low score policy), and another 150 random
novel views (Random policy) for comparison. We use these
two novel view sets to finetune the same network, respectively.



TABLE III: Views selection policy. We report median and mean pose errors in
(cm,◦), and the sum of the L1 distance between predicted scene coordinates
and ground truth in m.

Scene Policy Median↓ Mean↓ Dist.↓
room 0 Low score 2.07, 0.315 2.15, 0.322 0.232

Random 1.84, 0.290 2.24, 0.318 0.227
High score 1.53, 0.243 1.98, 0.270 0.219

room 1 Low score 2.17, 0.346 2.47, 0.418 0.191
Random 2.32, 0.366 2.58, 0.417 0.186

High score 1.96, 0.312 2.19, 0.389 0.173
room 2 Low score 1.64, 0.291 3.04, 0.671 0.387

Random 1.86, 0.253 2.97, 0.635 0.314
High score 1.34, 0.220 2.57, 0.557 0.302

From Table III, we can see that the High score policy
significantly enhances the localization performance while
the Low score policy does not. It shows that the novel views
with high scores provide high information gain to the model.
Removing noisy regions with NeRF uncertainty. As shown
in Fig. 5, the point cloud (left) generated from the raw RGB-
D rendered by NeRF is noisy and might mislead the SCR
model. With uncertainty estimation from U-NeRF, we can
identify the low-quality regions. By applying the pruning and
weighting scheme mentioned in Sec. III-C, we can eliminate
unsatisfying parts from the raw output, resulting in a cleaner
point cloud (compare middle vs. right). From Table IV, we
can also observe that removing noisy parts improves the
performance of E-SCRNet, demonstrating the importance of
applying pruning and weighting using U-NeRF uncertainty.
TABLE IV: Effectiveness of evidential deep learning (EDL), adding novel
views (NV), and U-NeRF uncertainty pruning. On scene luke of 12-Scenes.

Method Acc.↑ Median↓ Mean↓
SCRNet 58 4.39, 1.438 5.46, 1.930↰

+ EDL 81 3.31, 1.289 3.73, 1.473↰

+ EDL + NV 85 3.11, 1.115 3.36, 1.310↰

+ EDL + NV + pruning 90 2.61, 1.020 2.89, 1.187

(a) Raw (b) Pruned (c) Ground truth

Fig. 5: Removing noisy regions using NeRF uncertainty.

Scene coordinate uncertainty. To evaluate the effectiveness
of the predicted scene coordinate uncertainty, we train the
SCRNet and E-SCRNet on the whole real training set with
the same number of epochs, in chess of 7-Scenes. Then we
compare their localization performance. In addition, for E-
SCRNet, we sort the predicted 2D-3D correspondences with
the estimated epistemic uncertainty. We then select the top
60% correspondences with the lowest uncertainty (denoted
as confident) and the other correspondences (denoted as
uncertain), and perform RANSAC-PnP to estimate poses,
respectively. As shown in Table V, by comparing the 1st and
the 2nd row, E-SCRNet yields more accurate pose estimations
than SCRNet when using all predicted correspondences. (It
is also shown by comparing the 1st and the 2nd row of
Table IV.) E-SCRNet mitigates the influence of noisy samples
and can better memorize the correct scene geometry during
training, highlighting the importance of uncertainty estimation.
Furthermore, the comparison between the 3rd and the 4th row

TABLE V: Visual localization results on scene chess of 7-Scenes. We report
median translation and rotation errors (cm,◦), accuracy as the percentages of
error <5cm, 5◦, and the run time of RANSAC-PnP during pose estimation
for one query image in milliseconds. The best results are labeled in bold.

Acc.↑ Med.↓ Run time↓
SCRNet [1], all 95.4 2.4, 0.73 30
E-SCRNet, all 97.4 2.0, 0.71 30

E-SCRNet, uncertain 93.6 2.4, 0.84 11
E-SCRNet, confident 97.4 2.0, 0.71 11

of Table V demonstrates that using correspondences with high
confidence (low uncertainty) for camera pose optimization
leads to more precise estimates. The correspondences with
high uncertainty could noticeably downgrade the localization
accuracy and increase pose errors, indicating the need to
filter them out. It shows that the predicted uncertainty is
meaningful. Lastly, if we compare the 2nd and the 4th row
of Table V, we can see that by using only the top 60% of
confident correspondences we achieve the same localization
performance as using all correspondences. More importantly,
by using fewer correspondences we also largely speed up
the running time for RANSAC, which improves the overall
inference efficiency and benefits robotic applications.
Comparing with all views results. We mainly focus on
data efficiency so the few-view setting used was particularly
challenging. As shown in Table VI, with 50% data our
approach outperforms SCRNet trained on the full set and
achieves even better performance when using all training
data, indicating that our method requires only a small portion
of training data but delivers comparable or even better
performances than its counterpart trained on the full set.
TABLE VI: Comparing with all views results. (Acc. / Med. pose errors).

12Scenes SCRNet [1] (All) Ours (15%) Ours (50%) Ours (All)
luke 93.8 / 2.0, 0.9 90.0 / 2.6, 1.0 94.7 / 1.9, 0.7 95.8 / 1.4, 0.6
5b 93.3 / 1.9, 0.6 81.5 / 2.6, 0.8 95.8 / 1.7, 0.5 99.8 / 1.7, 0.5

Training time. To give an example, for manolis, training
SCRNet with full set takes ∼2 days. For our pipeline, training
U-NeRF and rendering images takes ∼6h, training E-SCRNet
∼5h, finetuning it ∼5h, together ∼16h. Such improvement
was consistently observed on all used datasets. Moreover,
recent advances in NeRF, which achieve speedy optimization
and rendering, could further reduce the training time.
Applying to other SCR systems. We also apply our approach
with DSAC* [21], improving its accuracy from 82.5% to
92.8%, and decreasing median translation and rotation errors
from (3.3cm, 1.3◦) to (2.0cm, 0.7◦) on living-2 under the few
views training setting, showing that our method can be applied
to other SCR systems as a plug-in module, and enhance visual
localization performances in a resource-efficient manner.

V. CONCLUSION

We present a novel pipeline that leverages NeRF to generate
RGB-D pairs for training SCR networks. By modeling the
uncertainty in NeRF, we are able to filter out noisy regions
and artifacts in the rendered data. By formulating SCR
from the evidential deep learning perspective, we model the
uncertainty over the predicted scene coordinates. We proposed
an uncertainty-guided novel view selection policy that could
select the samples that bring the most information gain and
promote localization performance with the highest efficiency.
Our method could be beneficial to many robotic applications.
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