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Abstract

We introduce a novel framework for multiway point
cloud mosaicking (named Wednesday), designed to co-align
sets of partially overlapping point clouds – typically ob-
tained from 3D scanners or moving RGB-D cameras – into
a unified coordinate system. At the core of our approach
is ODIN, a learned pairwise registration algorithm that
iteratively identifies overlaps and refines attention scores,
employing a diffusion-based process for denoising pair-
wise correlation matrices to enhance matching accuracy.
Further steps include constructing a pose graph from all
point clouds, performing rotation averaging, a novel robust
algorithm for re-estimating translations optimally in terms
of consensus maximization and translation optimization.
Finally, the point cloud rotations and positions are opti-
mized jointly by a diffusion-based approach. Tested on four
diverse, large-scale datasets, our method achieves state-of-
the-art pairwise and multiway registration results by a large
margin on all benchmarks. Our code and models are avail-
able at https://github.com/jinsz/Multiway-Point-Cloud-
Mosaicking-with-Diffusion-and-Global-Optimization.

1. Introduction

Registering multiple partially overlapping 3D point cloud
fragments into a unified coordinate system is crucial to com-
prehensively representing an environment. This procedure
has a wide range of applications in computer vision and
robotics, such as in 3D scene understanding [41, 63], aug-
mented reality [59, 62], and autonomous driving [48, 52,
74]. In particular, LiDAR or RGB-D-based mapping is of-
ten employed to build large-scale maps in self-driving and
mobile robotics due to their direct and accurate 3D point
cloud sensing capability. There are typically two steps in
building such maps: pairwise and multiway registration.

The pairwise registration of partially overlapping point
clouds is a thoroughly investigated problem, with several
methods proposed over time. Conventional approaches to
the pairwise problem are based on imposing geometric con-
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Figure 1. The proposed multiway registration method, Wednes-
day, starts with pairwise registration of an unordered set of
partially overlapping point clouds using the proposed matcher
(ODIN). The process then optimizes the constructed pose graph,
which includes global point cloud poses (vertices) and relative
transforms (edges), through a sequence of steps: (a) global rota-
tion averaging, (b) a novel optimal robust translation re-estimation
method conceptualized as finding maximal sphere overlaps, (c)
position averaging, and (d) diffusion-based pose graph optimiza-
tion. The output is the point clouds in a unified coordinate system.

straints [56, 66, 83] on hand-engineered feature descrip-
tors [30, 43, 58, 68] employing robust estimators [7, 16, 29].
In recent years, research on local descriptors for pairwise
registration of 3D point clouds has shifted towards deep
learning methodologies [23, 24, 32, 37, 44, 47, 55, 78, 81,
82, 84]. Such approaches have demonstrated impressive re-
sults by implicitly learning local and global scene charac-
teristics, which are then distilled into highly distinctive lo-
cal descriptors. Although these methods have proven to be
effective, directly applying them to the multiway problem
has conceptual drawbacks: (i) low overlap between adja-
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cent point clouds may result in incorrect matches, and (ii)
the reliance only on local evidence, which can be problem-
atic in scenes with scarce or repetitive 3D structures.

In contrast to pairwise registration, point cloud mosaick-
ing (i.e., the globally consistent multiway alignment of un-
organized point clouds) has received much less attention.
Traditional approaches [18, 20, 27, 60, 73, 75, 85] primarily
tackle this problem from the robotics perspective in scenar-
ios where the differences between adjacent point clouds are
minimal (e.g., they come from subsequent RGB-D frames),
and the recorded data distinctly reveals the trajectory of
the robot as it captures the scene. In such cases, pairwise
registration provides accurate initialization for the multi-
way problem, with the trajectory providing additional con-
straints [86] that can be incorporated into the optimization
process. Other methods [2–4, 9, 15, 34, 49, 69], focusing
on having unordered point cloud sets, frame the challenge
as an optimization procedure. However, in practice, it is still
sensitive to the failures in the pairwise registration.

Recent progress in the field has seen the introduction of
end-to-end pipelines [18, 33, 70, 79] that aim at learning
specific local and global characteristics of the scene. How-
ever, such methods prioritize ease of training over efficacy
during inference. To facilitate differentiability, the repre-
sentations (e.g., rotation manifold) and algorithms (e.g., it-
eratively reweighted least-squares) utilized are selected for
their compatibility with the end-to-end pipeline rather than
for their potential to yield optimal performance at inference.

This paper focuses on designing a pipeline for accurate
point cloud registration even in challenging environments
with spatial and temporal changes. We enhance state-of-
the-art pairwise registration algorithms based on two obser-
vations: (i) the predicted matching matrix often contains
noise, and its denoising leads to improved 3D-3D matches;
(ii) while finding individual 3D point matches is key to es-
timating the rigid transformation, the underlying objective
is to find the best point cloud overlap. This can be di-
rectly measured and integrated into the matching process.
To achieve accurate multiway registration, we rely on clas-
sical geometric optimization-based approaches known for
their accuracy and generalizability. The proposed pipeline
is the result of carefully selected and new optimization tech-
niques for the best accuracy, combining learning-based and
classical algorithms to benefit from data-driven approaches
while maintaining the efficiency and applicability of geo-
metric methods. The contributions are as follows:
• A novel pipeline (see Fig. 1) for multiway point cloud

registration consisting of modules for pairwise estima-
tion, global rotation averaging, translation re-estimation
and averaging, and diffusion-based final optimization.

• A novel pairwise point cloud registration method, ODIN,
incorporating point cloud overlap scores into attention
learning and diffusion-based correlation matrix denoising

for highly accurate pairwise matching.
• An efficient and globally optimal robust consensus (i.e.,

inlier number) maximization approach for re-estimating
relative translations given known global orientations.

• As a technical contribution, we adapt a recent diffusion-
based pose graph optimization [71] to point clouds.

The proposed advancements and other methods fused into a
single pipeline achieve state-of-the-art accuracy by a great
margin. It achieves 82% rotation error reduction on the
most challenging dataset [61]. It also reduces the average
position error by 27% across the tested datasets.

2. Related Work
Pairwise registration is traditionally a two-step process.
The first step is the coarse alignment stage, where initial
estimates of the relative transformations are obtained. The
second step is the refinement stage, where the global poses
are iteratively refined to minimize the 3D registration error,
assuming a rigid transformation. Coarse alignment often
uses handcrafted [30, 43, 58, 68] or learned [37, 55, 81, 82]
3D local feature descriptors to establish tentative pointwise
correspondences. They are used with a RANSAC-like ro-
bust estimator [29] or geometric hashing [12, 26, 36] to find
the pose parameters and the consistent matches. Another
approach uses 4-point congruent sets to establish correspon-
dences [1, 50, 65]. In the refinement stage, coarse transfor-
mation parameters are fine-tuned using a variant of the iter-
ative closest point (ICP) algorithm [10]. However, ICP-like
algorithms [19, 45, 76] are not robust against outliers. ICP
algorithms can be extended to use additional radiometric,
temporal, or odometry constraints [86].

Recent work [37, 42, 47, 72, 82] either directly regress
transformations or refine correspondences by considering
the information from both point clouds, e.g., with attention
layers. Our proposed pairwise method falls into this cate-
gory, building upon transformer-based alternatives by incor-
porating predicted point cloud overlap scores and diffusion-
based denoising of the estimated correlation matrices.
Multiview registration methods [2–4, 9, 15, 33, 34, 49,
69, 70, 79] reconstruct a complete scene from a collection
of partially overlapping point clouds. The first family of
methods employs a multiview ICP to optimize camera poses
and 3D correspondences [13, 28, 40, 51]. However, these
methods often struggle with the increased correspondence
estimation complexity. To address this, some approaches
focus solely on optimizing motion, using the point clouds
to evaluate errors [11, 66, 86]. However, such ICP-based
methods are prone to inaccuracies in the pairwise poses that
provide the starting point for the multi-view procedure.

Other modern methods take a different approach, using
global cycle consistency to optimize poses starting from an
initial set of pairwise maps. This so-called synchronization
method is known for its efficiency [2, 3, 9, 11, 14, 39, 49, 64,
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Figure 2. Two-view registration. Given two points clouds as input, ODIN (Section 3.1) first extracts features that are then processed
by geometric self-attention to learn point-specific attention features. Next, the process is separated into two parallel streams: In (a), the
features are processed by explicit one-way self and cross-attentions. This process incorporates overlap scores determined in the final stage.
In (b), the features directly go through cross-attention. The determined correlation matrix is the weighted average of the correlations from
the two streams. A diffusion-based denoising cleans the correlations. Finally, point matching and transformation estimation are performed.
The overlap scores implied by the estimated transform are sent back to the attention learning module as a mask and the process starts over.

66, 69, 86]. Global Structure-from-Motion [22] synchro-
nizes observed relative motions and decomposes them into
rotation, translation, and scale components. Our pipeline
follows a similar global approach, with geometric optimiza-
tion at its core, combined with recent advancements in deep
learning to leverage the best of both worlds.

Recent methods [4, 20, 38] employ an iteratively
reweighted least-squares (IRLS) scheme to adaptively
downweight noisy pairwise estimates. However, the iter-
ative refinement of IRLS can become trapped in local min-
ima and may fail to remove outlier edges. To tackle this
challenge, recent learning-based advances [33, 39, 70, 79]
adopt a data-driven strategy to learn robust reweighting
functions. While these approaches allow for end-to-end
training, they often make design choices prioritizing ease
of training over performance during inference. In contrast,
our paper takes a different approach. Instead of prioritizing
end-to-end trainability, which may not be directly relevant
in real-world scenarios, we aim to design a framework esti-
mating highly accurate multiway registration from a set of
partially overlapping point clouds. Our focus is on preci-
sion and reliability, guiding our design choices throughout
the development of the framework.

3. Pairwise and Multiway Registration

Problem Definition. Point cloud mosaicking from pairwise
registrations can be formalized as a rigid transform averag-
ing, recovering 3D orientations Ri ∈ SO(3) and positions
ti ∈ R3 from a set of estimated relative pairwise motions
(Rij , tij), where i, j ∈ [1, n] and n ∈ N is the number of
partially overlapping point clouds (i ̸= j). We can express
the information as pose graph G = (V, E), where each ver-

tex v ∈ V represents a global pose, and each edge (i, j) ∈ E
is the relative motion of point clouds Pi and Pj . The rela-
tive and global transforms are related by constraints:

Rij = RjR
T
i , tij = Ri(tj − ti), ∀(i, j) ∈ E . (1)

Relative transforms are obtained from pairwise registration
methods and are corrupted by noise and outliers. Thus, a so-
lution that satisfies all constraints in Eq. 1 cannot be found.
To circumvent this, transformation averaging seeks to re-
cover global transforms with minimum consistency error.
Pipeline Summary. The proposed pipeline (called
Wednesday) performing pairwise and then multiway point
cloud registration is depicted in Fig. 1. It begins by iterat-
ing through pairs of point clouds, where tentative 3D point
correspondences are established and relative poses are es-
timated, as proposed in Section 3.1. These pairs are uti-
lized to construct a pose graph. To further refine the es-
timated poses, the pipeline adopts a decoupled approach.
This involves first optimizing the global orientations as de-
scribed in Section 3.2, then re-estimating the relative trans-
lations based on the global orientations (Section 3.3), and
finally, optimizing the global positions as outlined in Sec-
tion 3.4. At last, diffusion-based optimization, detailed in
Section 3.5, is applied to further optimize the pose graph.

3.1. Overlap and Diffusion-based Registration

This section introduces the Overlap-aware, Diffusion-aided
paIrwise registratioN (ODIN) methoD, enhancing SOTA
frameworks like GeoTransformer [55] and PEAL [82] by
incorporating diffusion-based denoising and iteratively op-
timizing point cloud overlap within the attention learning.
Feature extraction. ODIN begins by extracting features
from individual points and superpoints (clusters of points),
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as in GeoTransformer [55]. Utilizing the KPConv-FPN
backbone [67], we downsample input point clouds to multi-
level features FP̂ ∈ R|P̂|×d and FQ̂ ∈ R|Q̂|×d. The sets
of coarsest resolution points, treated as superpoints, are de-
noted as P̂ and Q̂, along with their associated features. Ad-
ditionally, dense sets of correspondences, P̃ and Q̃, and
their features FP̃ ∈ R|P̃|×d and FQ̃ ∈ R|Q̃|×d are com-
puted at half the original resolution. Each point in P̃ is
assigned to its nearest superpoint. The feature matrix asso-
ciated with the points in GP̃

i is denoted as FP̃
i ⊆ FP̃ . Super-

points without assignments are removed. Patches {GQ̂
i } and

features {FQ̂
i } for point cloud Q̂ are computed similarly.

Geometric Self-Attention. Following [55], we employ
self-attention mechanisms within the superpoints P̂ and Q̂
to learn point-specific attention features. The self-attention
is formalized as follows: Given input feature matrix X ∈
R|P̂|×dt , we compute output feature matrix Z ∈ R|P̂|×dt .
Each element in Z is a cumulative sum of the weighted, pro-
jected input features as: Zi =

∑|P̂|
j=1 ai,j(xjW

V ), where
ai,j is the weight coefficient for the ith and jth super-
point, obtained via a row-wise softmax applied to the at-
tention scores ei,j . These scores are calculated as ei,j =
((xiW

Q)(xjW
K + ri,jW

R)T )/
√
dt, where ri,j ∈ Rdt

represents a vector embedding geometric structural infor-
mation, capturing pairwise distances and angular relation-
ships among points. Projection matrices WQ, WK , W V ,
and WR ∈ Rdt×dt correspond to queries, keys, values, and
geometric structure embeddings, respectively. The outcome
of this process is matrices XP̂ and XQ̂, representing the
learned attention features for superpoints in P̂ and Q̂.

We distinguish anchor and non-anchor superpoints, de-
termined by an attention mask based on the overlap scores
predicted later. As the overlap is unknown in the first it-
eration, we use an identity mask (updated later), making
all superpoints anchors. Matrices XP̂A , XQ̂A are features
for anchors, and XP̂N , XQ̂N are for non-anchors. At this
point, the attention learning splits into two separate streams.
The steps discussed next are contributions of this paper.
A) Explicit One-Way and Cross-Attention. This stream
is responsible for incorporating overlap information into at-
tention learning. It starts with an explicit one-way atten-
tion module [82] to learn the intra-frame correlations with
anchor superpoints, which is critical to encode inter-frame
geometric consistency. The module begins by differentiat-
ing anchor and non-anchor superpoints, working with their
respective feature matrices XP̂A and XP̂N . The attention
features for non-anchor superpoints, denoted as ZP̂N are
computed by leveraging the attention features of the anchor
superpoints as ZP̂N

m =
∑|P̂A|

n=1 αm,n

(
XP̂A

n W V
)

. Here,
αm,n indicates the attention score, obtained through a row-
wise softmax function, representing the feature correlation

between non-anchor XP̂N and anchor XP̂A superpoints.
The specific attention score em,n is given by:

em,n =

(
XP̂N

m W P
A

)(
XP̂A

n WK
)T

√
dt

. (2)

This is similarly applied to update attention features for
XQ̂N , while features XQ̂A and XP̂A remain unchanged.
B) Cross-Attention Stream. Complementing the previ-
ous calculations, the framework employs another stream di-
rectly utilizing the self-attention embeddings, determined in
feature extraction, to facilitate cross-attention learning [55].
Correlation Maps. Each stream outputs a correlation map
where the value in the ith row and jth column signifies the
correlation of the ith superpoint in the first point cloud and
the jth in the second. The final correlation map is obtained
as a weighted sum of correlations from both streams. It
is designed to evolve by being updated at the end of the
pipeline, capturing overlap information by leveraging the
predicted transformation from prior iterations. The initial
weight of one-way attention is set to zero. The upper stream
will gradually gain more attention during training. We also
apply an attention mask to the weighted correlation ma-
trix, in which high-confidence matches gain more attention.
This significantly accelerates the training process. Different
from [82], our method can be trained from scratch and does
not rely on the initial overlapping prediction.
Correlation Denoising by Diffusion. This step focuses on
improving the predicted correlations by reducing the effect
of noise. We employ diffusion models, a type of probabilis-
tic generative model that learns to transform a noisy sample
hK ∼ N (0, I) into a clean one h0. Each noisy hk is ex-
pressed as a linear mix of the source sample h0 and the noise
variable ϵ as hk :=

√
αkh0 +

√
1− αkϵ, ϵ ∼ N (0, 1).

Using sample h0 and the forward diffusion-generated noisy
samples {hk}Kk=1, diffusion model g is optimized to ap-
proximate the reverse process. Finally, the reverse step is
recurrently performed to generate a high-quality sample h0
from the noisy one hK using the trained model g.

We assume that the correlation matrix generated previ-
ously is a noisy observation of the actual, unknown corre-
lation. Thus, we use a noise reduction diffusion process,
enhancing the subsequent matching procedure. Drawing
inspiration from [5] and [25], we adopt a UNet architec-
ture and the overlap-aware circle loss [55]. The loss on su-
perpoint patch GP

i (i.e., a continuous representation of the
underlying local surface) is defined as follows:

LP
oc =

1

|A|
∑

GPi ∈A

log

1 +
∑

GQj ∈ϵp

eβ
p
i,jλ

j
i(d

j
i−∆p) −

∑
GQk ∈ϵn

eβ
n
i,k(∆n−dki )

 ,
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LIRSTNo.

(1)

RMPR Ours Ground Truth

(2)

Figure 3. Multiway point cloud registration results on two scenes from the challenging NSS dataset [61] with the recent LIRST [79] and
RMPR [70] and the proposed methods (ceilings are not shown). Also, we visualize the provided ground truth. We show results for LIRST
and RMPR as they are the best-performing alternatives in Tab. 2. Such results are common output of these methods on this dataset.

where dji = ∥ĥPi −ĥQj ∥2 is the distance in the feature space,
λji = (oji )

1/2 and oji represents the overlap ratio between
GP

i and GQ
j . The positive and negative weights are com-

puted for each sample individually as βi,j
p = γ(dji − ∆p)

and βi,k
n = γ(∆n − dki ). The loss LQ

oc on Q is calculated
similarly. The overall loss is Loc = (LP

oc + LQ
oc)/2. The

operational model is conditioned on the features of the su-
perpoints. These features undergo iterative updates during
each step of the denoising process. The overlap-aware circle
loss is employed as a strategic optimization mechanism to
refine and optimize these features. The foundational ground
truth correlation matrix is the normalized matrix of overlap-
ping ratios, where each constituent element represents the
overlapping proportion of respective superpoint patches.
Point Matching Module. With the correlation matrix
denoised, the next step establishes superpoint correspon-
dences and extracts 3D point correspondences through the
Point Matching Module. This step is similar to what is done
in [55].

For each identified superpoint match Ĉi = (P̂xi , Q̂yi),
we employ an optimal transport layer to ascertain dense
point correspondences between GP

xi and GQ
yi . The pro-

cess begins by constructing a cost matrix Ci as follows:
Ci = F P

xi(F
Q
yi )

T /
√
d, where ni = |GP

xi | and mi =

|GQ
yi |. Cost matrix Ci is augmented by appending a

new row and column filled with a learnable dustbin pa-
rameter α. We convert Ci into a soft assignment ma-
trix Zi with the Sinkhorn algorithm, which serves as the
confidence matrix for candidate matches. Point corre-
spondences are determined through mutual top-k selec-
tion, identifying matches as those ranking among the top

k entries in their respective rows and columns: Ci ={
(GP

xi(xj), G
Q
yi(yj))|(xj , yj) ∈ mutual topk (Z

x,y
i )

}
. The

correspondences from each superpoint match are combined
to construct dense correspondences as C =

⋃Nc
i=1 Ci. They

are then used to regress the rigid pose parameters.
Subsequently, the computed pose is employed to assess

the overlap of point clouds via a nearest neighbor search in
the Euclidean space as done in [82]. This overlap score is
considered a 3D overlap prior. In contrast to prior work,
we reintegrate this score into the attention learning mod-
ule, which restarts the learning process with updated atten-
tion masks. This iterative procedure is repeated I times,
progressively learning the overlap-aware attention scores,
thereby enabling accurate matching of dense 3D point pairs.

Given the estimated relative transforms, we construct
pose graph G = (V, E) with V representing the global poses
of individual point clouds and E denoting the relative trans-
forms between them, estimated previously. We will now
discuss the proposed multiway algorithm: Wednesday.

3.2. Global Rotation Averaging

The goal of rotation averaging is to deduce the global ori-
entations decoupled from the positions given pairwise rota-
tions. We employ the method of [17] to obtain global point
cloud orientations, finding it exceptionally efficient for our
problem. In brief, this method performs a two-step proce-
dure. First, it employs an L1 optimization to yield coarse
rotation estimates robust to outliers. Next, it utilizes an it-
eratively re-weighted least-squares approach to refine these
initial estimates and obtain accurate global rotations.

Selecting the somewhat older method of [17] might
seem unconventional when aiming for a pipeline that de-
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Method NSS [61] 3DMatch [84] 3DLoMatch [37] KITTI [37]
RR (%)↑ RRE (◦)↓ RTE (m)↓ RR (%)↑ RRE (◦)↓ RTE (m)↓ RR (%)↑ RRE (◦)↓ RTE (m)↓ RR (%)↑ RRE (◦)↓ RTE (cm)↓

FPFH [57] 11.70 45.32 2.23 0.851 – – – – – – – –
FCGF [21] 24.43 39.89 2.04 – – – 0.401 – – 96.0 0.30 9.5
D3Feat [6] 22.73 33.09 2.26 0.816 – – 0.372 – – 99.8 0.30 7.2
RegTR [80] – – – 0.919 5.31 0.170 0.646 23.05 0.644 – – –
Predator [37] 64.97 13.52 0.65 0.893 6.80 0.202 0.604 30.07 0.762 99.8 0.27 6.8
GeoTr. [55] 39.07 22.93 0.99 0.925 7.04 0.194 0.741 23.15 0.583 99.8 0.24 6.8
PEAL [82] 58.72 15.78 0.71 0.941 4.23 0.152 0.788 15.79 0.485 99.8 0.23 6.8
ODIN 69.73 11.96 0.54 0.958 3.15 0.108 0.812 12.61 0.402 99.8 0.14 3.6

Table 1. Pairwise point cloud registration on the NSS [61], 3DMatch [84], 3DLoMatch [37] and KITTI [31] datasets. The reported
metrics are the Registration Recall (RR), which measures the fraction of successfully registered pairs; the Relative Rotation Error (RRE);
and the Relative Translation Error (RTE). The best results are in bold.

livers state-of-the-art accuracy. However, this approach
proved to be the most applicable out-of-the-box solution
for our problem. We explored several recent learning-
based alternatives, including NeuRoRa [53], PoGO-Net
[46], MSP [77], and DMF-Net [64]. Although NeuRoRa
and MSP demonstrate commendable accuracy in their ex-
periments, we could not reproduce these results, even after
retraining the models. PoGO-Net lacks a public implemen-
tation. DMF-Net does not yield better results than [17] ac-
cording to their own experiments, and its optimization pro-
cess is particularly time-consuming, especially when com-
pared to [17] that runs only for a few seconds in practice.

3.3. Optimal Robust Translation Re-estimation

The next phase in our pipeline is the re-estimation of rela-
tive translations tij , using the estimated global point cloud
orientations {Ri}i∈[1,n]. This step is crucial as the initial
relative translations are computed alongside rotations, pos-
ing a more complex problem than the robust estimation of
Euclidean translations with known orientations. This phase
is key to achieving better translation initialization for the
subsequent position averaging stage.

Given rotations Ri and Rj , and point correspondence
(Xi,Xj) ∈ Xij in frames i and j, we have constraint
RjXj = RiXi+ tij , where tij ∈ R3 is the unknown rela-
tive translation. With known Ri and Rj , we derive equation

tij = RjXj −RiXi (3)

to calculate the updated translation from a single correspon-
dence. To address the outlier correspondences, methods
like RANSAC [29] or L1 optimization [35] could be ap-
plied. However, our problem allows for solving the maxi-
mum consensus problem – finding the model with the high-
est number of inliers – in a globally optimal fashion.

Assuming an inlier-outlier threshold ϵ ∈ R+, our objec-
tive is to find optimal translation

t∗ij = argmax
tij

∑
(Xi,Xj)∈Xij

q
|tij −RjXj +RiXi|2 < ϵ

y
,

where J·K is the Iverson bracket that equals 1 if the condition
inside holds and 0 otherwise. In our case, this translates to

finding the maximum overlap of 3D spheres.
For each translation estimate t̂ij coming from a 3D cor-

respondence via Eq. 3, the points that lead to translations
falling inside a sphere with radius ϵ centered on t̂ij are the
inliers. Therefore, finding the 3D subspace with the highest
sphere density yields the solution with the maximum inliers.
This is a similar process as proposed for 1D problems in [8].

Analytically solving the maximum sphere overlap prob-
lem is complex. Instead, we propose a fast “branch-and-
bound”-like numerical approach that achieves global opti-
mum. The process starts by iterating through all correspon-
dences (Xk

i ,X
k
j ) ∈ Xij , calculating the implied transla-

tions t̂kij . We then create a uniform 3D grid where each cell
(i.e., a 3D box) counts the number of intersecting spheres.
The cell, with a size arbitrarily set to ϵ for this stage, allows
efficient calculation of box-sphere intersections by inter-
secting the boundary planes of a cell with the spheres. The
intersections can fall into three categories: (i) The sphere
does not intersect any boundary planes, and the distance
functions indicate it is outside the box, (ii) the sphere inter-
sects one or more planes, or (iii) the sphere is entirely within
the box as indicated by the distance functions. We repeat-
edly zoom into the cells with the highest sphere density, re-
initializing a uniform grid on these selected cells. The pro-
cedure stops at the zoom level, where the selected cells fall
inside the affected spheres without intersecting their bound-
aries. As we may end up with multiple cell candidates, we
choose the one with the highest inlier number. Finally, the
translation is estimated by least squares fitting on all inliers.

It is important to note that with a sparse grid and proper
hashing functions, this procedure is O(|X |), scaling linearly
with the number of correspondences. In practice, only the
first step checks all correspondences, with subsequent steps
focusing on a significantly smaller set of candidates.

3.4. Translation Optimization

Given the estimated global orientations and refined rel-
ative translations, the next step is estimating the global
positions of the point clouds. To do so, we employ a
Levenberg-Marquardt numerical optimization implemented
in the Ceres library, minimizing pairwise constraints tij =
Ri(tj − ti). We use the truncated soft-L1 robust loss.
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Method NSS 3DMatch 3DLoMatch KITTI
RE (◦)↓ TE (m)↓ RE (◦)↓ TE (cm)↓ RE (◦)↓ TE (cm)↓ RE (◦)↓ TE (cm)↓

Predator 13.43 0.65 PEAL 4.72 15.8 16.03 50.2 9.46 11.85
+ Open3d [20] 12.76 0.64 + Open3d 4.72 15.8 14.23 45.1 6.21 7.72
+ DeepMapping2 [18] 11.54 0.64 + DeepM. 4.23 14.5 13.25 39.4 3.34 6.04
+ LMPR [33] 11.35 0.62 + LMPR 3.98 12.6 13.07 37.3 6.79 7.89
+ LIRTS [79] 11.42 0.61 + LIRTS 3.95 12.0 11.52 36.0 5.17 6.94
+ RMPR [70] 10.87 0.62 + RMPR 3.57 11.6 10.18 34.4 4.69 6.38
+ Wednesday 2.24 0.51 + Wednesday 2.58 9.4 7.21 29.1 2.52 5.92
ODIN + Wednesday 2.01 0.42 2.32 8.4 6.44 26.5 2.18 4.76

Table 2. Multiway point cloud registration on the NSS [61], 3DMatch [84], 3DLoMatch [37] and KITTI [31] datasets. The reported
metrics are the average rotation (RE) and translation errors (TE). For each dataset, we choose the best-performing pairwise estimator from
the baselines (see Table 1). We run Predator [37] on NSS and PEAL [82] on the other datasets. The best results are in bold.

3.5. Pose Graph Optimization with Diffusion

Given the global poses estimated in the previous sections,
the last step of the algorithm is a joint optimization of
positions and orientations. Inspired by [71], we design
a denoising network to model the conditional probability
p(R, t | K) of the samples (R, t) given the set of input
point clouds K. Probability p(R, t | K) is first estimated by
training a diffusion model Dθ on point clouds with ground
truth poses from a training set. At inference time, for a new
set of point clouds K, we sample p(R, t | K) to estimate
the corresponding global pose R, t.

The denoising process is conditioned on the input point
cloud set K, as pθ(Rt−1, tt−1 | Rt, tt,K) =

N
(
Rt−1, tt−1;

√
1− βtDθ(Rt, tt, t,K), (1− βt)K

)
.

Denoiser Dθ is implemented as a Transformer, which ac-
cepts a sequence of noisy poses Ri

t, t
i
t, diffusion time t,

and feature embeddings ψ(P i) ∈ RDψ of the input point
cloud Ki. The denoiser outputs the tuple of corresponding
denoised pose parameters µt−1 = (µi

t−1)
N
i=1. The feature

embeddings come from a pretrained KPConv.
At train time, Dθ is supervised by denoising loss Ldiff =

Et∼U [1,T ]
Rt,tt∼p(Rt,tt|R0,t0,K) ∥Dθ(Rt, tt, t, P )− (Rt.tt)∥2 .

The relative poses from the pairwise registration constrain
the whole pose graph. The error implied by an edge is
ϵ(Rij , tij) =

√
1
|C|

∑
(p,q)∈C⟩|

∥Rpi + t− qj∥22, where Cij
are the point correspondences in the point clouds. The
additional loss we designed to be minimized is L =∑

(i,j)∈E min(ϵ(Rij , tij), γ), where E is the pose graph
edges and γ is a threshold parameter.

The main differences compared to the original method in
[71] are the edge loss, measuring global pose consistency,
and the employed denoising network architecture.

4. Experiments
Datasets. To evaluate the proposed algorithms both
on pairwise and multiway registration tasks, we use the
3DMatch [84], 3DLoMatch [37], KITTI [31], and NSS [61]

datasets. The 3DMatch [84] dataset contains 62 indoor
scenes, with 46 used for training, 8 for validation, and
8 for testing. We use the training data preprocessed by
Huang et al. [37] and evaluate on both 3DMatch and 3DLo-
Match [37] protocols. The point cloud pairs in 3DMatch
have more than 30% overlap, whereas those in 3DLoMatch
have a low overlap of 10% - 30%. The KITTI odometry
dataset [31] contains 11 sequences of LiDAR-scanned out-
door driving scenarios. We follow [6, 21, 37, 54] and split it
into train/val/test sets as follows: sequences 0-5 for training,
6-7 for validation and 8-10 for testing. As in [6, 21, 37, 54],
we refine the provided ground truth poses using ICP [10]
and only use point cloud pairs that are captured within 10m
range of each other. For multiway KITTI, we followed [18]
and decreased the frame rate 20 times to avoid saturated
results. The NSS dataset represents 6 large-scale construc-
tion sites and their rescans over time. The data depicts the
interior layout construction from creating walls, to adding
pipes and air-ducts, and to machinery moving around. It
contains spatial and spatiotemporal pairs and has annota-
tions for both pairwise and multiway registration.

Metrics. For evaluating pairwise methods, we follow prior
work [37, 42, 54, 80]. We compute the Registration Re-
call (RR), which measures the fraction of successfully reg-
istered pairs; relative rotation (RRE); and relative transla-
tion errors (RTE). We calculate the average values over all
valid pairs and scenes. For multiway registration, we calcu-
late the average rotation (RE; in degrees) and position (TE)
errors given the ground truth pose parameters.

Pairwise Point Cloud Registration. The results of the
standard setting on the NSS dataset are in Table 1 (1st col.).
ODIN substantially improves compared with the state-of-
the-art methods. We improve upon the recent PEAL [82] by
a margin of 11% in terms of recall while reducing the trans.
error by ≈0.2m and the rot. one by ≈4◦. Interestingly, the
second best method on this dataset is Predator [37], which
also significantly lags behind the proposed ODIN.

The results on 3DMatch are in Table 1 (2nd). While all
methods are accurate, ODIN still manages to reduce the ro-
tation by 1◦ and translation errors by 0.05 meters compared
to the second best algorithm, PEAL. This improvement is
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also reflected in the recall, which is improved by 1.7%.
The results on 3DLoMatch are shown in Table 1 (3rd).

On this dataset, we achieve significant improvements com-
pared with other baselines. We improve upon the second
most accurate method (GeoTransformer) by reducing the
average rotation error by 10◦ and the translation error by
0.18 meters. This accuracy improvement pushes our recall
score up by 7.1% compared to that of GeoTransformer.

The pairwise registration results on the KITTI dataset
are in Table 1 (4th). While all methods perform very ac-
curately, mainly due to the small baselines between subse-
quent frames, the proposed ODIN is the best in all metrics.
Notably, it almost halves the rotation and position errors
of the second most accurate method (PEAL). This clearly
shows the advantages of the proposed two-stream architec-
ture with attention masking and diffusion-based denoising.
Multiway Point Cloud Registration. We compare
Wednesday to [20] implemented in Open3d, DeepMap-
ping2 [18], LMPR [33], LIRTS [79], and RMPR [70]. We
train all learning-based methods on the training set of each
dataset. To perform pairwise registration, we select the best-
performing baseline method on each scene. Thus, we run
Predator [37] on NSS and PEAL [82] on the other datasets.
Also, we show the results with the proposed ODIN.

The results on all datasets are reported in Table. 2. The
proposed Wednesday consistently improves upon all state-
of-the-art algorithms, often by a substantial margin. For ex-
ample, the rotations errors on NSS are reduced to 20%. The
position errors on 3DMatch and 3DLoMatch are reduced
by 2.2 and 5.3 meters, respectively. The rotation errors on
KITTI are halved. Using ODIN as a pairwise estimator fur-
ther reduces the registration errors.

We show results of the proposed method and [70, 79] in
Fig. 3. We chose [70, 79] as they are the best-performing
alternatives in Table 2, still, they fail entirely. While the pro-
posed method also has inaccuracies compared to the ground
truth, it provides significantly better registrations.
Ablation Studies. The ablation study of pairwise reg-
istration on the 3DLoMatch dataset is in Table 3. We
tested ODIN without the proposed procedure of reintegrat-
ing the overlap score predictions from previous iterations,
and without diffusion-based correlation matrix denoising.
It is evident that both advancements have a clear and indi-
vidual impact on the increased accuracy.

We performed a similar ablation study on Wednesday on
the NSS dataset, using ODIN to initialize the pairwise rela-
tive poses. The results are in Table 4. The diffusion-based
optimization on its own leads to the highest rotations and
second highest translation errors, justifying the need for the
rest of the proposed pipeline. This is expected as diffusion
essentially aims at noise reduction, while the pose graph is
not only noisy but contains outliers, necessitating robust es-
timation. Rotation and translation averaging leads to better

Method RR (%)↑ RRE (◦)↓ RTE (m)↓

w/o Overlap and Diffusion 0.741 23.15 0.583
w/o Overlap 0.791 14.76 0.442
w/o Diffusion 0.803 13.57 0.419
ODIN 0.812 12.61 0.402

Table 3. Pairwise registration recall (RR), rotation (RRE) and
translation errors (RTE) of the proposed ODIN on the 3DLoMatch
dataset without overlap scores or denoising the correlation matrix.

D R+TA R+TR+TA R+TA+D R+TR+TA+D

RE (◦)↓ 5.21 4.05 4.05 2.06 2.01
TE (m)↓ 0.51 0.53 0.48 0.47 0.42

Table 4. Multiway registration average rotation and translation
errors on the NSS dataset with combinations of the proposed com-
ponents: (R) rotation and (TA) translation averaging, (TR) trans-
lation re-estimation, and (D) diffusion-based pose optimization.

Method Runtime (s) ↓ Inlier Number ↑

Exhaustive RANSAC 0.12 18.03
Proposed (Sec. 3.3) 0.05 18.11

Table 5. Average runtime (secs) and inlier number of exhaustive
RANSAC and the proposed optimal estimator on the NSS dataset.

results than the diffusion-based process. It is further im-
proved by re-estimating the translations. The best results
are obtained when all proposed components are employed.

In Table 5, we demonstrate that the proposed globally
optimal translation re-estimation outperforms running ex-
haustive RANSAC – estimating the translation from each
correspondence and selecting the one with the most inliers.
The proposed approach is 2.4 times faster while, as ex-
pected, it finds more inliers. Please note that this is the
run-time on a single point cloud pair, thus the difference
is more significant on the entire set of input point clouds.

5. Conclusion
We present Wednesday, a novel framework for multiway
point cloud mosaicking, or else, aligning a collection of
point clouds into a unified coordinate system. It starts
with a new pairwise registration method (ODIN) which
delivers significantly more accurate results compared to
state-of-the-art ones. The pipeline proceeds with rotation
and translation averaging to establish the global pose of
each point cloud. We also incorporate a globally optimal
robust translation re-estimation algorithm to ensure the
precision of pairwise translations after acquiring global
orientations. Finally, a diffusion-based optimization
approach finalizes the output poses. The pipeline leads
to substantial improvement over the state-of-the-art al-
gorithms, exemplified by an 80% reduction in rotation
error on the NSS dataset. The consistent and signif-
icant improvements on all tested large-scale datasets
position the proposed algorithm as the new benchmark
in both pairwise and multiway point cloud registrations.
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Multiway Point Cloud Mosaicking with Diffusion and Global Optimization

Supplementary Material

Abstract

In the supplemental material, we provide additional details
about the following:
(I) Visualizations for pairwise registration on the 3DMatch
and 3DLoMatch datasets (Section 6),
(II) Visualizations for multiway registration on the NSS
dataset (Section 7),
(III) Registration recall for multiway registration on the
four datasets (Section 8),
(IV) Ablation study on pairwise registration results on the
NSS dataset (Section 9),
(V) The run-times of the methods (Section 10), and
(VI) A video that gives a summary of our method and re-
sults.

6. Visualizations of Pairwise Registration
In Figures 4 and 5, we show pairwise registration results
on the 3DLoMatch and 3DMatch datasets, respectively. We
do not show pairwise results on NSS and KITTI since: (i)
the NSS point clouds represent spaces with ceiling infor-
mation and lack details – such pairwise registration results
are hard to interpret even with the ceilings are cut off; and
(ii) the results on KITTI are quite saturated with all meth-
ods achieving good results. While our ODIN achieves the
most accurate registrations (as per Table 1 in the main pa-
per), no significant difference is visible in the pairwise vi-
sualizations. We show the results of the three best matchers
(according to Table 1 in the main paper), namely ODIN,
PEAL [82] and GeoTransformer [54].

6.1. Visualizations on 3DMatch

In Figure 4, we show examples of point cloud registration
on the 3DMatch dataset. We also report the RMSE for all
results, which we use to determine if two point clouds are
correctly registered. Specifically, per row:
Row (1): This example showcases a particularly challeng-
ing pair with a very low overlap in the point clouds. While
all methods manage to estimate the correct pose coarsely,
both GeoTransformer and PEAL achieve high RMSE. The
output of our ODIN is close to the ground truth transfor-
mation, with an RMSE that is substantially lower than its
competitors.
Row (2): In this case, GeoTransformer fails to find a correct
pose, even coarsely. Similar to row (1), PEAL manages to
output an acceptable transformation. However, it has a high
RMSE, that is far from the ground truth. The registration

output of ODIN is almost an order of magnitude more ac-
curate than that of PEAL in terms of RMSE, and, visually,
it is very close to the ground truth registration. This suc-
cess underscores the efficacy of our dual-stream architec-
ture combined with the attention mechanism, which directs
the network’s focus towards regions of high confidence for
more dependable correspondence inference. Additionally,
the diffusion model plays a crucial role in eliminating noisy
matches, further enhancing the overall precision.

Row (3): In this example, both GeoTransformer and PEAL
fail. ODIN has a higher RMSE than in the above examples,
however, the registration output is visually acceptable and
closer to the ground truth.

While the examples show that there is still room for im-
provement, ODIN clearly achieves substantially better reg-
istrations than the state of the art in 3D Match.

6.2. Visualizations on 3DLoMatch

In Figure 5, we show examples of point cloud registration
on the 3DLoMatch dataset. Similar to 3DMatch, we report
the RMSE for all results. Specifically, per row:

Row (1): In this example, we observe that ODIN recovers
the pose very accurately, while both GeoTransformer and
PEAL fail entirely. Their RMSE is two orders of magni-
tude higher than that of ODIN. This again highlights the
importance of the proposed two-stream architecture and the
diffusion-based denoising.

Row (2): Here, ODIN provides a close-to-GT pose. Geo-
Transformer and PEAL struggle to find a good pose.

Row (3): In this example, all methods fail to recover a good
pose. However, ODIN still manages a significantly lower
RMSE than the other methods. In addition, visually, the
output is not far from the ground truth alignment.

7. Visualizations of Multiway Registration
In Figure 6, we show examples of point cloud multiway
registration for the NSS dataset. We choose to visualize NSS
as it is the most challenging dataset. We show results of our
proposed method and [70, 79]. We choose [70, 79] as they
are – after ours – the next best-performing methods as per
Table 2 in the main paper. Specifically, per row:

Rows (1), (2), (3) and (4): LIRST [79] and RMPR [70] fail
to achieve an acceptable global registration in these exam-
ples. Their outputs are incomprehensible and are far from
the expected results. Such outputs are frequent for these
methods on this dataset. While our proposed method has in-
accuracies, it provides substantially more accurate registra-
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Method NSS 3DMatch 3DLoMatch KITTI
RR (%)↑ RE (◦)↓ TE (m)↓ RR (%)↑ RE (◦)↓ TE (cm)↓ RR (%)↑ RE (◦)↓ TE (cm)↓ RR (%)↑ RE (◦)↓ TE (cm)↓

Predator 64.6 13.43 0.65 PEAL 94.1 4.72 15.8 78.8 16.03 50.2 75.7 9.46 11.85
+ Open3d [20] 51.3 12.76 0.64 + Open3d 81.8 4.72 15.8 68.9 14.23 45.1 83.2 6.21 7.72
+ DeepMapping2 [18] 60.1 11.54 0.64 + DeepM. 82.7 4.23 14.5 70.1 13.25 39.4 91.5 3.34 6.04
+ LMPR [33] 65.1 11.35 0.62 + LMPR 82.4 3.98 12.6 70.7 13.07 37.3 81.1 6.79 7.89
+ LIRTS [79] 65.9 11.42 0.61 + LIRTS 86.9 3.95 12.0 76.2 11.52 36.0 84.7 5.17 6.94
+ RMPR [70] 66.9 10.87 0.62 + RMPR 95.9 3.57 11.6 83.1 10.18 34.4 86.1 4.69 6.38
+ Wednesday 75.6 2.24 0.51 + Wednesday 96.8 2.58 9.4 86.4 7.21 29.1 94.6 2.52 5.92
ODIN + Wednesday 78.3 2.01 0.42 97.3 2.32 8.4 87.1 6.44 26.5 96.2 2.18 4.76

Table 6. Multiway point cloud registration on the NSS [61], 3DMatch [84], 3DLoMatch [37] and KITTI [31] datasets. The reported
metrics are the registration recall (RR), average rotation (RE) and translation errors (TE). For each dataset, we choose the best-performing
pairwise estimator from the baselines. We run Predator [37] on NSS and PEAL [82] on the other datasets. The best results are in bold.

Method All spatiotemporal pairs Only same-stage pairs Only different-stage pairs
RR (%)↑ RTE (m)↓ RRE (°)↓ RR (%)↑ RTE (m)↓ RRE (°)↓ RR (%)↑ RTE (m)↓ RRE (°)↓

FPFH [57] 11.70 2.23 45.32 30.82 2.42 29.35 0.42 4.06 78.01
FCGF [21] 24.43 2.04 39.89 42.86 2.23 32.12 10.52 3.23 53.24
D3Feat [6] 22.73 2.26 33.09 36.51 2.05 27.22 4.76 2.53 40.76
Predator [37] 64.97 0.65 13.52 92.99 0.27 4.83 28.42 1.16 24.85
GeoTransformer [55] 39.07 0.99 22.93 55.59 0.73 17.02 17.51 1.34 30.62
PEAL [82] 58.72 0.71 15.78 88.63 0.32 5.32 19.71 1.22 29.42
ODIN 69.73 0.54 11.96 95.46 0.21 4.36 36.17 0.97 21.87

Table 7. Pairwise point cloud registration on the NSS dataset. The reported metrics are the Registration Recall (RR), which measures the
fraction of successfully registered pairs; the Relative Rotation Error (RRE); and the Relative Translation Error (RTE). We show ablation
results for same-stage and different-stage pairs. The best results are in bold.

tions that are not far from the ground truth. This highlights
that the proposed multiway registration pipeline is more ro-
bust to such complicated scenarios than the state of the art.

Row (5): In this example, all methods fail to achieve a
good registration. As before, both LIRST and RMPR re-
sults are incomprehensible. Our method manages to find
the structure coarsely, however, there are mistakes, showing
that there is still room for improvement.

8. Multiway Registration Recall
We provide the registration recall (RR) for multiway regis-
tration on the NSS [61], 3DMatch [84], 3DLoMatch [37],
and KITTI [31] datasets in Table 6. RE and TE are taken
from Table 2 in the main paper. The successfully registered
pairs are defined following the protocol from [55, 61, 70].
For each dataset, we choose the best-performing pairwise
estimator from the baselines. We run Predator [37] on NSS
and PEAL [82] on the other datasets.

Our proposed Wednesday (without ODIN) consistently
improves upon all state-of-the-art algorithms and gains
0.9% to 8.7% in RR compared to the second-best method on
the four datasets. Our full pipeline, ODIN + Wednesday,
achieves additional improvements on RR on all datasets.

9. Pairwise Ablation on the NSS Dataset
We show an ablation of the pairwise point cloud registration
results on the NSS dataset in Table 7. The reported metrics

are the Registration Recall (RR), which measures the frac-
tion of successfully registered pairs; the Relative Rotation
Error (RRE) in degrees (◦); and the Relative Translation Er-
ror (RTE) in meters (m). Specifically, we ablate the results
for same-stage pairs and different-stage pairs as defined in
the original paper [61], which evaluates independently the
performance of pairs of point clouds from the same (w/o
change) or different (w/ change) temporal stages.

The first three columns (first block) show the results on
all pairs regardless of being from same or different stages.
This is the same as in Table 1 in the main paper. For
the same-stage pairs (second block), the results improve
for all methods compared to the previous case and fol-
low the same trend in the order of performance. However,
only three algorithms provide very high performance (above
88%; Predator, PEAL, and ODIN), with ODIN being the
most accurate. The rest follow at below 55% of perfor-
mance. On the different-stage pairs, there is a substantial
difference (i.e., 7.7% RR) between ODIN and the second
best method, Predator. While ODIN is significantly better
than all competitors, it is important to note that its RR on the
different-stage pairs is still far from 100%. This highlights
that further improvements are needed to robustly solve such
complicated scenarios exhibiting temporal changes.

We find it interesting that, while PEAL falls short com-
pared to Predator, our ODIN significantly outperforms both,
while building on similar architectural blocks as PEAL.
This demonstrates the importance of the proposed two-
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Method Total Time (s) Average Time (s)

Predator 460 0.26
GeoTr. 159 0.09
PEAL 212 0.12
ODIN 248 0.14

Table 8. Total and average time of pairwise point cloud registration
pipelines on the 3DMatch dataset.

Method Total Time (s) Average Time (s)

PEAL 212 0.12
PEAL + Open3d 283 0.16
PEAL + DeepMapping2 7399 4.18
PEAL + LMPR 301 0.17
PEAL + LIRTS 425 0.24
PEAL + RMPR 244 0.14
PEAL + Wednesday 389 0.22
ODIN + Wednesday 425 0.24

Table 9. Total time and average time per point cloud pair of multi-
way point cloud registration pipelines on the 3DMatch dataset.

stream attention learning architecture coupled with the dif-
fusion denoising module. PEAL’s effectiveness heavily re-
lies on the initial pose provided by the GeoTransformer. It
struggles to correct this initial pose if it is too inaccurate.
In contrast, our method does not rely on an initial pose and,
thus, it identifies correct correspondences more robustly. It
effectively filters out erroneous correspondences, retaining
only those with high confidence.

10. Processing Times
We evaluate the runtime on a computer with Intel(R)
Xeon(R) CPU E3-1284L v4 @ 2.90GHz and GeForce RTX
3090 GPU. In Table 8, we provide the total and average
times in seconds of pairwise registration methods on the
3DMatch dataset. The total time represents the cumula-
tive runtime for pairwise registration across the entire scene,
while the average time denotes the mean duration expended
for each individual pair. The results show that the proposed
ODIN runs at a similar speed to its less accurate alterna-
tives. Specifically, it is marginally slower than GeoTrans-
former and PEAL, and it is twice as fast as Predator.

In Table 9, we provide the total and average times of mul-
tiway registration methods on the 3DMatch dataset. For this
experiment, we compare using the same methods as those
listed in Table 2 of the main paper. The proposed method,
Wednesday, falls in the middle in terms of runtime.

In conclusion, there is no trade-off when using the pro-
posed ODIN and Wednesday. They obtain state-of-the-art
results while running at a similar speed as the baselines.
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(a) Source PC (b) Target PCNo.

(1)

RMSE 
(cm)

(c) GeoTr (d) PEAL (e) ODIN (f) GT

58.2 11.7
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487.4RMSE 
(cm) 60.1 7.0

98.2RMSE 
(cm) 291.9 21.3

(3)

Figure 4. Qualitative Results for the 3DMatch [84] dataset. See Section 6.1 for an explanation of the results. Best viewed in screen.
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(a) Source PC (b) Target PCNo.

(1)

RMSE 
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(c) GeoTr (d) PEAL (e) ODIN (f) GT
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(2)

244.4RMSE 
(cm) 340.0 4.2

646.6RMSE 
(cm) 143.6 28.4

(3)

Figure 5. Qualitative Results for the 3DLoMatch [37] dataset. See Section 6.2 for an explanation of the results. Best viewed in screen.
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Figure 6. Qualitative Results for the NSS [61] dataset. See Section 7 for an explanation of the results. Best viewed in screen.
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