
Confidential
Computing
Cédric Fournet
Azure Research

Swiss Joint Research Centre | Spring Workshop Zürich
 April 2024

https://www.microsoft.com/en-us/research/group/azure-security-privacy/

Existing Encryption Confidential Computing

Data at rest
Encrypt inactive data
when stored in blob
storage, database, etc.

The industry moved from disks
in the clear to encrypted disks,
with managed keys

Data in use
Protect/Encrypt data that is in
use, while in RAM and during
computation

Evolving from computing in the
clear to Trusted Execution
Environments, like Intel SGX,
TDX, or AMD SEV-SNP

Data in transit
Encrypt data that is flowing
between untrusted public or
private networks

Evolved from browsing/moving
data in the clear (HTTP), to
encrypting data (HTTPS/TLS)

What is Confidential Computing?

see also Toward Confidential Cloud Computing – Communications of the ACM

https://cacm.acm.org/practice/toward-confidential-cloud-computing/

What is Confidential Computing?

Protect/encrypt data that is in use, while in RAM, and during computationData in use

Protection from cloud

threats

Malicious

admins

Hackers

Unauthorized access,

control plane exploits

Protect end-user data

from CSP & tenant

Guest OS

Host OS

VM admin

Host admin

Hypervisor

Share data with

multi-party securely

see also Toward Confidential Cloud Computing – Communications of the ACM

https://cacm.acm.org/practice/toward-confidential-cloud-computing/

10 years of Confidential Computing

Looking back: theory (TTPs, information flow) and early experiments

Now: mainstream hardware support (CVMs) & deployment in production

Next: secure default for the public cloud?

This talk: three ongoing research projects:

1. How to deploy confidential ML workloads?

Azure Confidential GPU VMs with NVIDIA H100 Tensor Core GPUs

2. How to keep track of attested code?
Transparent software supply chain for confidential computing

3. How to prevent side channels?
Principled partitioning and scheduling of microarchitectural resources

Inside Azure
Confidential
GPU VMs with
NVIDIA H100
Tensor Core GPUs

Microsoft + Nvidia, 2020—2024

AI Accelerators is the Next Frontier of Confidential Computing

How to get the most value out of sensitive data?

Cloud accelerators enable AI at scale

Medical diagnostics, financial forecasting, generative AI

Large models require 10N scarce, high-end GPUs

Ever-growing confidentiality & privacy concerns

Privacy-sensitive data (e.g., medical history, transactions)

Proprietary AI models (e.g. API access to GPT4)

AI Accelerators is the Next Frontier of Confidential Computing

Graphcore [S&P22]: fully

desaggregated CC

TACC [SYSTOR22]: Secure

Accelerator Enclave

HIX [ASPLOS’19]:

Heterogenous TEEs

Graviton [SOSP’18]: TEEs on GPUs

Rack-scale heterogenous

TEE [S&P20]

GPU

Confidential Computing on NVIDIA GPUs: Requirements

GPU

GPU MANAGEMENT

HOST CPU

TRUST BOUNDARY

GPU TEE

HIGH BANDWIDTH MEMORY

COMPUTE

ENGINE

COMPUTE

ENGINE

CPU TEE

GPU

DRIVER

APPLICATIONS

(TENSORFLOW,
PYTORCH)

GUEST OPERATING

SYSTEM

HOST OPERATING

SYSTEM

HYPERVISOR

SECURE

CHANNEL

ADMIN

CHANNEL

SECURE

CHANNEL

Compatibility: should run

unmodified CUDA applications

Uniformity: use same GPU

driver codebase for CC mode

Use VM-based TEE to run

GPU driver and CUDA

runtime libraries

Host & Hypervisor isolation

Memory protection

Encrypted commands

Encrypted DMA

Remote attestation

High performance

Measured by Virtual TPM
using TCG secure boot and measured boot

Measured by AMD PSP Root of Trust
Includes configuration and policy provided during

initialization

Azure Server

Azure Host OS

(Windows)

Confidential VM

Hyper-V

Other

Guest

VMs

AMD SEV-SNP CPU

VMPL0 (VM Paravisor)

VMPL2 (Guest)

Guest Kernel

App
Application

UEFI Firmware

• Azure Confidential VMs aim to run stock distributions (Ubuntu,
RHEL), despite some guest enlightenments (up-streamed /
backported by Microsoft).

• Critically, C-bit page encryption and RMP management are
handled in HCL rather than in the guest Kernel

• Kernel attestation relies on vTPM for TCG measured boot. Guest
applications can be implicitly attested through disk integrity or
explicitly with TPM quote & PCR

• We also rely on HCL to provide persistence of the vTPM state
(required for guest image encryption & integrity)

• Why should the guest trust the CVM’s virtual TPM?

• The TPM is implemented in a small hypervisor that is measured by
the AMD PSP Root of Trust

• We use the VM Privilege Level of AMD SEV-SNP to offer transparent
devices (TPM, disks) to the guest

• The AMD PSP attestation of the CVM firmware components
(HCL, TPM, UEFI) is exposed via the TPM

HW Compatibility
Layer (HCL)

Virtual TPM

Overview of Azure Confidential VMs (AMD SEV-SNP)

Application can use disk integrity or

TPM attestation (with custom PCR)

VMGS

Disk

SHARED

ENCRYPTED

CVM Physical Address Space

vTop (246)

PCIe Config

Space

DMA Buffer

CVMs split the physical address space between
encrypted pages (address < vTOM) and shared pages
(address >= vTOM).

1. Only shared pages can be accessed outside the CVM.
DMA buffers must be mapped above vTOM.

2. PCIe config space access (used to enumerate devices)
requires Hyper-V emulation through hypercalls

For drivers: no change when using standard Linux DMA
APIs. Other APIs like vmap() require the ‘NOENC’ flag.

Linux patches are up-streamed to Linux 6.3 and
backported to Ubuntu 22.04.

Guest Linux Kernel

DMA Buffer

(allocated

shared)

Hyper-V

Hypercall

Linux Memory Manager

Set page protection to
PAGE_KERNEL_NOENC

NVIDIA GPU Driver

vmap() DMA buffer

Hyper-V PCIe Driver

Assigning PCIe Devices to vTOM Confidential VMs

MMIO (64-bit)

MMIO (32-bit)

H
C
L
 R

e
m

a
p
p
in

g

When Nvidia’s Hopper GPU boots in
confidential mode, it blocks ingress and
egress for the Compute Protected Region
(CPR) of GPU Memory

• The PCIe Firewall blocks access by the CPU to
most registers and all of the GPU CPR Memory

• NVLINK Firewall blocks access by NVLINK peer
GPUs to GPU CPR Memory.

• DMA engines can only read or write outside of
CPR with encryption enabled

• All other engines (e.g. Compute SMs) are blocked
from reading or writing outside of CPR.

The Compute Protected Region of memory is
secured so that the GPU can process data at
full speed in its High Bandwidth Memory

All GPU performance counters are disabled,
to protect against side channels.

GPUCPU

TEE

Physical Function

DRAM

L2

Video

Compute

Engine

Compute

Engine

Compute

Engine

Secure Work Launch

P
C
IE

Hypervisor/Host OS

FSP
Limited
Access

(e.g.: PF-
FLR)

IK FusesGSP

DMA

Confidential VM

NVIDIA Kernel

Mode Driver

Guest OS

Attest.

Service App

Applicatio

n
CUDA

N
V
L
IN

K

F
ir

e
w

a
ll

F
ir

e
w

a
ll

GPU Isolation Features in CC Mode

• By default, all Guest VM memory is encrypted by SEV

• To perform a DMA the GPU driver must encrypt and copy to
data to a bounce buffer in shared memory page

• The interrupt for DMA must also be re-injected by the
Hypervisor. We use HCL to do this efficiently.

• Most of the GPU memory is configured as Compute Protected
Region (CPR), protected by hardware firewalls

• A small portion of GPU memory is outside of the CPR and is used
for:

• Encrypted CUDA Command Buffers & Semaphores

• Bounce Buffers for NVLINK Peer to Peer

CPU Memory GPU Memory

Compute Protected

Region (CPR)

GPU Unprotected

Memory

CPU CVM

Encrypted
Memory

Encrypted
Semaphore

Encrypted
Command Buffer

Encrypted DMA Bounce Buffer

Hypervisor

GPU Driver

CUDA Memcpy Data

CUDA Runtime

ML Application

Copy
Engine

Memcpy_h2d(data)

How Memory is Managed in Confidential Mode

IOAPIC

HCL

Completion Interrupt

Encrypt and copy

DMA

Azure Server

TEE

H100 GPU in CC mode

HBM3 Memory

Video

Compute

Engine

Compute

Engine

Secure Work Launch

GSPFSP

DMA

Azure Host OS

(Windows)

SEV-SNP VM

Hyper-V

AMD CPU

VMPL0 (VM Hypervisor)

HCL Image (Linux)

Virtual TPM

VMPL2 (Tenant OS)

UEFI Firmware

Application

Attestation Libraries

Linux Kernel

NVIDIA GPU Driver

P
S
P
 A

tt
e
st

a
ti

o
n

E
n
c
ry

p
te

d

D

M
A

S
e
c
u
re

 B
o
o
t

TPM Attestation, Secure Boot PCRs, FSP Attestation, PSP Attestation

P
C
Ie

 I
n
te

rf
a
c
e

w
it

h
 F

ir
e
w

a
ll

to

 P
ro

te
c
te

d
 M

e
m

o
ry

Protected Memory Region

PSP

Confidential GPU VM TEE Boundary

T
P
M

2
.0

 A
tt

e
st

a
ti

o
n

Remote verifier

Attestation of Confidential GPU VM Applications

AMD PSP Report

AMD Root
CPU

Certificate
Chain

NVIDIA Root
GPU

Certificate
Chain

Field Value

Boot image HCL measurement

Host data Tenant + guest image

User data TPM Endorsement
Key

vTPM

vTPM Quote

PCR Value

0-12 UEFI / Secure Boot

13 App public key

14 Dm-verity root

15 GPU Report

NVIDIA GPU Report

Field Value

VBIOS CSP installed version

Firmware Tenant driver version

Nonce Random + HCL
Report digest

Demo: Sample Confidential Retrieval-Augmented Generation (RAG)

Web Browser

Confidential GPU VM

HTTPS

HCLvTPM

FAISS
Vector DBLangChain

RAG App
vLLM

Nvidia GPU Driver

AMD PSP H100 FSP

Attestation Extension

Input Prompt
Rag Off On Send File

Prompt

Output

Encrypt(prompt)

postMessage(prompt)

Attestation policy (from tenant)

Attestation
Encryption

Proxy

Service Key

CUDA RT

llama2-70b

Linux

vTPM
Quote

HCL
Report

GPU
Report

MAA

NRAS

see also Mark Russinovich’s demo

https://youtube.com/watch?v=MB72Tiw6jjY

Application-level Attestation and Encryption Protocol

Client (with javascript extension) | Server (with custom proxy)

Why Should I
Trust Your Code?
Transparent Updates for
Confidential Computing

See also Why Should I Trust Your Code? – CACM

https://cacm.acm.org/practice/why-should-i-trust-your-code/

The Attested Code Update Problem

2. Verify TLS certificate
+ attestation report
+ platform certificate

1. Connect (TLS)

User

TEE running
a cloud service

The rest of the cloud
(host, hypervisor, CSP)

need not be trusted

Which code hash should
I trust for this service ??

Cloud services are frequently
updated, to add functionality,
fix bugs, or patch CVEs.
• Code reviews take time & effort,

and they are not perfect.
• Most users can’t review source updates

and rebuild attested binaries
• Most service providers can’t wait
• The “attested TCB” for the service

includes code from multiple providers
(firmware, system, runtime, apps,
libraries, containers) which all require
authorization & updating

3. Exchange private data

Transparency: Core Intuition

Certificate Transparency [RRC 6962] Adam Langley, Emilia Kasper, Ben Laurie (Google)

CONIKS: bringing key transparency to end users , M. S. Melara, A. Blankstein, J. Bonneau, E. W. Felten, and M. J. Freedman (USENIX Security’15).

Keeping authorities "honest or bust“ based on large-scale decentralized witness cosigning (IEEE S&P ‘16)

CHAINIAC: Proactive Software-Update Transparency via Collectively Signed Skipchains and Verified Builds (Usenix’17, EPFL)

Contour: A practical system for binary transparency logging on bitcoin the latest authorized binary version.
M. Al-Bassam, S. Meiklejohn (Data Privacy Management, Cryptocurrencies and Blockchain Technology, 2018).

We cannot stop supply chain actors from making false claims,
but we can make them accountable by requiring all claims
be registered in verifiable transparency ledgers.

This ensures that malicious actors that make contradictory claims to different entities
(customers, auditors, regulators) can be detected and held accountable.

Examples of Transparency Systems

https://datatracker.ietf.org/doc/html/rfc6962
https://www.usenix.org/system/files/conference/usenixsecurity15/sec15-paper-melara.pdf
https://discovery.ucl.ac.uk/id/eprint/10116629/1/Jovanovic_cosi.pdf
https://arxiv.org/abs/1712.08427

Proposal:

A Transparency Service (TS) for Attested Code

6. verify attestation
+ platform certificate
+ claim + receipt

Issuer=…
Version=1.2
Hash= 0x…
Sig=

Receipt=

1. sign claim
for any updated binary

5. connect (TLS)

2. register
claim and

get receipt

3. upload image
+ claim + receipt

TEE running code
transparency

service

Application
provider

User

Cloud
service
provider

4. create TEE for this image

TEE running
a cloud service

Auditor

review
complete
update history

TODO: Link to CACM Why should I trust
your code. Link to CCF paper.

Building blocks:
1. IETF SCITT architecture for transparent claims & protocols
2. CCF as an attested transparency service & append-only log
3. Delegation policies and confidential containers

to automate our software supply chain for confidential services
(source-code release, build, deploy)

Proposal:

A Transparency Service (TS) for Attested Code

Supply Chain Integrity,
Transparency, and Trust
(SCITT)

• Interoperable transparency support
for recording statements in (generic)
supply chains

• Claim formats (CBOR)
• standardized headers
• standardized proofs of

registration (receipts)
• opaque payloads

• Issuer identification
and signing (COSE)

Artifact
 |
 v +--------------+
Issuer -> Statement Envelope | DID Document |
 \ / +--------------+
 \ / | |
 \ ______/ | |
 | | |
 v Signature | |
 Claim <--------------/ |
 | |
 | Receipt +--------+ |
Transparency -> +-------------| Ledger | /
 Service | +--------+ X
 v / \
 Transparent / \
 Claim / |
 |\ / |
 | \ / |
 | \ / |
Verifier -> | Verify Claim |
 | |
Auditor -> Collect Receipts Replay Ledger

https://datatracker.ietf.org/group/scitt/

https://datatracker.ietf.org/group/scitt/

User
User

User
User Current State

key-value store

Bring your
own code

replication between trusted
execution environments

Primary
Member

User
User

User

Member

User

consortium

Backup

Backup

Verifiable
Ledger

Verifiable
Ledger

Verifiable
Ledger

authenticated
encryption &
signatures

untrusted storage

secure channel (TLS)

untrusted network

untrusted hosts

security spec

replicated implementation

clients attested service

Member
Member Governance

consortium

see also:
https://github.com/Microsoft/CCF, code, docs, papers
Confidential Consortium Framework: Secure Multiparty Applications
with Confidentiality, Integrity, and High Availability, VLDB2023

https://github.com/Microsoft/CCF
https://github.com/microsoft/CCF/blob/main/CCF-PAPER-VLDB-2023.pdf
https://github.com/microsoft/CCF/blob/main/CCF-PAPER-VLDB-2023.pdf

Receipts: Proofs of Registration & Freshness

Append-only ledger

𝑟𝑤0 𝑤1

𝑑0 𝑑1

latest stateprior writes to 𝑘

A write receipt
proves that

𝑇 𝑘 ← 𝑑1
at index 𝑤

A read receipt
proves that
𝑇 𝑘 == 𝑑1
at index 𝑟

A claim 𝑘 = 𝑖𝑠𝑠𝑢𝑒𝑟, 𝑓𝑒𝑒𝑑 ↦ 𝑑
may have been registered 6 months ago…

…and still be the latest
for this 𝑘, as of yesterday

Receipts: Proofs of Registration & Freshness

Append-only Ledger

COSE_CounterSignature = {
 "serviceId" => bstr ; Hash of public key of CCF service
 "transactionId" => tstr ; CCF transaction id
 "alg" => int ; Signature algorithm
 "signature" => bstr ; Signature over tree root
 "proof" => [+ ProofElement] ; Intermediate hashes (Merkle path)
}

Writes receipts are implemented by
signing the root of the plain binary
Merkle tree over the whole ledger contents

They can be issued efficiently:
• One hash per transaction
• One signature per transaction batch

The signing key is supported by
attestation reports and governance
transactions, also recorded in the ledger

Receipts: Proofs of Registration & Freshness

Append-only Ledger

Read receipts are implemented using a separate prefix tree
(indexed by issuer + feed) pointing to the latest write index.

The prefix tree root is frequently timestamped and committed to the ledger

Read receipts can be attached to a Write receipt for that index.
Read receipts can be efficiently refreshed from the ledger.

𝑑0001

𝑘0100 → 𝑖𝑑0100
𝑑0111

ℎ𝜖 = 𝐻(𝜖, ℎ0, ℎ1100)

𝟎 𝟏𝟏𝟎𝟎

0𝟎𝟎𝟏

01𝟎𝟎 01𝟏𝟏

0𝟏

ℎ0 = 𝐻(0, ℎ0001, ℎ01)

ℎ01 = 𝐻(01, ℎ0100, ℎ0111)

tk

Registration Policies

Receipt verification ensures the transparency service
has successfully applied all (transparent) registration policies:
• Policies can prevent many common supply chain attacks

(by verifying identifiers, signatures, release tags, version numbers,…)
• Policies can ensure that sufficient metadata is recorded

to enable independent auditing against more advanced attacks,
and thus deter/blame bad actors.

Simple policies are directly enforced by the transparency service
• In our prototype, scripted verification of crypto evidence

(certificate, signatures, receipts, attestations)
Advanced policies are enforced by custom TEEs
(themselves verifiable using simple policies)
• In our prototype, containers for source release,

for building binary packages, containers, and enclaves

Transparent Attested Build
1. Building a sample confidential ML

inference service based on Triton
2. Bootstrapping our transparency service

Large complex build steps but making them
transparent and attested only requires superficial
changes (a few lines in scripts and dockerfiles)

OpenSSL

OpenEnclave

CCF

Transparency
Service

Triton

Containerized
ML Inference

Service

Open-Source Projects & Dependencies

Principled
Side-channel
Protection

Boris Koepf, Stavros Volos,
Oleksii Oleksenko, Jana Hofmann,
Cédric Fournet

See also Project Venice for papers, details, etc

https://www.microsoft.com/en-us/research/project/venice/overview/

Isolation is core to

Confidential Computing

 Smaller, delimited TCBs

 End-to-end encryption,

during computation:

no direct leakage Sharing is core to
Cloud Computing

• Amortizing cores, caches,
buffers, memory, disk, network
across many tenant workloads.

• Example: Growing core count
sharing large expensive DRAMSide-channels are

an essential issue

• Largely ignored in early hardware implementations

• Largely exploited in attacks papers (in the lab)

Controlled

software

channels

The cloud provider is a powerful attacker

that allocates all resources and observes

their use at a fine granularity

Initial attacks targeted jpeg and spellchecking

libraries, by invalidating code pages to infer

data-dependent control flows

Recent attacks exploit one-stepping and zero-

stepping of target TEE.

Host + Hypervisor
controlling their resources

TEE
with hardware

memory
encryption

Microarchitectural Side-channels

Cache side-channels:

Cache state depends on program secrets

Attacker can observe cache changes,

and thus infer the secrets

Speculative side-channel attacks:

Speculative execution can violate security assumptions

(e.g., bypass bounds checks)

Leaks speculatively results via uArch state

Depends on details of proprietary hardware implementations

Many practical attacks, sometimes irrespective of target code

addr = 100
...
if addr < 10:
x = *addr

 y = array[x]

CPU mispredicts

the branch

Leads to an

invalid access

Shared Cache

array[0]

Value leaks in

cache

array[1]

array[2]

array[3]
The value in

0x100 is 2

M I C R O S O F T C O N F I D E N T I A L 33

Consequences

 Mitigations involve patching CPUs, microcode, kernels,

 libraries, and compilers—with high performance costs.

 - 20% for initial software countermeasures

 - 50% tx/s for CCF using SGX

 + 20% energy consumption (Linux)

Threat Model (CC)

Hypervisor

Malicious
VMs

(including Host VM)

CPU

DRAM

HW-isolated
VM

Can we protect

confidential workloads

from side-channels?

Can we convince

tenants that we do?

Side-Channels Today:

Ad Hoc Attacks & Countermeasures

Hypervisor

Malicious
VMs

(including Host VM)

CPU

DRAM

HW-isolated
VMmany attack-specific

patches across all

abstraction levels

Except for selected libraries

(crypto), we’d rather not

change application code.

How to share resources?

Fine-grained sharing

aggravates attacks:

hyperthreading,

deduplication.

Any unknown

microarchitectural details we

should worry about?

)

Project Venice (Ongoing)

Malicious
VMs

HW-isolated
VM

Hypervisor

CPU

DRAM

Trusted
Components

robust abstraction

layers (contracts)

defensive sharing of

microarchitectural

resources

experimental validation

of hardware/software

contracts

unmodified* use cases

Microarchitectural (uArch) Isolation

Security Properties

Spatial Isolation. A VM is assigned resources whose uArch state cannot be observed or
altered by other VMs.

Temporal Isolation. A VM is assigned resources whose initial uArch state does not
depend on previous VMs and cannot be observed by future VMs.

Resources

Core uArch (e.g., L1/L2 caches, TLBs)
 Targeted by various Hyper-V defences, such as Core Scheduling and HyperClear

Uncore uArch (e.g., L3 cache, directory for cache coherence)

How to jointly partition core and uncore resources?

https://techcommunity.microsoft.com/t5/virtualization/hyper-v-hyperclear-mitigation-for-l1-terminal-fault/ba-p/382429

Marghera: System Design for uArch Isolation

Memory manager

Implements memory partitions via coloring

Each color is exclusively assigned to one VM

Resource scheduler

Implements compute partitions via chiplet scheduling

Chiplet-based Isolation on AMD Milan

L3 Cache
Core

Core

Core

Core

∞

L3 Cache
Core

Core

Core

Core

L3 Cache
Core

Core

Core

Core

∞

L3 Cache
Core

Core

Core

Core

L3 Cache
Core

Core

Core

Core

∞

L3 Cache
Core

Core

Core

Core

L3 Cache
Core

Core

Core

Core

∞

L3 Cache
Core

Core

Core

Core

D
D

R
D

D
R

D
D

R
D

D
R

I/O I/O∞ ∞

I/O I/O∞ ∞

Compute

chiplet

I/O

chiplet

Source: AMD Milan

(basis of Confidential Containers)

L3 cache is private to the chiplet’s cores

Cross-chiplet cache coherence via directory

Access to memory & I/O via shared I/O chiplet

Directory

Chiplet-based Isolation: Leakage

L3 cache leakage

Eliminated with chiplet-based scheduling

Cross-chiplet directory leakage

Memory Coloring for uArch Isolation

Challenges

Identify indexing functions for all uArch resources

Identify coloring function that simultaneously

partitions shared resources, while not partitioning

private resources

Algebraic tools for partitioning

Work for linear indexing functions

(bits combined with XOR)

Compose indexing functions to yield optimal

trade-offs between security and performance

M 4K/2M L3/L2 XD XC XL3C

a6 L2 a6

a7 a7

a8 a8

a9 a9⊕a21

a10 a10⊕a22

a11 a11⊕a23 a11⊕a28 a11⊕a28

a12 a12 a12⊕a24 a12⊕a29 a12⊕a29

a13 a13 a13⊕a25 a13⊕a30 a13⊕a30

a14 a14 a14⊕a26 a14 a14

a15 a15 a15⊕a27 a15 a15

a16 a16 a16 a16 a16

a17 a17 a17 a17 a17

a18 a18 a18 a18⊕a25 a18⊕a25

a19 a19 a19 a19 a19

a20 a20 a20 a20 a20

a21 2M a21

used

above

a21 a21

a22 a22 a22⊕a26 a22⊕a26

a23 a23 a23⊕a27 a23⊕a27

a24 a24 a24⊕a31 a24⊕a31

a25 a25

used

above

used

above

a26 a26

a27 a27

a28 a28

a29 a29

a30 a30

a31 a31

Evaluation Highlights

0%

5%

10%

15%

A
p

p
. P

e
rf

.

U
se

r
IP

C

A
p

p
. P

e
rf

.

U
se

r
IP

C

A
p

p
. P

e
rf

.

U
se

r
IP

C

A
p

p
. P

e
rf

.

U
se

r
IP

C

A
p

p
. P

e
rf

.

U
se

r
IP

C

Web

Serving

Data

Serving

(NoSQL)

Data

Serving

(SQL)

Graph

Analytics

ML

Inference

P
e
rf

o
rm

a
n

c
e
 O

v
e
rh

e
a
d

Marghera-2M

Marghera-4K L3 Cache

Cross-chiplet Directory

All identified microarchitectural side-channels are prevented

with a small performance overhead (<3%)

Summary

Confidential computing lets users take control of their TCB

Makes explicit the hardware, software, and services they need to trust

Provides strong guarantees against the rest—even against the cloud provider.

Trusted Execution Environments will be pervasive in the cloud

Concerted industry effort towards standardized capabilities.

Ubiquitous hardware support makes them cheap (much like network/storage encryption)

Defensive software (re)engineering is still required to reap all security benefits.

Many open issues:

Application security (specs, safe programming, automated verification, auditing)

Protocols for attestation, key-release, provisioning

Transparency for hardware and software supply chains

Side channels!

We are hiring!
• 2-year Postdoc Researchers in

Security and Privacy and
Security and Systems

• Research interns

Azure Research

https://nam06.safelinks.protection.outlook.com/?url=https%3A%2F%2Fjobs.careers.microsoft.com%2Fglobal%2Fen%2Fjob%2F1703375%2FCambridge-Residency-Programme-%25E2%2580%2593-Post-Doc-Researcher-Security-and-Privacy&data=05%7C02%7Cfournet%40microsoft.com%7C28a97cd563d84e295c2808dc53f5d64f%7C72f988bf86f141af91ab2d7cd011db47%7C1%7C0%7C638477562544703394%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C0%7C%7C%7C&sdata=uTKlviVt1i5U%2FWANQYhHWeya%2FrJz2LqIkqByrzKvKGY%3D&reserved=0
https://nam06.safelinks.protection.outlook.com/?url=https%3A%2F%2Fjobs.careers.microsoft.com%2Fglobal%2Fen%2Fjob%2F1703366%2FCambridge-Residency-Programme-%25E2%2580%2593-Post-Doc-Researcher-Security-and-Systems&data=05%7C02%7Cfournet%40microsoft.com%7C28a97cd563d84e295c2808dc53f5d64f%7C72f988bf86f141af91ab2d7cd011db47%7C1%7C0%7C638477562544713689%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C0%7C%7C%7C&sdata=1%2FjCqYsEzNPcr6zJIWyWbDo7YOO0Eplp7hWCa8wZGIA%3D&reserved=0
https://www.microsoft.com/en-us/research/group/azure-security-privacy/

	Slide 1
	Slide 2: What is Confidential Computing?
	Slide 3: What is Confidential Computing?
	Slide 4: 10 years of Confidential Computing
	Slide 5: Inside Azure Confidential GPU VMs with NVIDIA H100 Tensor Core GPUs
	Slide 6: AI Accelerators is the Next Frontier of Confidential Computing
	Slide 7: AI Accelerators is the Next Frontier of Confidential Computing
	Slide 8: Confidential Computing on NVIDIA GPUs: Requirements
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14: Demo: Sample Confidential Retrieval-Augmented Generation (RAG)
	Slide 15: Application-level Attestation and Encryption Protocol
	Slide 16: Why Should I Trust Your Code? Transparent Updates for Confidential Computing
	Slide 18: The Attested Code Update Problem
	Slide 19: Transparency: Core Intuition
	Slide 20: Proposal: A Transparency Service (TS) for Attested Code
	Slide 21: Proposal: A Transparency Service (TS) for Attested Code
	Slide 22: Supply Chain Integrity, Transparency, and Trust (SCITT)
	Slide 23
	Slide 24: Receipts: Proofs of Registration & Freshness
	Slide 25: Receipts: Proofs of Registration & Freshness
	Slide 26: Receipts: Proofs of Registration & Freshness
	Slide 27: Registration Policies
	Slide 28: Transparent Attested Build
	Slide 29: Principled Side-channel Protection
	Slide 30
	Slide 31: Controlled software channels
	Slide 32: Microarchitectural Side-channels
	Slide 33: Consequences
	Slide 34
	Slide 35
	Slide 36: Project Venice (Ongoing)
	Slide 37: Microarchitectural (uArch) Isolation
	Slide 38: Marghera: System Design for uArch Isolation
	Slide 39: Chiplet-based Isolation on AMD Milan
	Slide 40: Chiplet-based Isolation: Leakage
	Slide 41: Memory Coloring for uArch Isolation
	Slide 43: Evaluation Highlights
	Slide 44: Summary
	Slide 45

