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Probabilistic Data Structures (PDS)

• Frequency estimation 
How many times does x appear in the set? 
Count-min sketch, HeavyKeeper 

• Membership queries 
Is x in the set? 
Bloom filter, Cuckoo filter 

• Cardinality estimation 
How many distinct elements in the set? 
HyperLogLog, KMV estimator
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HyperLogLog

Count-min sketch

Bloom filter cascade

PDS help us

count the 
number of 
distinct 
Facebook users

check revoked 
certificates 
in  
TLS/SSL

find the most 
visited pages 
on a website identify possible 

DoS threats 
(network-
monitoring 
systems) 
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Privacy 

• How can an adversary interfere with the 
correct functionality of the PDS? 
 

• What can an adversary learn about the 
elements stored in the PDS?  
 

• How can we provably protect PDS in 
adversarial settings?Secure PDS 
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query(x) ** >> freq(x) 
or 
** << freq(x)
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Can CFE PDS misbehave?

Stream

Attacks against CMS, 
HeavyKeeper, Count 
sketch, CMS w/ 

conservative updates 

CFE PDS
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Our attacks make

elements absent from the stream marked as heavy  
or  

high-frequency elements marked as absent.
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What if the server is malicious  
and the user is honest? 

Future work

insert 
query 

User Server
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Thank you! 
Approximate Membership Query PDS (CCS22)  

Compact Frequency Estimation (CFE) PDS (CCS23) 


