
Keeper: Automated Testing and Fixing of Machine Learning
Software
CHENGCHENG WAN, East China Normal University, China
SHICHENG LIU, Stanford University, United States
SOPHIE XIE, University of California, Berkeley, United States
YUHAN LIU, University of Chicago, United States
HENRY HOFFMANN, University of Chicago, United States
MICHAEL MAIRE, University of Chicago, United States
SHAN LU,Microsoft Research and University of Chicago, United States

The increasing number of software applications incorporating machine learning (ML) solutions has led to
the need for testing techniques. However, testing ML software requires tremendous human effort to design
realistic and relevant test inputs, and to judge software output correctness according to human common
sense. Even when misbehavior is exposed, it is often unclear whether the defect is inside ML API or the
surrounding code, and how to fix the implementation. This article tackles these challenges by proposing
Keeper, an automated testing and fixing tool for ML software.

The core idea of Keeper is designing pseudo-inverse functions that semantically reverse the corresponding
ML task in an empirical way and proxy common human judgment of real-world data. It incorporates these
functions into a symbolic execution engine to generate tests. Keeper also detects code smells that degrade
software performance. Once misbehavior is exposed, Keeper attempts to change how ML APIs are used to
alleviate the misbehavior.

Our evaluation on a variety of applications shows that Keeper greatly improves branch coverage, while
identifying 74 previously unknown failures and 19 code smells from 56 out of 104 applications. Our user
studies show that 78% of end-users and 95% of developers agree with Keeper’s detection and fixing results.

CCS Concepts: • Software and its engineering → Software testing and debugging; • Computing
methodologies→Machine learning; • Information systems→ RESTful web services.

Additional Key Words and Phrases: software testing, machine learning, machine learning API

1 INTRODUCTION
1.1 Motivation
Machine learning (ML) offers powerful solutions to cognitive tasks, allowing computers to statisti-
cally mimic human behaviors in computer vision, language, and other domains. To facilitate easy
use of these ML techniques, many cloud providers offer well-designed, well-trained, and easy-to-use
cognitive ML APIs [2, 3, 35, 44, 71]. Indeed, many software applications in a variety of domains
are incorporating ML APIs [22, 102]. Thus, effectively testing these applications—which this paper
refers to as ML software—has become urgent.

To better understand this testing task, consider Phoenix [81], a fire alarm application. As shown
in the top half of Figure 1, Phoenix uses the Google label_detection API to perform image
classification on an input photo, and then triggers an alarm if any of the top-3 classification labels
returned by the API includes the keyword "fire".

Authors’ addresses: Chengcheng Wan, ccwan@sei.ecnu.edu.cn, Software Engineering Institute, East China Normal Uni-
versity, China; Shicheng Liu, sliu22@stanford.edu, Computer Science Department, Stanford University, United States;
Sophie Xie, sxie2@berkeley.edu, Computer Science Division, University of California, Berkeley, United States; Yuhan
Liu, yuhanl@uchicago.edu, Department of Computer Science, University of Chicago, United States; Henry Hoffmann,
hankhoffmann@uchicago.edu, Department of Computer Science, University of Chicago, United States; Michael Maire,
mmaire@uchicago.edu, Department of Computer Science, University of Chicago, United States; Shan Lu, shanlu@uchicago.
edu, Microsoft Research and University of Chicago, United States.

, Vol. 1, No. 1, Article . Publication date: May 2024.

HTTPS://ORCID.ORG/0000-0001-9162-9688
HTTPS://ORCID.ORG/0000-0003-2697-1916
HTTPS://ORCID.ORG/0009-0000-5484-5234
HTTPS://ORCID.ORG/0009-0002-5957-5071
HTTPS://ORCID.ORG/0000-0003-0816-8150
HTTPS://ORCID.ORG/0000-0002-9778-6673
HTTPS://ORCID.ORG/0000-0002-0757-4600
https://orcid.org/0000-0001-9162-9688
https://orcid.org/0000-0003-2697-1916
https://orcid.org/0009-0000-5484-5234
https://orcid.org/0009-0002-5957-5071
https://orcid.org/0009-0002-5957-5071
https://orcid.org/0000-0003-0816-8150
https://orcid.org/0000-0002-9778-6673
https://orcid.org/0000-0002-0757-4600

2 Wan and Liu, et al.

["Ecoregion", "plant", "flame"]["plant", "wood", "fire"]

label = client.label_detection(image=img)
temp = label[0].desc + label[1].desc + label[2].desc
if "fire" in temp:

alarm()

Fig. 1. An example of using ML Cloud APIs [81].

This simple demo application turns out to be difficult to test. First, random inputs work poorly,
as they rarely contain fire and hence cannot exercise the critical alarm() branch. Second, even
with carefully collected image inputs, manual checking is likely needed to judge the execution
correctness (i.e., whether an alarm should be triggered). Finally, even after a failed test run—e.g., the
picture on the right of Figure 1 fails to trigger the alarm— it is difficult to know whether the failure
is due to the accidental but inevitable mistakes of label_detection, which should be tolerated,
or the application’s incorrect use of the API, which should be fixed. In fact, this case belongs to
the latter: the right figure actually has a top-3 label “flame” returned by label_detection; not
checking for the “flame” label, this application may miss fire alarms in many critical situations.

This example has demonstrated several open challenges in testing ML software.
1) Infinite, yet sparse input spaces. The spaces of images, texts, or audio —typical input forms

of cognitive ML APIs—are infinitely large, yet realistic inputs that are relevant to the software under
test are spread sparsely throughout this space. For example, only a tiny portion of real-world images
contain fire and are relevant to the fire alarm software. Existing input generation techniques are
ineffective here. Random input generators cannot produce realistic inputs through random-pixel
images or random-character strings. Fuzzing techniques that apply perturbations (white noises
[74], block replacement [109] , or mapping [65]) to seed inputs tend to produce inputs that are
either unrealistic or similar with the seed. For example, no fuzzing can turn the left photo into
the right photo in Figure 1. Symbolic execution techniques also do not work, as it is difficult to
express the input realism as a solvable constraint. Furthermore, none of these techniques solves
the relevance challenge. To tell which images are relevant for a fire alarm application requires both
an understanding of the software structure (i.e., knowing that a branch predicate is about fire in
the input) and the ability to perform the very cognitive task we need to test (i.e., judging whether a
photo contains fire).
2) Output correctness relies on human judgment. Cognitive ML APIs are designed to

statistically mimic human behaviors, e.g., identifying the objects in an image, interpreting the
emotional sentiment in a sentence, etc. Consequently, to judge the correctness of ML software,
ideally, we want to ask many people to process the same set of inputs and see if their decisions
statistically match with the software outputs—a process that is inherently difficult to automate.
For example, it is difficult to tell whether the fire alarm should be triggered or not without manual
inspection (Figure 1).
In traditional testing, the execution correctness often can be checked automatically using the

mathematical relationship between the inputs and the outputs or certain invariants expected to hold
by the execution. These techniques are still useful for the non-cognitive parts of the ML software,
but cannot help the cognitive parts. Previous work generated test oracles for domain-specific
applications, like an image dilation software [48], a blood-vessel categorizer [50], an image region
growth program [49], and a biomedical text processor [96]. Their design each targets a particular
cognitive task and cannot be applied to general ML software.
3) Probabilistic incorrectness that is difficult to diagnose. When ML software produces

outputs that differ from most human experts’ judgment, which we refer to as an accuracy failure,

, Vol. 1, No. 1, Article . Publication date: May 2024.

Keeper: Automated Testing and Fixing of Machine Learning Software 3

developers must attribute this failure to either the ML API or the surrounding software’s use of the
ML API. This attribution is difficult as ML APIs use statistical models to emulate cognitive tasks,
and are expected to produce incorrect outputs from time to time—even a human expert makes
mistakes in cognitive tasks occasionally. In other words, developers need to distinguish between
failures caused by the probabilistic nature of the ML API, which simply must be tolerated as part of
using this specific ML API, from a misuse of the API, which represents a bug and must be fixed by
the developer.
Again, this situation is different from that in traditional software testing, where a test failure,

such as a crash, indisputably indicates a flaw in the software that must be fixed, whether it is within
some APIs or within the software itself.
Note that, much recent work studies how to test [1, 4, 5, 10, 13, 24, 25, 28, 30, 31, 31, 32, 39,

43, 56, 63, 64, 66, 67, 74, 77, 78, 86, 91, 100, 110, 112, 114, 118, 119, 122], verify [26, 27, 27, 111],
and fix [46, 58, 94, 97, 98, 115] neural networks. However, they focus on improving the accuracy,
fairness, and security of the neural network itself; e.g., making sure the network is robust against
adversarial samples or does not contain certain biases, etc. They do not consider how the neural
network is used in the context of an application and do not test how well the application uses the
neural network functions.

1.2 Contributions
This paper proposes Keeper, a testing tool designed for software that uses cognitive machine
learning APIs (ML software).
To tackle the unique input space and output oracle challenges, Keeper designs a set of pseudo-

inverse functions for cognitive ML APIs1. For an API 𝑓 that maps inputs from domain I to outputs in
domainO, its pseudo-inverse function 𝑓 ′ reverses this mapping at the semantic level. We make sure
that the mapping by 𝑓 ′ has been confirmed by many people to have high accuracy. For example,
the Bing image search engine is a pseudo-inverse function of Google’s image classification API.

Keeper then integrates the pseudo-inverse functions with symbolic execution to reach the sparse
program-relevant input space. Specifically, Keeper first uses symbolic execution to figure out what
values an ML-API output can take to fulfill branch coverage (e.g., “fire” == labels[0].desc in
Figure 1). Keeper then automatically generates realistic inputs that are expected to produce the
desired ML-API outputs, leveraging pseudo-inverse functions. For example, the two images shown
in Figure 1 are among the images returned by a Bing image search with the keyword “fire”.
Keeper also makes pseudo-inverse functions a proxy of human judgment and automatically

judges the correctness of software outputs that are related to cognitive tasks. Since our pseudo-
inverse functions are not analytically inverting ML APIs (i.e., 𝑓 ′ (𝑓 (𝑖)) ≠ 𝑖 is possible), a test input
generated by Keeper may not cover the targeted software branch, like the right image in Figure
1 failing to cover the alarm branch. At the same time, since these pseudo-inverse functions have
been approved by many human experts , Keeper reports an accuracy failure when over a threshold
portion of inputs fail to cover a particular target branch. Of course, Keeper also monitors generic
failure symptoms like crashes during test runs, and helps expose bugs in code regions that require
specific ML inputs to exercise.
Finally, to help developers understand the root cause of an accuracy failure, Keeper explores

alternative ways of using ML APIs and informs the developers of any code changes that can alleviate
the accuracy failure. For the example in Figure 1, Keeper would inform developers that comparing
the returned labels with not only “fire” but also “flame” would make the software behavior more

1The current implementation of Keeper supports Google Cloud AI APIs and can be easily extended to support similar APIs
from other service providers.

, Vol. 1, No. 1, Article . Publication date: May 2024.

4 Wan and Liu, et al.

consistent with common human judgment. In addition, Keeper also leverages anti-patterns from an
empirical study [102] and conducts static analysis to detect code smells and provide fix suggestions.
Putting these all together, we have implemented Keeper which can be used either through a

command-line script or a plug-in inside the VScode IDE [72]. Given a software application, Keeper
first highlights all the functions that directly or indirectly call ML APIs. For any function that
developers want to test, Keeper automatically generates many test cases to thoroughly test every
branch in the specified function and its callees. Keeper analyzes the test runs and reports any
failures, as well as potential patches for accuracy failures, to developers.
We evaluate Keeper on the latest version of 82 open-source Python applications that cover

different problem domains and ML APIs. Keeper achieves 95% branch coverage on average for
these applications. In total, Keeper covers 18–39% more branches than alternative techniques that
directly use machine learning training datasets or random fuzzing. Keeper exposes 74 unique
failures together with 19 code smells from 56 out of these 104 applications. We also conduct user
studies with end-users and developers to evaluate Keeper and its testing reports. Around 78% of
users agree with Keeper’s judgment of accuracy failures and regard the software fixed by Keeper
have better or similar quality. Around 95% of developers think Keeper’s testing reports are helpful
and its IDE plugin is easy to use.

Keeper’s source code is publicly available at GitHub2 and Zenodo3.

2 BACKGROUND
This section provides a brief overview of ML APIs, their inputs and outputs, and how they are
typically used in software.

2.1 ML Cloud APIs
In recent years, numerous cloud service providers [2, 35, 44, 71] have developed a range of machine
learning cloud services that can be easily incorporated into software systems through cloud APIs.
By using these APIs, sophisticated machine learning inferences can be conducted using pre-trained
deep neural networks (DNNs) executed in the cloud.

ML APIs offered by different service providers all cover three main categories of machine learning
tasks: vision tasks, language tasks, and speech tasks. Keeper handles all the commonly used APIs in
these three families, as shown in Table 1. Keeper currently does not handle Video Intelligence APIs
(from the vision family), Translation APIs (from the language family), and Speech Synthesis APIs
(from the speech family), as they are used much less frequently in open-source applications [102].

Inputs. In addition to image/text/audio inputs, some ML APIs also take in configuration parame-
ters. For example, analyze_sentiment takes in not only a text string, but also configurations like
language, encoding, and input type, as shown in Figure 2. These configurations are set to constant
values, mostly the default values offered by Google, in all of the ML software we have checked.
Therefore, in this paper, Keeper focuses on generating image/text/audio inputs.

1 document = {"content": text_content , "type_": Type.PLAIN_TEXT , "language": "en"}

2 response = client.analyze_sentiment(request ={'document ':document , 'encoding_type ':

EncodingType.UTF8}

Fig. 2. An example of Google Cloud API with text input.

Outputs. The output of an ML API may include multiple records, like multiple classification
results, multiple objects detected, and so on. Each record typically contains a key result field often
2https://github.com/mlapistudy/Keeper_artifact
3https://zenodo.org/records/10968650

, Vol. 1, No. 1, Article . Publication date: May 2024.

https://github.com/mlapistudy/Keeper_artifact
https://zenodo.org/records/10968650

Keeper: Automated Testing and Fixing of Machine Learning Software 5

of a string or an enum type, like the classification label of an image, the emotion of a face, and so
on, and a confidence score field, which indicates how likely this result is correct. Unless otherwise
specified, the remaining paper refers to these key result fields as ML API output, as summarized
in Table 1. Note that, some of these APIs do output other auxiliary information. For example, the
face detection API also outputs the bounding box of each face detected in the input image. These
auxiliary result fields may be used to make control flow decisions, although such usage has not
been observed in any of the 360 applications collected by a previous ML API study [102].

2.2 ML software
Sometimes, ML APIs are only loosely connected with the remaining part of the software. Their
output is directly presented to end users or stored without further use in the software, e.g., a
translator. Testing this type of software simply needs to separately test ML APIs and the remaining
part of the software. Therefore, they are not the target of Keeper.

In some other cases, ML APIs are more closely connected, with their results used to impact the
control flow of the software execution. Take Figure 1 as an example, whether the software raises
the alarm depends on the output of label_detection API. These cases present new challenges to
software testing as discussed in Section 1 and hence are the focus of this paper.

2.3 ML Model Testing
ML models, typically in the format of neural networks, are widely studied on testing [1, 4, 5, 10, 13,
24, 25, 28, 30, 31, 31, 32, 39, 43, 56, 63, 64, 66, 67, 74, 77, 78, 86, 91, 100, 110, 112, 114, 118, 119, 122],
verifying [26, 27, 27, 111], and fixing [46, 58, 94, 97, 98, 115], to improve their accuracy, fairness, and
security. Another line of work studies implementation bugs of neural network architectures [47, 120]
and other ML models [19, 99].
These works only focus on the cognitive task itself, aiming to improve the performance of ML

models over a certain data set. On the contrary, this paper focuses on improving the software
performance under its application scenario and aims to help developers integrate ML API into
software. These works are orthogonal to the research problem of this paper.

3 OVERVIEW OF KEEPER
Keeper is a testing tool for software whose control flow is influenced by ML APIs. As shown in
Figure 3, Keeper includes three major components: test input generation (Section 4), test output
processing (Section 5), and code smell detection (Section 6).

CODE SMELL DETECTION

TEST OUTPUT PROCESSINGTEST INPUTGENERATION

TEST RUN

Failure
Identification

Expected
Execution Path

Symbolic
Execution

& Constraint
Solving Pseudo-

Inverse API Failure
Attribution

Test Reports

Non-ML Inputs

ML Outputs ML
Inputs

Static Analysis Anti-Pattern
Detection

Source
Code

Fig. 3. An overview of Keeper.

, Vol. 1, No. 1, Article . Publication date: May 2024.

6 Wan and Liu, et al.

Given the software source code and a function 𝐹 to test4, Keeper first generates test input with
symbolic execution and constraint solving. Keeper represents all the function parameters of 𝐹 as
symbolic variables and generates symbolic path constraints for every branch of 𝐹 and its callees.
Keeper leverages pseudo inverse functions to solve the constraints of each feasible execution path
and produces a diverse test suite that offers full branch coverage.
Once all the test inputs are generated, Keeper executes them and automatically judges output

correctness based on whether the expected execution path is followed or not. Keeper then identifies
and reports failures based on three symptoms: low accuracy, dead code, and fail-stops. After
detecting a failure, Keeper attempts to patch the software by changing how ML APIs’ output is
used.
Besides defects that lead to incorrect software behavior, Keeper also detects code smells that

degrade software performance. Motivated by an empirical study [102], Keeper conducts static
analysis to detect performance-related anti-patterns in the scope of the tested function 𝐹 and its
callees. Once detected, Keeper provides fix suggestions to avoid unparalleled computation and
skippable API invocations.

4 TEST INPUT GENERATION
In this section, we explain how Keeper handles cases when ML APIs are part of the path constraints
and generate inputs for ML APIs, which are not handled by existing techniques.
A naive solution is to symbolically execute ML APIs’ implementation. Unfortunately, this is

too expensive to carry out for state-of-the-art deep neural networks (DNN). Not to mention that
the exact DNNs used by ML API providers are unknown. For example, a state-of-the-art image
classification network, BASIC-L [18], has 2440 million parameters. It takes in a 224 × 224 pixel
image and generates the output after about 250 billion floating point operations. Solving a path
constraint that involves this network with 224 × 224 symbolic variables would take days.

Keeper decomposes the problem of generating inputs for ML APIs into two parts: first, it identifies
the ML-API outputs that are needed to satisfy path constraints using symbolic execution (Section
4.1); and then synthesizes the ML-API inputs that are expected to produce those outputs using
carefully designed pseudo-inverse functions (Section 4.2). As we will see, this decomposition not
only avoids the complexity of directly applying symbolic execution to DNNs, but also helps judge
the execution correctness (Section 5).

4.1 Identifying relevant ML outputs
To identify the desired ML-API outputs, Keeper makes its symbolic execution skip any statement
that calls an ML API and instead marks the API output that is used by following code as symbolic.
This way, the output, instead of input, of ML APIs will be part of the path constraints, and by
solving the constraints, Keeper obtains the API-output values that are needed to execute a certain
path.
Keeper’s input generation is built upon an existing symbolic execution engine, DSE [45]. The

only tweak Keeper makes here is to have the symbolic execution engine sometimes generate one
path constraint for each branch sub-condition, instead of the whole branch. Specifically, a common
code pattern that we have observed is to decide the execution path based on whether or not an
ML API outputs a label that belongs to a pre-defined set. For example, the smart-can application
in Figure 4 executes the recyclable path when the output of label_detection contains a label
that is either paper or aluminum. Since different labels often represent different types of real-world
inputs, Keeper will generate one path constraint for every condition clause, instead of one for the

4Users of Keeper can specify which function to test, including the main function.

, Vol. 1, No. 1, Article . Publication date: May 2024.

Keeper: Automated Testing and Fixing of Machine Learning Software 7

Table 1. Different ML APIs handled by Keeper and their pseudo-inverse functions.

ML Task Main Output Pseudo-inverse Function

Vision

Image classification image class Search on internet, keyword: [image class]
Object detection object name Search on internet, keyword: [object name]
Face detection face emotion Search on internet, keyword: [emotion] + "human face"
Text detection extracted text Print [extracted text] on an image

Language
Document classification topic class Search on internet, keyword: [topic class]
Sentiment detection score, magnitude Select tweets from Sentiment140 dataset [33]
Entity detection entity name, type Use text generation technique, seed: [name] or [type]

Speech Speech recognition transcript Use speech synthesize technique on [transcript]

whole branch. For example, for the line-7 branch in Figure 4, Keeper generates two constraints
(“paper” ∈ classes) and (“aluminum” ∈ classes), which then prompts Keeper to generate two
separate sets of images to satisfy these two constraints.

In our implementation, this is accomplished by enabling a corresponding feature of the underlying
symbolic execution engine. For example, for a branch condition “A or B or C”, four constraints will
be formed representing (1) A is True, (2) B is True, (3) C is True, and (4) none of A, B, C is True.
Solving these constraints leads to four inputs or input sets that satisfy these constraints separately.
Note that, while static analysis techniques could extract the keywords compared with ML API

outputs, symbolic execution techniques are still essential to generate tests. First, keywords are not
sufficient to infer the expected execution path, which is used for judging the correctness of a test
run (see Section 5.1). While many applications use a whitelist to examine ML API output (i.e., if
API_output in whitelist), a non-neglectable portion of them use a blacklist (i.e., if API_output
not in whitelist) or other operations. Second, sometimes, multiple constraints are applied to
the ML API output, which could only be resolved by symbolic execution. The nested if-structure in
Figure 9 is an example. Third, symbolic execution is required to handle the pre-possessing step of
ML API input and resolve test inputs unrelated to ML API (non-ML inputs).

4.2 Identifying ML API inputs
Given an ML API 𝑓 and an output 𝑜 , Keeper aims to create a pseudo-inverse function which
automatically generates a set of inputs 𝐼 , so that 𝑓 (𝑖), 𝑖 ∈ 𝐼 is expected to produce 𝑜 according
to common human judgment. For example, the two images in Figure 1 are expected to make
label_detection output “fire” and the images in Figure 5 are expected to make label_detection
output the corresponding keyword-column.
The pseudo-inverse function should have the following properties: First, it is not an analytical

inversion of 𝑓 . Ideally, it should be built independently from 𝑓 (e.g., not based on the same training
data set), so that it can help not only input generation but also failure identification in a way similar
to N-version programming [7]. Second, it should be a semantic inverse of 𝑓 , reversing the cognitive
task performed by 𝑓 in a way that is consistent with most human experts . This way, test inputs
generated by Keeper can expect to cover most of the software branches, unless the ML API is
unsuitable for the software or is used incorrectly. Third, it should produce more than one output
for each input it takes in. This will allow Keeper to generate multiple inputs for 𝑓 to exercise a
corresponding branch, and get a statistically meaningful test result given the probabilistic nature
of ML APIs.

To achieve these goals, we design three types of pseudo-inverse functions as shown in Table 1.

4.2.1 Search-based pseudo inversion. For many vision and language APIs, search engines offer
effective pseudo inversion: they take in a keyword and return a set of realistic images/texts that
reflect the keyword. Search engines have several properties that serve Keeper’s testing purposes.

, Vol. 1, No. 1, Article . Publication date: May 2024.

8 Wan and Liu, et al.

1 def smart_can(img):

2 labels = client.label_detection(image=img)

3 classes = [x.desc for x in labels]

4 for c in classes:

5 if c == "food":

6 return "organic"

7 if c == "paper" or c == "aluminum":

8 return "recyclable"

9 return "non -recyclable

Fig. 4. A smart can application, Heap-Sort-Cypher [40]

c=="food"

Constraint Keyword Generated Inputs (Search Query)

food
food dessert food pizza food

c!="food" AND
c=="paper" paper

paper blank paper paper artwork

c!="food" AND
c=="aluminum" aluminum

aluminum aluminum bar aluminum plate

c!="food" AND
c!="paper" AND
c!="aluminum"

N.A.

Fig. 5. Keeper-generated test cases for Figure 4

First, they offer great semantic inversion, as there are multiple search engines that have been used
by hundreds of millions of users for many years with high satisfaction [15]. Their top search results
typically match the common human judgment. Second, they are not an analytical inversion of ML
APIs, and we will use engines from different service providers to minimize potential correlations.
Third, they accept a wide range of search words and produce many ranked results, which means a
large number of high-quality test inputs for Keeper. Specifically, Keeper uses different engines and
search keywords for different ML APIs:
Vision tasks. Image-classification and object-detection APIs return string labels that describe

the image and the objects inside the image, respectively. For both APIs, Keeper uses the Bing [12]
image search engine and uses the desired label description or object name as the search keyword.
The face-detection API detects human faces together with emotions (e.g., “joy”, “sorrow”, etc.) in
an image. To generate corresponding images, Keeper uses “[emotion] human face” as a keyword to
search the Bing image.

Language tasks. Document-classification APIs process a document and return topics based on
its content, like “art”, “health”, and “sports”. Keeper uses the desired topic name as a keyword and
searches it at (1) knowledge graph websites, e.g., Wikipedia [107]; and (2) Bing web search engines.
Keeper then uses the text extracted out from each returned web page as the ML API input.

Search engines are good, but not good enough. As search engines typically rank results by their
relevance and quality, it is likely that the top-ranked images/text share similar styles or belong to a

, Vol. 1, No. 1, Article . Publication date: May 2024.

Keeper: Automated Testing and Fixing of Machine Learning Software 9

particular subcategory of the keyword, which is not ideal for software testing. For example, the
top-ranked “paper” images from Bing are mostly notebook pages, while the software input might
be colored paper images.
To further improve the variability of generated tests, Keeper utilizes the phrase association

feature of search engines to find subcategories of the given keyword. For example, the keyword
“paper” is associated with the phrase “blank paper”, “paper artwork”, and others. Keeper then uses
the keyword and its𝑚 subcategories to query the search engine and obtain their top results, where
𝑚 = ⌊

√︁
|𝐼 |⌋ − 1. The images in each row of Figure 5 are the top search results returned by Bing and

the actual search queries are shown at the bottom of the images. The only exception is the last
row: when there is no specific keyword requirement, Keeper uses a blank image and images from a
random-image generator [69] for testing.

Note that, some cloud services use both a label name (e.g., “cat”) and the corresponding unique
id (e.g. “/m/01yrx”) to describe its categorical result. To support keywords in either format, Keeper
maps the unique id to the label name using official documents.

4.2.2 Synthesis-based pseudo inversion. The semantic inversion of some ML APIs does not match
the functionality of search engines. Fortunately, we find ways to synthesize inputs for them.

The text-detectionAPI extracts printed or handwritten text from an image. Unfortunately, image
search engines tend to return images whose content reflects the search keyword, instead of images
that contain the keyword as text within the image. Therefore, given a text string, Keeper prints it
on a background image using both printed and hand-writing fonts; different font settings produce
different test images. Keeper uses a blank image and some random images as the background.
Figure 6 shows some of the test images that Keeper generates for application wanderStub [104],
which has a branch checking if the input image contains "Total".

Fig. 6. Test inputs generated for wanderStub [104].

The entity-detection API inspects the input sentence for known entities—there are in total 13
entities, such as ADDRESS, DATE, etc. Since the search engines usually return long documents,
Keeper instead uses a popular language generation model [84] to synthesize any number of
sentences that start with a pre-defined word/phrase that corresponds to the desired entity type.

The speech-recognition API transcribes the input audio clip and outputs the transcript. Keeper
uses speech synthesis tools, particularly the pyttsx3 [11] Python library, to generate the desired
audio clips based on a given transcript. Keeper generates multiple audio clips using different voice
settings supported by this library.

4.2.3 ML benchmarks for pseudo inversion. Reversing sentiment detection API faces two chal-
lenges. First, it does not directly output a categorical result of the prevailing emotional opinion
within the text. Instead, it returns two floating-point numbers for developers to derive emotion
categories from. There is no perceivable way to generate text that can offer the exact numbers.
Second, even if we just hope to generate text that contains positive or negative emotions, no search
engine can accomplish this.

Facing these challenges, Keeper resorts to the Sentiment140 dataset [33], which contains 1,600,000
tweets, manually labeled as positive, negative, and neutral. Keeper randomly samples the same
number of positive, negative, and neutral tweets as test inputs for any sentiment-detection API

, Vol. 1, No. 1, Article . Publication date: May 2024.

10 Wan and Liu, et al.

called inside an ML software, with the expectation that these tweets will help cover different
branches in the software that are designed for different emotions.
Note that, we treat ML benchmarks as the last resort for multiple reasons. First, the labels

associated with data inside ML benchmarks either have few categories or have limited quality.
For example, ImageNet [23] contains 1000 manually labeled image categories, which is too few
compared with the 20,000 labels of Google Vision AI. On the contrary, OpenImage has 9 million
images with 20,000 labels. However, 89% of the labels are generated by DNNs, and 53% of the human-
verified ones are incorrect [55]. Second, ML benchmarks are built with pre-processed real-world
data. Such "clean" data has less variety, as they share similar size, resolution, and encoding format.
Third, some benchmarks may be part of the training data set of ML APIs, which makes the test
inputs biased towards the ones APIs can perform well on and hence less likely to reveal problems.
Finally, we do not use generative models to synthesize new data, as this approach requires much
training data and ends up generating non-real-world data that has a similar distribution with the
training set, whose limitations we discussed earlier.

4.2.4 Solving corner cases. Keeper also tweaks three types of pseudo-inverse functions to fit some
special API usage scenarios.
Path without constraints. If the execution path does not have any constraint on ML API

output, Keeper uses random keywords from the API category list and a pre-defined set.
Empty set output. If the desired ML API output is an empty set, Keeper uses blank images,

empty string, and muted audio for its input.
APIs’ sharing input. If multiple vision APIs share the same input image, Keeper concatenates

the keywords of all APIs, except for text-detection API, and invokes pseudo inverse functions to
collect real-world data. Keeper then uses these images as background and prints text strings desired
by text-detection API. If multiple language APIs share the same input, Keeper concatenates text
strings obtained from each pseudo-inverse function. If multiple speech APIs share the same input,
Keeper concatenates the desired transcript and invokes the pseudo inverse function.

4.3 Input Generation Summary
Overall, Keeper generates test inputs for any function 𝐹 in the following steps.
First, for each path whose constraints are satisfiable, Keeper’s symbolic execution (Section 4.1)

generates a set of inputs I. Keeper first resolves non-ML inputs with standard symbolic execution.
If no branch in 𝐹 or its callees depends on the output of an ML API, the input generation is done.
Otherwise, if there is such an ML-dependent branch 𝑏, those inputs that are expected to cover 𝑏,
denoted as I𝑏 ⊂ I, contain fields that represent the desired outputs of ML APIs and require further
processing.

Next, for each desired output 𝑜 of an ML API 𝑓 , Keeper applies 𝑓 ’s pseudo-inverse function on 𝑜
to generate a set of image/text/audio inputs for 𝑓 (Section 4.2). If 𝑓 ’s input is exactly an input of the
function under test 𝐹 (i.e., it is not derived from an input of 𝐹 through pre-processing), the input
generation is done. Keeper updates every input in I𝑏 with the image/text/audio information. If there
were 𝑘 inputs in I𝑏 , Keeper now gets 𝑘 × 𝑁𝑏 inputs, with 𝑁𝑏 being the number of image/text/audio
inputs Keeper generated for the ML API 𝑓 to exercise 𝑏. Developers can configure 𝑁𝑏 , or the total
number of test inputs to generate. Keeper will then compute 𝑁𝑏 , so that every ML-dependent
branch (sub-)condition gets exercised by about the same number of inputs.
If 𝑓 ’s input is derived from an input of function 𝐹 through pre-processing, Keeper applies

symbolic execution on that pre-processing code, with additional constraints on 𝑓 ’s input, to figure
out the desired input of 𝐹 and finishes the input generation. For example, if a function deletes the
first character of a string parameter and feeds the resulting string to an ML API 𝑓 , Keeper will

, Vol. 1, No. 1, Article . Publication date: May 2024.

Keeper: Automated Testing and Fixing of Machine Learning Software 11

add a character to the beginning of every input generated for 𝑓 to get the string parameter of this
function. Keeper’s ability to handle pre-processing is limited by the symbolic execution engine,
which currently only supports text.

Finally, these test inputs generated by Keeper are ready to be executed. Particularly, in order for
a software to consume a test image or audio clip 𝑖 generated by Keeper, Keeper changes the file
path embedded in the software to a path that points to 𝑖 .

5 TEST OUTPUT PROCESSING
5.1 Failure identification
Keeper looks for three types of failure symptoms: low accuracy, dead code, and generic failures.

5.1.1 Low-accuracy failures. When software incorporates cognitive ML APIs in its computation,
judging the output’s correctness becomes challenging: (1) by definition of cognitive tasks, this
output needs to be checked with many people to see if it matches with common human judgment;
(2) due to the probabilistic nature of ML APIs, an occasional mismatch is expected. Of course,
frequent mismatches are un-acceptable and severely hurt user experience, like not triggering fire
alarms when needed (Figure 1) or consistently categorizing garbage incorrectly (Figure 4).
To tackle the first challenge, Keeper uses pseudo-inverse functions as an approximation of

common human judgment; to tackle the second challenge, Keeper considers the software to suffer
from a low-accuracy failure, or an accuracy failure for short, only when over a threshold portion of
inputs of a particular type produce outputs that are inconsistent with common human judgment.
Specifically, for the input set I𝑐 that is generated to cover a branch 𝑏 and satisfy one of its sub-

condition 𝑐 , Keeper checks which of them exercises 𝑏 at run time, no matter which sub-condition
of 𝑏 is satisfied, denoted as Isucc𝑐 and calculates the recall of 𝑏 (i.e., |Isucc𝑐 |

|I𝑐 |). If the recall of any input
set generated to cover 𝑏 drops below a threshold 𝛼 , 75% by default, Keeper reports an accuracy
failure associated with 𝑏. The setting of 𝛼 can be adjusted, but should not be 100%, as ML APIs are
probabilistic and pseudo-inverse functions cannot guarantee to be correct all the time.
For the fire-alarm example in Figure 1, Keeper identifies an accuracy failure associated with

the “fire” branch, as its recall is 41%; for the smart-can example in Figure 4, Keeper identifies an
accuracy failure as the recall of the recyclable branch is only 13%.

For a branch 𝑏 that depends on the output of a sentiment-detection API, Keeper identifies failures
slightly differently as inputs are generated for sentiment-detection API differently as discussed in
Section 4.2.3. During test runs, Keeper checks all the inputs that exercise 𝑏 to see what portion of
them are labeled as having positive emotion and what portion are labeled as negative. If both go
above a threshold, indicating that branch 𝑏 is not accurately differentiating inputs with different
emotions, Keeper reports an accuracy failure.

Root causes of accuracy failures. These accuracy failures are not equivalent to low precision
or low recall of the ML API itself. While the latter is a possible root cause of the former, incorrect
software implementation is also likely ti lead to accuracy failure. Take the fire alarm application in

1 label = client.label_detection(image=img)

2 temp = label [0]. desc + label [1]. desc + label [2]. desc

3 - if "fire" in temp:

4 + if "fire" in temp or "flame" in temp or "ash" in temp:

5 alarm ()

Fig. 7. A fix of Figure 1 suggested by Keeper.

, Vol. 1, No. 1, Article . Publication date: May 2024.

12 Wan and Liu, et al.

1 topics = language_client.classify_text(document)

2 for topic in topics:

3 if topic.name=="Sensitive Subjects" or "Adult":

4 record_profanity ()

Fig. 8. Dead-code bugs in Soap [93]

Figure 1 as an example, due to improper branch conditions, the software wrongly silences the alarm
when the ML API correctly recognizes flame from a forest fire image. In addition, an inaccurate ML
API might be tolerated by software, either due to careful software implementation, or insensitive
application scenarios. Therefore, Keeper intentionally does not calculate the precision or recall of
any ML API, but instead focuses on the overall software.
One possible cause is that developers missed some related labels in a branch condition, which

we refer to as an improper label problem. For example, the label_detection API does not return
“fire” as a top-3 label for many fire images, which by itself is not considered a failure by Keeper. If
the software uses the API properly, like raising a fire alarm upon not only a “fire” label but also a
“flame” label and an “ash” label as shown in Figure 7, no accuracy failure would be reported, as the
recall of the alarm-related branch is as high as 85% and the precision is 100% in our experiments.
Another possible cause is that developers used a label that does not exist in the API’s label set

and can never be the output. For example, an application [40] compares the label_detection
output with a non-existing label “clothes”, while “clothing” is the valid label.

5.1.2 Dead-code failures. These occur when a branch is not covered after all the testing runs. They
happen under two scenarios.

One scenario is that Keeper generates a set of test inputs I𝑏 expected to cover a branch 𝑏, and yet
𝑏 is not exercised by any input in I𝑏 . Such an extreme case of low branch recall (i.e., 0) is often caused
by the branch comparing an ML API output with a non-existing label. For example, a weather
application [85] checks the output of label_detection against the string “gloves". Unfortunately,
among the 20,000 category labels that could be output by this API, none of them is “gloves”. Instead,
“glove” is one of the valid labels for this API, which the developers should have used.

The other scenario is that Keeper fails to generate any inputs to cover a branch, which triggers a
dead-code failure report before any test runs. Sometimes, this is caused by a typo in the branch
condition. For example, Keeper exposes such a failure in Soap [93]. Soap uses classify_text to
judge whether an article contains sensitive subjects or adult content. Unfortunately, it wrongly
uses "Adult" instead of topic.name == “Adult” in its branch condition, making the if-statement
always True. It will regard every article identified with at least one topic as containing adult content!

5.1.3 Generic failures. These have symptoms like crashes that do not require special techniques
to observe. Compared with traditional testing techniques, Keeper offers extra benefits in two
scenarios. (1) The failures are caused by bugs located on a path that requires specific ML API inputs
to trigger. Keeper contributes by generating the needed ML API inputs to exercise the path. (2) The
failures are directly related to the corner cases of ML API inputs, such as blank images that cause
label_detection to return an empty set (Figure 9).

5.2 Failure attribution
To help developers understand and tackle accuracy failures, Keeper attempts to automatically patch
the software by changing how ML APIs’ output is used. Keeper suggests the change to developers
and if all attempts failed, Keeper suggests developers consider using a different, more accurate ML
API, or adding extra input screening or pre-processing.

, Vol. 1, No. 1, Article . Publication date: May 2024.

Keeper: Automated Testing and Fixing of Machine Learning Software 13

1 text = client.text_detection(image=img)[0]. description

2 if "take" in text or "takes" in text:

3 if "meals" in text:

4 m = re.search("(\w+)\s+meals'", text)

5 meals = m.group (0)

6 if "mg" in text:

7 m = re.search("(\S+)\s+mg", text)

8 dosage = m.group (0)

Fig. 9. Generic failure in Pill-Identifier [76]

5.2.1 Label changes for categorical outputs. When branch 𝑏 compares an ML API categorical output
with a set of labels, Keeper tries to find a minimum extension of such label set with three goals:
(1) Recall goal: more test inputs that are expected to exercise 𝑏 can now satisfy 𝑏’s condition; (2)
Precision goal: most inputs that are not expected to exercise 𝑏 should continue to fail the condition
of 𝑏; (3) Semantic goal: the added labels are related to the original label(s) in 𝑏 in terms of natural
language semantics.

Without loss of generality, imagine that 𝑏 takes the form of if o == label0, with o being the
output of an ML API 𝑓 . Keeper first collects the set of labels 𝐿 output by 𝑓 for every input in Ifail

𝑏
,

the set of inputs that are expected to exercise 𝑏 but fail to do so.
Vision tasks. Keeper generates patch at branch level, considering the impacts of all the labels

compared with o. To fulfill the semantic goal, Keeper filters out every label in 𝐿 that is neither
adjacent to nor sharing a common neighbor with label0 in the wikidata knowledge graph [106].
For example, “plant” is pruned out by Keeper while processing the accuracy failure in Figure 1,
because it is far away from “fire” in the knowledge graph. Instead, “flame” and “ash” both remain,
as they are both adjacent to “fire” on the graph. Next, Keeper uses a greedy algorithm to iteratively
expand the set of labels compared with o in 𝑏. Every time, Keeper adds to the set a label l ∈ 𝐿 so
that l offers the biggest improvement in 𝑏’s recall without reducing 𝑏’s F1-score (i.e., the harmonic
mean of the precision and the recall). If multiple labels have the same improvement, Keeper selects
the one which has more neighbors in the set. Here, the precision of branch 𝑏 is computed as |I𝑠𝑢𝑐𝑐

𝑏
|

|I𝑠𝑢𝑐 | :
among all the inputs that exercise 𝑏, how many of them are expected to do so. This procedure
continues until the recall of 𝑏 goes above the accuracy failure threshold or when there is no eligible
candidate label remaining in 𝐿.

Language tasks. Similar to vision tasks, Keeper uses the same greedy algorithm to expand the
compared labels from 𝐿. As the categories of document classification tasks are virtual concepts
that are not well described in the knowledge graph, Keeper adopts class hierarchy to capture the
semantic relationship between these virtual concepts. Keeper filters out every label in 𝐿 that is
neither a super/sub-class of nor sharing a common super class with label0.

Note that, utilizing knowledge graph and greedy algorithm, Keeper naturally suggests the valid
synonym for a non-existing label compared with 𝑜 . To serve the non-expert developers, we avoid
using technical terminologies to describe the patch and its impact, but use plain languages instead.
Through this process, Keeper suggests to the developers that the alarm branch in Figure 1 should
check more labels like that in Figure 7, as the software will behave correctly on 45% more test cases
generated by Keeper.

5.2.2 Threshold changes for numerical outputs. When branch 𝑏 checks the numerical outputs of
the sentiment-detection API, Keeper tries to further subdivide 𝑏 to better differentiate text inputs
with different emotions. Keeper checks all the inputs that exercise 𝑏 and applies logistic regression

, Vol. 1, No. 1, Article . Publication date: May 2024.

14 Wan and Liu, et al.

1 response = client.analyze_sentiment(text)

2 score , mag = response.score , response.magnitude

3 if score > 0.5:

4 feelings = "really like"

5 elif score > 0:

6 - feelings = "like"

7 + if 3.0* score - 0.3* mag >= 0:

8 + feelings = "like"

9 + else:

10 + feelings = "neutral"

11 elif score > -0.5:

12 feelings = "dislike"

13 else:

14 feelings = "really dislike"

Fig. 10. A fix of Animal-Analysis[6] suggested by Keeper

with the {score, magnitude} output as feature vectors and the labeled emotion as a class. If the
prediction accuracy is larger than 𝛼 , Keeper then suggests developers create a new branch under 𝑏,
using the linear formula of the logistic regression model as the branch checking threshold, as shown
in Figure 10. Keeper also informs developers how many text inputs are correctly differentiated with
this patch.

6 CODE SMELL DETECTION
While Keeper-generated tests are effective to reveal semantic bugs that lead to software misbehav-
iors, they cannot detect the performance bugs that slow down the software execution. Motivated by
the anti-patterns identified by an empirical study of ML software [102], Keeper uses static analysis
to detect performance-related code smells and provide patch suggestions.
Given a function 𝐹 to test, Keeper first conducts function call graph analysis to trace all the

functions invoked during the execution of 𝐹 . Keeper then in-lines them to get an in-lined function
𝐹 ′. When there exist recursive calls, Keeper only in-lines each of them once. Keeper detects code
smells within the scope of 𝐹 ′, through pattern-based static analysis. Unlike existing performance
optimization techniques that focus on general software or compilers, Keeper incorporates prior
knowledge of ML Cloud API to detect performance bugs that are uniquely severe in ML software.
Particularly, Keeper focuses on three types of code smells.

Detect synchronous usage of asynchronous API. Unlike classical API design, asynchronous ML
APIs typically are much slower than the corresponding synchronous version, as they are designed
for large-scale time-insensitive tasks. Therefore, invoking asynchronous APIs in a blocking way
would greatly slow down software execution. To detect such code smell, Keeper examines whether
𝐹 ′ invokes an asynchronous ML API without using any multi-thread/process library. The multi-
thread/process library is identified by comparing the library-import and library-function-invocation
statements with a configurable list5 that includes libraries that support parallel computing main-
tained by Keeper. Once detected, Keeper suggests developers either invoke ML API in another
thread to improve parallelism or replace it with synchronous API to reduce latency.

5The default list is obtained through Python official guide of parallel computing: https://wiki.python.org/moin/
ParallelProcessing

, Vol. 1, No. 1, Article . Publication date: May 2024.

https://wiki.python.org/moin/ParallelProcessing
https://wiki.python.org/moin/ParallelProcessing

Keeper: Automated Testing and Fixing of Machine Learning Software 15

Detect unparalleled API invocations. ML API invocations consume limited local computing re-
sources, as the inference procedure is managed by the cloud. Invoking multiple ML APIs at the same
time won’t lead to resource contention, but greatly improves software performance. Many cloud ML
services offer interfaces to invoke ML APIs in parallel, e.g., annotate_image and annotate_text
API from Google AI. For any application that invokes multiple ML APIs, Keeper conducts data flow
analysis on ML API inputs. If two ML APIs share the same input, Keeper examines whether they
are invoked with the parallelism interface or other multi-thread/process libraries. If not, Keeper
reports the code smell and suggests developers use the parallelism interface to parallel ML API
invocations.

Detect repeated API invocations on constant inputs. Depending on the type of ML task and network
bandwidth, an ML API invocation typically takes from 0.2 to several seconds. Therefore, invoking
ML API on constant inputs would lead to a non-negligible performance drop. To detect such code
smell, Keeper conducts data dependency analysis for the ML API input. Keeper focuses on the ML
API that is invoked inside loops, or its caller function is invoked in a loop or an event handler.
Keeper reports a code smell if the ML API input is a constant variable unrelated to the file path.
Keeper then suggests the developer “cache the API result or move the API call outside the loop”.

7 IMPLEMENTATION
7.1 Core algorithm
We have implemented Keeper for Python applications that use Google Cloud AI APIs [35], the
most popular cloud AI services on Github [102]. The core algorithm of Keeper is general to other
languages and ML Cloud APIs. Keeper uses DSE symbolic execution engine PyExZ3 [45] and
constraint solver CVC [9] . Keeper uses Python built-in trace back tool to check branch coverage,
and Pyan [68], AST [83] and Jedi [38] for static analysis analysis. Keeper uses scikit-learn library [89]
for linear regression models and pillow library [20] for image processing.

Fig. 11. Keeper IDE plugin interface

7.2 IDE plugin
As illustrated in Figure 11, we have implemented an IDE plugin for visualized interaction with
Keeper, as the debugging and fixing of accuracy failures and performance bugs particularly require
developers’ participation. In addition, the timely feedback helps programmers preventing defects
in early development stage [88, 116, 117]. The plugin is an extension in Visual Studio Code [72], a

, Vol. 1, No. 1, Article . Publication date: May 2024.

16 Wan and Liu, et al.

Table 2. Statistics of our benchmark suite (*: The ML task is associated with multiple ML APIs)

Apps ML Task (# Apps)
Vision 49 Image classification* (26), object detection (19), face detection (4), text detection* (12)
Language 42 Document classification (16), sentiment detection (22), entity detection* (14)
Speech 13 Speech recognition* (13), Speech Synthesize (1)

popular code editor supporting multiple languages. For any Python software, Keeper first identifies
all functions that invoke ML APIs directly or indirectly through callees, and displays them on the
sidebar, under “RELEVANT FILES AND CODES” in Figure 11. From that list, developers can select
the function to test and provide type information of function parameters, as Python is a dynamically
typed language. Keeper will then start the testing, which usually takes 1–2 minutes, and show logs
of testing progress. At the end of the testing, all exposed failures are grouped by categories and
listed in the sidebar, right under “FUNCTIONS WITH FAILURES” in the figure. Source code related
to each failure is highlighted with underlines, together with a hovering window that offers detailed
information including failure type, description, patch suggestions and failure triggering inputs.
Keeper designs bug reports to be easy to understand and follow. Guided by a small-scale user

study with expert and non-expert developers, Keeper improves its text guidelines by using the
least technical terminologies and avoiding ambiguous phrases. It also provides fault localization
guidance when all patch attempts fail. Besides the patch suggestions introduced in Section 5 and 6,
Keeper also suggests “Please validate the text/image/audio input of ML API before invoking it.” and
“The source code probably contains syntax errors.” when software crashes on some or all of the
test inputs. If the software suffers a dead-code failure, Keeper suggests developer examine branch
predicates for a syntax error.

8 EVALUATION
Our evaluation aims to answer several questions:

RQ1. (Sufficiency) Does Keeper help improve the branch coverage in testing?
RQ2. (Effectiveness) Is Keeper able to find bugs and suggest fixes during its testing?
RQ3. (End-user experience) How do software users feel about the accuracy failures?
RQ4. (Developer experience) How do software developer feel about Keeper?

8.1 Methodology
8.1.1 Applications. As shown in Figure 2, we evaluate Keeper using 104 Python applications that
are from two sources. 1) From the 360 open-source applications assembled by a previous study
of ML APIs [102], we find 45 Python applications that use ML APIs in a non-trivial way (i.e., the
API output affects control flow). 2) From the GitHub code search engine, we additionally check
the first 800 Python applications that use ML APIs and found 59 applications that use ML APIs
in a non-trivial way. These 104 applications use a range of ML APIs, including vision (49 apps),
language (42 apps), and speech (13 apps). Their sizes range from hundreds to millions of lines of
code, with 185,235 lines being the average size.
For more than half of the applications (55), we simply specify main as the function to test. In

other cases, the function under test is the entry function to the software feature related to ML APIs.
During testing, we evaluate the branch coverage and exposed failures of these functions-to-test
and their callees. The average number of branches is 14.

8.1.2 Baselines. We compare Keeper with 3 alternative techniques, with each technique generating
100 test inputs for each function under test.

, Vol. 1, No. 1, Article . Publication date: May 2024.

Keeper: Automated Testing and Fixing of Machine Learning Software 17

Table 3. Average branch coverage across 104 applications.

Vision App. Language App. Speech App.
Keeper 93.1% 96.8% 93.1%
Keeper* 92.2% 96.0% 93.1%
Random-Real 75.2% 84.3% 60.3%
Random-Real-Noise 74.2% 75.8% 60.3%
Fuzzing 49.3% 68.8% 35.8%

(1) RandomReal: it randomly picks inputs fromwell-established data sets, including ImageNet [23]
that contains 14 million images, Twitter US Airline Sentiment [51] that contains 15,000 tweets, and
LibriTTS dataset [113] that contains 585 hours of English speech audio.

(2) Random Real + Noise: it adds random noise to inputs picked by Random Real. For an image, it
randomly adds noises following Gaussian distribution; for a text input, it randomly changes the
word orders. It does not add noise to audio, as we find that adding small noises does not affect ML
API and yet adding big noises would turn the audio clip into what the third approach will generate.

(3) Fuzzing: it uses a coverage-based fuzzing tool pythonfuzz [29] to generate tests. For every
image input, it uses an integer list to fill its RGB matrix in a repeated way. For every text input, it
generates ASCII character sequences. For audio inputs, it directly generates the audio data.
This paper is an extension of our earlier work [103], supporting code smell detection, and

improving the variety of generated tests, coherence of patch suggestions, and readability of the
failure report. To conduct an ablation study, we also compare Keeper with its original version
Keeper*.

8.1.3 User studies. Unlike traditional software failures like crashes, accuracy failures could be
subjective to human judgment. Therefore, we conduct two user studies, one with 100 participants
through an online survey and Amazon Mechanical Turk, and one with 21 Python developers
through Zoom interviews and Prolific [82], to see whether end-users and developers agree with
Keeper’s judgment and think about Keeper. We will present the details in Section 8.3.

8.2 Software testing evaluation
8.2.1 Branch coverage. For each of the 104 functions specified to test, each from one application in
our benchmark suite, we compute the accumulative branch coverage achieved by the 100 inputs
generated by each testing technique. Table 3 summarizes the results. The statistics and detailed
experimental results of each benchmark application are available in Appendix ??.

Across different types of applications, Keeper consistently achieves high branch coverage, around
95% on average. The uncovered branches are either related to dead-code failures that Keeper
discovers, or related to code that our underlying symbolic execution engine cannot handle. In
comparison, the fuzzing technique performed the worst, covering less than 50% of the branches for
vision and speech applications, confirming our intuition that it is important to use realistic inputs
to test ML APIs.
Random Real performs better than fuzzing, but still fails to cover about a quarter of branches

in vision applications and half of the branches in speech applications. Adding random noises to
random realistic inputs does not help. Keeper covers 18% and 33% more branches than Random-
Real for vision and speech applications, respectively, as Keeper leverages symbolic execution and
pseudo-inverse functions to generate inputs targeting different branches.

Applications that use language APIs appear to be the easiest to cover—even fuzzing achieves 69%
branch coverage. This is probably because language APIs’ output, like document class or entity
type, has much less variation than that of vision and speech APIs.

, Vol. 1, No. 1, Article . Publication date: May 2024.

18 Wan and Liu, et al.

Table 4. Unique failures exposed by Keeper.

Failure Root Cause Related ML Task Keeper Keeper* RReal RReal+N Fuzz.

Generic
Out-of-bound accesses Text detection, entity detection 7 7 6 6 4
Missing input validation Document classification 5 5 - - -
Missing type conversion - 1 1 1 1 1

Accuracy
Improper labels Image classi., object detect., document classi. 24 19 - - -
API limitations Image classi., object detect., document classi. 18 15 - - -
Improper threshold Sentiment detection 9 9 - - -

Dead-code Typos Image classi., document classi., text detect. 4 - - -
Non-existing label Image classification 6 6 - - -

Answer to RQ1 (Sufficiency): Keeper achieves 95% average branch coverage across all types of ML
applications, much higher than the alternative solutions.

8.2.2 Failure exposing and attribution. As shown in Table 4, Keeper exposes many failures by
running those 100 test inputs it generated: 74 failures from the latest version of 45 applications.
These failures cover a range of symptoms and root causes. Except for one failure caused by missing
type conversion, the others are all related to different types of cognitive ML tasks. In comparison,
alternative testing techniques miss 6–9 generic failures caught by Keeper. Furthermore, unlike
Keeper, they cannot automatically recognize accuracy failures and dead-code failures.

Accuracy failures. Among the 51 accuracy failures exposed by Keeper, 9 are related to threshold
checking for the sentiment detection API. For these failures, Keeper manages to suggest better
checking threshold to differentiate positive text from negative ones.
There are 42 accuracy failures related to label checking for the APIs with categorical outputs.

Keeper manages to fix 24 of them by expanding the corresponding branch with 1–3 additional
labels. The failure in Figure 1 is one such example. As another example, one application [93] checks
if the output of classify_text contains “social issues & advocacy”. This branch has a low recall
of 43%. Keeper suggests adding the superclass “people & society” to the label set, which would
improve the recall to be above 75%. This also reflects a special nature of categorical APIs: while they
make mistakes on subclasses from time to time, their judgment of superclasses is usually reliable.
For the remaining 18 failures, code changes by Keeper can alleviate the problem but cannot

push the recall of the related branch to be above 75%, suggesting fundamental API limitations.
For example, a clothes checker application [21] looks for the non-existing label “person” from the
image-classification API. Keeper suggests checking the synonym “human” instead, which increases
the branch’s recall to 45%, but still below 75%. Actually, due to the limitation caused by its design,
this API tends to describe human images by clothes and hairstyle. However, the branch’s recall
would be improved to 100%, if the application uses the object-detection API instead.

Dead-Code failures occur in 10 applications. Six of them are due to non-existing labels. Four of
them are because of typos in branches that process ML API output, like the one in Figure 8.

Generic failures are mainly caused by out-of-bound accesses to lists returned by ML APIs and
missing input validations for ML APIs, as shown in Figure 9. One crash is caused by a buggy code
inside a branch body that handles images with coins inside. This failure cannot be exposed by other
testing techniques, as they did not produce images with coins inside.
False positives. Keeper has three false positives in total (they are not included in Table 4).

One application tries to detect sensitive documents by checking if any output of the document-
classification API contains a “ensitive” sub-string. Keeper feeds its pseudo-inverse function with
“ensitive” and fails to get any relevant test inputs, and hence incorrectly reports a dead-code failure.
The other two applications have a branch that gets covered only when an ML API generates a

, Vol. 1, No. 1, Article . Publication date: May 2024.

Keeper: Automated Testing and Fixing of Machine Learning Software 19

1 redundant_stuff =['Food','Fruit ','Plant ','Vegetable ' ,...,'Drink ','Dessert ','Cup']

2 temp_entry = []

3 labels = client.label_detection(image=img)

4 objects = client.object_localization(image=img)

5 for label in labels:

6 if label.description not in redundant_stuff:

7 temp_entry.append(label.description)

8 for object_ in objects:

9 if object_.name not in redundant_stuff:

10 temp_entry.append(object_.name)

11 if 'Packaged goods' in temp_entry:

12 text = client.text_detection(image)

13 process(text)

Fig. 12. Unparalleled API invocations in Omakase [75].

1 request = client.long_running_recognize(audio) # async speech -recognition API

2 result = request.result(timeout =90) # wait until request finished

3 images = process_transcript_and_download_images(result)

4 video_frames = initialize_video(audio.duration)

5 video = fill_in_images(video_frames , images)

Fig. 13. Synchronous usage of asynchronous API in SIVG [92].

specific output with low confidence. Keeper is not effective at generating low-confidence inputs
and wrongly reports an accuracy failure.
Threshold setting. As discussed in Section 5.1, the recall threshold 𝛼 is set to 0.75 by default

when detecting accuracy failures. Naturally, more failures would be reported when 𝛼 is larger.
Increasing 𝛼 to 0.95, which is unreasonably high, would create 12 more failure reports; decreasing
𝛼 to 0.6 would have 5 fewer failure reports.

8.2.3 Code smell detection. Keeper detects code smells in 19 applications without false alarms.
Sixteen of them sequentially invoke multiple vision or language APIs on the same input. After

adopting the patch suggested by Keeper, they achieve 1-2x speed up. In a news summary applica-
tion [60], the developer uses the sentiment-detection API and entity-detection API to analyze news
articles and highlight the topic sentences. Although sharing the same input, these two APIs are
invoked separately, which almost doubles the execution time. As another example in Figure 12,
Omakase [75] sequentially invokes both image-classification and object-detection API to identify
all the food in a picture. If there exists any packaged goods, it invokes text-detection API to obtain
its content. Through Keeper-generated tests, Keeper reports that Omakase fails around 5% of drink
images, which is tolerable. However, paralleling these ML APIs could offer 2X or even 3X speedup,
which is a non-neglectable performance improvement.

Two applications use asynchronous APIs in a blocking way. For example, SIVG [92] in Figure 13
uses an asynchronous speech-recognition API to analyze the audio input, download images based
on the transcript, and use the transcripts to generate video frames. Although video initialization
does not have data dependency with the ML API invocation, the developer executes these two
time-consuming operations sequentially and thus degrades the performance. Actually, the software
is completely idle when waiting for the API response (line 2), which provides an ideal chance for
parallelism.

, Vol. 1, No. 1, Article . Publication date: May 2024.

20 Wan and Liu, et al.

1 while True:

2 text = speech_client.recognize(audio).result

3 if (text == "hey lisa") or (text == "hi lisa") or (text == "lisa"):

4 call_lisa = True # waked up

5 audio = text_to_speech_client.synthesize_speech("Hi, how can I help you?")

6 play_audio(audio)

7 elif call_lisa:

8 process_lisa_command(text)

Fig. 14. Repeated API invocations in Lisa Assistant [62],

Keeper detects repeated API invocations in a voice assistant application [62]. As shown in
Figure 14, this application listens to the microphone, uses speech-recognizes API to transcribe
users’ voice commands, and generates audio replies through speech-synthesize API. While passing
all the generated tests, it actually has a severe defect that hurts performance: the speech-synthesize
API in line 5 will be invoked with the same input string every time the user awakes the voice
assistant. If this application caches the generated audio clip and replaces the future API invocations
with it, around 1 second could be saved for each waking phase.

8.2.4 Ablation Study. Compared with Keeper*, Keeper improves around 1% average branch cover-
age for vision and language applications. By improving test input variety through phrase association
mechanism, Keeper-generated tests are more likely to cover the application scenario, especially
for those “long-tail” applications. Take a property management application [87] as an example, it
uses the keyword “wall” to examine the image-classification results of an indoor image. However,
using this keyword, the image search engine only returns brick walls, whose corresponding ML
API output is typically about bricks. Instead, using the associated phrase “office wall”, Keeper
successfully finds indoor images with wall and fulfills the branch condition.

Besides improving branch coverage to increase the chance of exposing more failures, we believe
test variety improvement is also useful to understand the limitations of ML API and to guide
developers in fixing their implementation. Particularly, Keeper detects 8 more accuracy failures
than Keeper*, and is able to fix 5 of them. These failures are wrongly reported as dead-code failures
by Keeper*, and also failed to be patched.
Keeper also detects 19 more performance-related software defects than Keeper*, which proves

the importance of Keeper’s code smell detection mechanism.

Answer to RQ2 (Effectiveness): Keeper reveals 71 failures together with 19 code smells from 56
out of the 104 tested applications. The symptoms cover low accuracy, crashes, dead-code, and
performance loss. The patches suggested by Keeper successfully fix 29 failures and 16 code smells.
In comparison, alternative solutions only detect 5 to 7 generic failures.

8.3 User studies
8.3.1 Study with end-users. To better evaluate the accuracy failures and the code changes suggested
by Keeper, we recruit 100 participants on Amazon Mechanical Turk for a software-user survey.

The survey includes 4 applications from our benchmark suites: 2 image-related applications and
2 text-related applications. On each survey page, a brief description is given for an application and
user-study participants are told to review how two versions of this application perform on a set of
inputs. Then, the web page displays a number of input images/text and the corresponding outputs
of application version-1 and application version-2. These two versions are the original application
and the application with suggested code changes from Keeper (referred to as fixed in Figure 15);

, Vol. 1, No. 1, Article . Publication date: May 2024.

Keeper: Automated Testing and Fixing of Machine Learning Software 21

Fig. 15. End-user preference of applications. Fig. 16. Developer preference of failure reports.

Table 5. System usability scale of Keeper. The score of positive (negative) questions ranges from 1 to 5 for
strong disagree (agree) to strong agree (disagree)

Question Average Score
I think that I would like to use this tool frequently. 4.33
I needed to learn a lot of things before I could get going with this tool. 2.91
I found this tool unnecessarily complex. 3.52
I thought this tool was easy to use. 4.47
I think that I would need the support of a technical person to be able to use this tool. 3.24
I found the various functions in this tool were well integrated. 4.47
I thought there was too much inconsistency in this tool. 3.23
I would imagine that most people would learn to use this tool very quickly. 4.33
I found this tool very cumbersome to use. 3.22
I felt very confident using this tool. 4.09

we randomly decide which one of them is version-1 and which is version-2 on each survey page to
reduce potential bias. Each participant is asked to answer questions about (1) for each input, which
version’s output they prefer; and (2) which version they think is better with everything considered.
Participants are compensated $5 after the survey.

A summary of the user study results is shown in Figure 15. As we can see, in all cases, a dominant
portion of end-users prefer the version with changes suggested by Keeper over the original version,
supporting Keeper’s judgment about accuracy failures and Keeper’s attempt to improve software
quality. At the same time, we also notice that there are 20–26% of user-study participants who
prefer the original software and 12–27% who feel the two versions are about the same. These results
confirm the fact that cognitive tasks are inherently subjective—even human experts often do not
agree with each other on these tasks.

Answer to RQ3 (End-user experience): Most end-users think that the Keeper-fixed software has
better quality than the original one, supporting Keeper’s failure detection and fixing capability.

8.3.2 Study on developers. To further evaluate the usability of Keeper and developers’ attitude
towards Keeper-generated tests and patches, we conduct an interview-based user study.

We recruit 14 male and 7 female participants who have Python programming experience through
a widely-used user study platform Prolific [82]. The participants are between 18 and 60 years old.
Six of them are between the ages of 18-24 and nine are between 25-34. In terms of educational
background, 3 participants have a Master’s or Ph.D. degree, 11 have a Bachelor’s degree, and the
remaining 6 have a lower degree. Among all 21 participants, 18 have computer science background
and 17 have knowledge of machine learning.

GivenML API official documents andmanuals, participants are asked to implement two functions,
one for image analysis and one for text analysis, with the code skeleton provided by us. They are
then shown Keeper instructions and asked to test their implementations independently. For any

, Vol. 1, No. 1, Article . Publication date: May 2024.

22 Wan and Liu, et al.

1 THRESHOLD = 0.5

2 def is_about_food(article_text):

3 response = client.classify_text(article_text)

4 if response is None:

5 return False

6 for category in response:

7 name = category.name.lower()

8 if category.confidence > THRESHOLD and ("nutrition" in name or "food" in

name or "cuisine" in name):

9 return True

10 return False

Fig. 17. A code snippet written by Participant-1, judging whether an article is about food.

failures reported by Keeper, participants are asked about whether they think the failure indeed
reflects a software bug; how they would fix the code; whether they think Keeper is helpful; and
others. Finally, the participants are asked to fill out a System Usability Scale (SUS) questionnaire [57].
To reduce bias, the participants are told that the goal of this study is to understand how people
implement ML software, and the testing tool is part of the development process. This whole process
is conducted through Zoom, with one researcher remotely interacting with the participant. The
whole session took 60–90 minutes. Participants are informed of a fixed compensation of $20 before
the interview. At the end of all interviews, two researchers code the interview data independently
and then meet to resolve disagreements.
In total, Keeper reports 32 accuracy failures and 7 dead-code failures for the 42 implemented

functions. The participants each has 1–2 failures exposed by Keeper from their code. Keeper suggests
code changes for all 32 accuracy failures and points out the possibly problematic code snippet for 6
of the dead-code failures.
Figure 16 summarizes developer preference of failure reports. As we can see, almost all failure

reports (38 out of 39) are regarded as helpful. Formost of the failure reports (27 out of 39), participants
say they would definitely adopt the patch suggested by Keeper. Participants are not sure about the
suggested patch in 10 reports, because they want to inspect Keeper-generated test cases before
making final decisions. Note that, most participants (19 out of 20) agree with Keeper-generated
test cases. The other participant feels that some tests are harder than his/her expectation and the
software failure is totally acceptable. This further illustrates the subjectivity when judging software
output correctness.
Participants strongly agree that most failure reports (29 out of 39) pointed out bugs in their

programs. There are 7 reports, all about accuracy failures, where participants feel the failures do
not mean their code is buggy, although in all cases they are willing to adopt the code changes
suggested by Keeper. One participant described that “It is not a bug, but could be improved.” (P10).
Some participants complained about ML API, saying that “I hope there is a better ML API design.”
(P1); “Is there a way to customize the categories of ML API? I want it to be more specific.” (P9). We
believe this reflects the subjective nature of cognitive tasks.

Figure 17 shows the code snippet written by Participant-1, aiming to judge whether an article is
talking about food in a forum application. After a few hand-coded unit tests, Participant 1 finally
uses keywords “nutrition”, “food”, and “cuisine” to examine the result of classify_text API.
However, it only passes 71% of Keeper-generated tests to cover Line-9. Keeper suggests additionally
checks keywords “agriculture” and “forestry” to improve branch recall to 78%. Going through the

, Vol. 1, No. 1, Article . Publication date: May 2024.

Keeper: Automated Testing and Fixing of Machine Learning Software 23

failure report, Participant 1 accepts the patch, saying “Given the flaw of ML API, this patch could
improve software.”
The results of the SUS questionnaire are summarized in Table 5. Overall, the participants gave

positive responses to most of the questions, indicating that Keeper is easy to use. Only the second
question on learning cost gets an average score of 2.9 (neither agree nor disagree), as Keeper
requires background knowledge of ML APIs. The participants tell us that “I’m definitely interested
to use this tool when I’m developing such ML software. It is fun to use it.” (P7); “The tool is easy to
use. Just need to press the buttons” (P15); “Making testing automated is great.” (P21).

Answer to RQ4 (Developer experience): A dominant portion of Keeper’s failure reports are agreed
by the developers and the corresponding patches are accepted. Most developers find these failure
reports informative and helpful. They also think Keeper is user-friendly and easy to use, admiring
Keeper’s algorithm and interface design.

8.4 Threats to Validity
Internal threats to validity. Keeper assumes that the top results of search engines are mostly
consistent with human judgment, which could be incorrect. The failure identification and fixing
attempts in Keeper are inherently probabilistic. The recall that Keeper calculated for each branch
could vary depending on the test inputs. More test inputs would make the testing procedure more
robust.
Some inputs generated by Keeper may not be the inputs that the software aims to handle, like

the image being a photo taken indoor and yet the software meant to be used outdoor. When Keeper
expands a branch’s comparison label set, the increase of recall sometimes comes with a decrease in
precision (i.e., more inputs not expected to exercise the branch does exercise). Although Keeper
uses the F1-score to balance precision and recall, ultimately developers need to make the code
change decision. Exactly considering all these situations, we implemented Keeper IDE plug-in,
aiming to help developers make informed decisions about how their software uses ML APIs.
When an input expected by Keeper to cover a branch 𝑏 fails to do so, this input may cover

another branch 𝑏′ whose body conducts the same computation as 𝑏. This would confuse Keeper’s
failure identification, although we have not observed such situations.

External threats to validity. The participants of our user study may not represent all real-world
end-users and developers. The applications in our benchmark suite may not represent all real-world
applications. Our tool is only tested with Python applications using Google AI, not other ML Cloud
API services. Keeper only covers cloud APIs with pre-trained DNNs designed for general purpose
use, not user-defined DNNs based on their specific needs.

9 RELATEDWORK
9.1 ML-related software
Prior work studied development phases [3, 42, 53, 54, 121] of software that contains machine
learning components. They do not look at how to test such software.

Other work focuses on selecting ML APIs [17] or ensemble their results [16, 108] from different
cloud service providers, to improve the accuracy of recognition tasks. They do not consider software
context and also cannot judge the correctness of each individual input. Another work [102] manually
identified anti-patterns from software that usesMLAPIs. Keeper differs from this study by proposing
testing techniques that can automatically expose failures and attribute failure causes. Keeper also
proposes an automated code smell detection module based on these anti-patterns. Furthermore,
due to the different design goals, Keeper also covers more failure root causes than the previous

, Vol. 1, No. 1, Article . Publication date: May 2024.

24 Wan and Liu, et al.

study. In the 45 applications that are evaluated both by Keeper and the previous study, Keeper
automatically exposed 35 failures, among which only 6 were also identified by the previous study.
Another line of work [41, 52, 59, 61] studies testing autonomous systems. They are tailored for

the characteristics of autonomous driving and spatial-temporal data, and thus not applicable to
most ML software targeted by Keeper.

9.2 ML-related testing
Much research has been done for testing [1, 4, 5, 10, 13, 24, 25, 28, 30, 31, 31, 32, 39, 43, 56, 63, 64,
66, 67, 74, 77, 78, 86, 91, 100, 110, 112, 114, 118, 119, 122], verifying [26, 27, 27, 111], and fixing [46,
58, 94, 97, 98, 115] neural networks, in terms of accuracy, fairness, and security. Other work studies
implementation bugs of neural network architectures [47, 120] and other ML models [19, 99]. They
are orthogonal to Keeper.
As discussed in Section 1, some previous work looked at how to test specific software that

contains ML components [48–50, 96]. Unfortunately, their solutions do not apply to general ML
software. For example, one work trained an SVM classifier to judge the correctness of an image
dilation program, leveraging the fact that the input image and the output image should contain
the same objects [48]. To test a blood-vessel image categorizer, previous work [50] generates
blood-vessel images with certain density, branches, and other features, and uses these features to
generate output ground truth. Previous work [49, 96] uses metamorphic approaches to test entity
detection and image region growth programs. They require application-specific rules about the
inputs and outputs relationship (e.g., after we concatenate inputs of entity detection, the output
becomes the concatenation of individual outputs [96]).
Prior work studies automatic testing and bug detection of machine learning APIs, including

frameworks for implementing neural networks [8, 14, 37, 73, 80, 95, 101, 105] and REST APIs that
provide machine learning solutions [34, 36, 79]. They focus on the implementation inside ML APIs,
not how they interact with other software components.

9.3 Test generation using search engines
Previous work [70, 90] explored using search engines to generate string inputs for software
under test. Specifically, when a program identifier corresponds to a common concept, such as
emailAddress, this identifier can be used as a keyword to search for related web pages. The result-
ing web pages can then be processed to help generate related string inputs (e.g., a realistic email
address).

Clearly, Keeper tackles fundamentally different problems from previous work, although Keeper
also leverages search engines.

10 CONCLUSION
It is challenging to efficiently and effectively test software containing machine learning components.
We present Keeper, an automated coverage-guided testing framework that helps developers detect
bugs and provide fixing suggestions for their software implementation. Keeper automatically
generates test cases via a novel two-stage symbolic execution and Keeper-designed ML inverse
functions. It also conducts static analysis to detect code smells. We evaluate Keeper with a variety
of real-world machine learning applications and achieve high code coverage with a small set of
test cases. It identifies bugs that lead to software crashes, lower inference accuracy, dead code, or
performance loss. Our user studies show that most end-users and developers agree with Keeper’s
judgments and find it helpful.

, Vol. 1, No. 1, Article . Publication date: May 2024.

Keeper: Automated Testing and Fixing of Machine Learning Software 25

ACKNOWLEDGEMENT
We thank the reviewers for their insightful feedback. The authors’ research is supported by NSF
(CNS1764039, CNS1956180, CCF2119184, CNS1952050, CCF1823032, CNS2313190), ARO (W911NF
1920321), and a DOE Early Career Award (grant DESC0014195 0003). Additional support comes
from the CERES Center for Unstoppable Computing, UChicago Marian and Stuart Rice Research
Award, Microsoft research dissertation grant, and research gifts from Facebook.

REFERENCES
[1] Raja Ben Abdessalem, Shiva Nejati, Lionel C Briand, and Thomas Stifter. 2018. Testing vision-based control systems

using learnable evolutionary algorithms. In ICSE.
[2] Amazon. 2022. Amazon artificial intelligence service. Online document https://aws.amazon.com/machine-learning/ai-

services.
[3] Saleema Amershi, Andrew Begel, Christian Bird, Robert DeLine, Harald Gall, Ece Kamar, Nachiappan Nagappan,

Besmira Nushi, and Thomas Zimmermann. 2019. Software engineering for machine learning: A case study. In
ICSE-SEIP. IEEE, 291–300.

[4] Saleema Amershi, Max Chickering, Steven M Drucker, Bongshin Lee, Patrice Simard, and Jina Suh. 2015. Modeltracker:
Redesigning performance analysis tools for machine learning. In CHI.

[5] Rico Angell, Brittany Johnson, Yuriy Brun, and Alexandra Meliou. 2018. Themis: Automatically testing software for
discrimination. In ESEC/FSE.

[6] Animal-Analysis. [n. d.]. An image sharing platform. Online document https://github.com/OkapalDominic/animal_
analysis.

[7] Algirdas Avizienis. 1995. The methodology of n-version programming. Software fault tolerance 3 (1995), 23–46.
[8] Soheil Bahrampour, Naveen Ramakrishnan, Lukas Schott, and Mohak Shah. 2015. Comparative study of deep learning

software frameworks. arXiv preprint arXiv:1511.06435 (2015).
[9] Clark W. Barrett, Christopher L. Conway, Morgan Deters, Liana Hadarean, Dejan Jovanovic, Tim King, Andrew

Reynolds, and Cesare Tinelli. 2011. CVC4. In Computer Aided Verification. Springer, 171–177.
[10] David Berend, Xiaofei Xie, Lei Ma, Lingjun Zhou, Yang Liu, Chi Xu, and Jianjun Zhao. 2020. Cats Are Not Fish: Deep

Learning Testing Calls for Out-Of-Distribution Awareness. In FSE.
[11] NateshM Bhat. [n. d.]. pyttsx3: Text-to-Speech Library for Python. Online document https://pypi.org/project/pyttsx3/.
[12] Microsoft Bing. [n. d.]. Bing image search. Online document https://www.bing.com/images/trending?FORM=ILPTRD.
[13] Nghi DQ Bui, Yijun Yu, and Lingxiao Jiang. 2019. AutoFocus: interpreting attention-based neural networks by code

perturbation. In ASE.
[14] Lars Buitinck, Gilles Louppe, Mathieu Blondel, Fabian Pedregosa, Andreas Mueller, Olivier Grisel, Vlad Niculae, Peter

Prettenhofer, Alexandre Gramfort, Jaques Grobler, et al. 2013. API design for machine learning software: experiences
from the scikit-learn project. arXiv preprint arXiv:1309.0238 (2013).

[15] Dave Chaffey. [n. d.]. Search engine marketing statistics 2020. Online document https://www.smartinsights.com/
search-engine-marketing/search-engine-statistics/.

[16] Lingjiao Chen, Matei Zaharia, and James Zou. 2022. FrugalMCT: Efficient Online ML API Selection for Multi-Label
Classification Tasks. In PMLR.

[17] Lingjiao Chen, Matei Zaharia, and James Y Zou. 2020. Frugalml: How to use ml prediction apis more accurately and
cheaply. In Advances in neural information processing systems, Vol. 33. 10685–10696.

[18] Xiangning Chen, Chen Liang, Da Huang, Esteban Real, Kaiyuan Wang, Yao Liu, Hieu Pham, Xuanyi Dong, Thang
Luong, Cho-Jui Hsieh, et al. 2023. Symbolic discovery of optimization algorithms. arXiv preprint arXiv:2302.06675
(2023).

[19] Dawei Cheng, Chun Cao, Chang Xu, and Xiaoxing Ma. 2018. Manifesting bugs in machine learning code: An
explorative study with mutation testing. In 2018 IEEE International Conference on Software Quality, Reliability and
Security (QRS). IEEE, 313–324.

[20] Jeffrey A. Clark. [n. d.]. Pillow: Python Imaging Library. Online document https://pypi.org/project/Pillow/.
[21] darude brainstorm. 2022. A clothes checking application. Online document https://github.com/paulgan98/darude-

brainstorm.
[22] Kajaree Das and Rabi Narayan Behera. 2017. A survey on machine learning: concept, algorithms and applications.

International Journal of Innovative Research in Computer and Communication Engineering 5, 2 (2017), 1301–1309.
[23] J. Deng, W. Dong, R. Socher, L. Li, Kai Li, and Li Fei-Fei. 2009. ImageNet: A large-scale hierarchical image database. In

CVPR.

, Vol. 1, No. 1, Article . Publication date: May 2024.

 https://aws.amazon.com/machine-learning/ai-services
 https://aws.amazon.com/machine-learning/ai-services
 https://github.com/OkapalDominic/animal_analysis
 https://github.com/OkapalDominic/animal_analysis
https://pypi.org/project/pyttsx3/
https://www.bing.com/images/trending?FORM=ILPTRD
https://www.smartinsights.com/search-engine-marketing/search-engine-statistics/
https://www.smartinsights.com/search-engine-marketing/search-engine-statistics/
https://pypi.org/project/Pillow/
https://github.com/paulgan98/darude-brainstorm
https://github.com/paulgan98/darude-brainstorm

26 Wan and Liu, et al.

[24] Saikat Dutta, August Shi, Rutvik Choudhary, Zhekun Zhang, Aryaman Jain, and Sasa Misailovic. 2020. Detecting
flaky tests in probabilistic and machine learning applications. In ISSTA.

[25] Anurag Dwarakanath, Manish Ahuja, Samarth Sikand, Raghotham M Rao, RP Jagadeesh Chandra Bose, Neville
Dubash, and Sanjay Podder. 2018. Identifying implementation bugs in machine learning based image classifiers using
metamorphic testing. In ISSTA.

[26] Yizhak Yisrael Elboher, Elazar Cohen, and Guy Katz. 2022. Neural network verification using residual reasoning. In
Software Engineering and Formal Methods: 20th International Conference, SEFM 2022, Berlin, Germany, September 26–30,
2022, Proceedings. Springer, 173–189.

[27] Yizhak Yisrael Elboher, Justin Gottschlich, and Guy Katz. 2020. An abstraction-based framework for neural network
verification. In Computer Aided Verification: 32nd International Conference, CAV 2020, Los Angeles, CA, USA, July 21–24,
2020, Proceedings, Part I 32. Springer, 43–65.

[28] Yang Feng, Qingkai Shi, Xinyu Gao, Jun Wan, Chunrong Fang, and Zhenyu Chen. 2020. DeepGini: prioritizing
massive tests to enhance the robustness of deep neural networks. In ISSTA.

[29] Fuzzit.dev. [n. d.]. Pythonfuzz: coverage-guided fuzz testing for python. Online document https://gitlab.com/gitlab-
org/security-products/analyzers/fuzzers/pythonfuzz.

[30] Sainyam Galhotra, Yuriy Brun, and Alexandra Meliou. 2017. Fairness testing: testing software for discrimination. In
FSE.

[31] Xinyu Gao, Yang Feng, Yining Yin, Zixi Liu, Zhenyu Chen, and Baowen Xu. 2022. Adaptive test selection for deep
neural networks. In Proceedings of the 44th International Conference on Software Engineering. 73–85.

[32] Simos Gerasimou, Hasan Ferit Eniser, Alper Sen, and Alper Cakan. 2020. Importance-Driven Deep Learning System
Testing. In ICSE.

[33] Alec Go, Richa Bhayani, and Lei Huang. 2009. Twitter sentiment classification using distant supervision. CS224N
project report, Stanford 1, 12 (2009), 2009.

[34] Patrice Godefroid, Daniel Lehmann, and Marina Polishchuk. 2020. Differential regression testing for REST APIs. In
ISSTA.

[35] Google. 2022. Google Cloud AI. Online document https://cloud.google.com/products/ai.
[36] Eric Gossett, Cormac Toher, Corey Oses, Olexandr Isayev, Fleur Legrain, Frisco Rose, Eva Zurek, Jesús Carrete, Natalio

Mingo, Alexander Tropsha, et al. 2018. AFLOW-ML: A RESTful API for machine-learning predictions of materials
properties. Computational Materials Science (2018).

[37] Qianyu Guo, Xiaofei Xie, Yi Li, Xiaoyu Zhang, Yang Liu, Li Xiaohong, and Chao Shen. 2020. Audee: Automated
Testing for Deep Learning Frameworks. In FSE.

[38] Dave Halter. 2022. Jedi: an awesome auto-completion, static analysis and refactoring library for Python. Online
document https://jedi.readthedocs.io.

[39] Fabrice Harel-Canada, Lingxiao Wang, Muhammad Ali Gulzar, Quanquan Gu, and Miryung Kim. 2020. Is Neuron
Coverage a Meaningful Measure for Testing Deep Neural Networks?. In ESEC/FSE.

[40] HeapSortCypher. [n. d.]. A garbage classification application. Online document https://github.com/matthew-chu/
heapsortcypher.

[41] Philipp Helle, Wladimir Schamai, and Carsten Strobel. 2016. Testing of autonomous systems–Challenges and current
state-of-the-art. In INCOSE international symposium.

[42] Charles Hill, Rachel Bellamy, Thomas Erickson, and Margaret Burnett. 2016. Trials and tribulations of developers of
intelligent systems: A field study. In VL/HCC.

[43] Qiang Hu, Yuejun Guo, Xiaofei Xie, Maxime Cordy, Mike Papadakis, Lei Ma, and Yves Le Traon. 2023. Aries: Efficient
Testing of Deep Neural Networks via Labeling-Free Accuracy Estimation. (2023).

[44] IBM. 2022. IBM Watson. Online document https://www.ibm.com/watson.
[45] M Irlbeck et al. 2015. Deconstructing dynamic symbolic execution. Dependable Software Systems Engineering 40

(2015), 26.
[46] Md Johirul Islam, Rangeet Pan, Giang Nguyen, and Hridesh Rajan. 2020. Repairing Deep Neural Networks: Fix

Patterns and Challenges. In ICSE.
[47] Gunel Jahangirova, Nargiz Humbatova, Gabriele Bavota, Vincenzo Riccio, Andrea Stocco, and Paolo Tonella. 2020.

Taxonomy of Real Faults in Deep Learning Systems. In ICSE.
[48] Tahir Jameel, Lin Mengxiang, and Liu Chao. 2015. Automatic test Oracle for image processing applications using

support vector machines. In 2015 6th IEEE International Conference on Software Engineering and Service Science (ICSESS).
IEEE, 1110–1113.

[49] C. Jiang, S. Huang, and Z. Hui. 2018. Metamorphic Testing of Image Region Growth Programs in Image Processing
Applications. In 2018 IEEE International Conference on Software Quality, Reliability and Security Companion (QRS-C).

[50] Misael C Júnior, Rafael APOliveira, Miguel AGValverde, Marcel P Jackowski, Fátima LS Nunes, andMárcio E Delamaro.
2017. Feature-Based Test Oracles to Categorize Synthetic 3D and 2D Images of Blood Vessels. In Proceedings of the

, Vol. 1, No. 1, Article . Publication date: May 2024.

https://gitlab.com/gitlab-org/security-products/analyzers/fuzzers/pythonfuzz
https://gitlab.com/gitlab-org/security-products/analyzers/fuzzers/pythonfuzz
 https://cloud.google.com/products/ai
https://jedi.readthedocs.io
https://github.com/matthew-chu/heapsortcypher
https://github.com/matthew-chu/heapsortcypher
 https://www.ibm.com/watson

Keeper: Automated Testing and Fixing of Machine Learning Software 27

2nd Brazilian Symposium on Systematic and Automated Software Testing. 1–6.
[51] Kaggle. [n. d.]. Twitter US Airline Sentiment. Online document https://www.kaggle.com/crowdflower/twitter-airline-

sentiment.
[52] Hojat Khosrowjerdi and Karl Meinke. 2018. Learning-based testing for autonomous systems using spatial and

temporal requirements. In Proceedings of the 1st International Workshop on Machine Learning and Software Engineering
in Symbiosis.

[53] Miryung Kim, Thomas Zimmermann, Robert DeLine, and Andrew Begel. 2016. The emerging role of data scientists
on software development teams. In ICSE.

[54] Miryung Kim, Thomas Zimmermann, Robert DeLine, and Andrew Begel. 2017. Data scientists in software teams:
State of the art and challenges. TSE (2017).

[55] Alina Kuznetsova, Hassan Rom, Neil Alldrin, Jasper Uijlings, Ivan Krasin, Jordi Pont-Tuset, Shahab Kamali, Stefan
Popov, Matteo Malloci, Alexander Kolesnikov, et al. 2020. The open images dataset v4. International Journal of
Computer Vision (2020), 1–26.

[56] Seokhyun Lee, Sooyoung Cha, Dain Lee, and Hakjoo Oh. 2020. Effective white-box testing of deep neural networks
with adaptive neuron-selection strategy. In ISSTA.

[57] James R Lewis. 2018. The system usability scale: past, present, and future. International Journal of Human–Computer
Interaction 34, 7 (2018), 577–590.

[58] Zenan Li, Xiaoxing Ma, Chang Xu, Jingwei Xu, Chun Cao, and Jian Lü. 2020. Operational Calibration: Debugging
Confidence Errors for DNNs in the Field. In ESEC/FSE.

[59] Mikael Lindvall, Adam Porter, Gudjon Magnusson, and Christoph Schulze. 2017. Metamorphic model-based testing
of autonomous systems. In 2017 IEEE/ACM 2nd International Workshop on Metamorphic Testing (MET).

[60] Lingle. [n. d.]. A news summary application. Online document https://github.com/AllegraChen/uofthacks6.
[61] Tilo Linz. 2020. Testing Autonomous Systems. In The Future of Software Quality Assurance. Springer, Cham, 61–75.
[62] Lisa-Assistant. 2021. A voice assistant application. Online document https://github.com/AlexNguyen27/lisa-assistant-

gcp.
[63] Zixi Liu, Yang Feng, Yining Yin, and Zhenyu Chen. 2022. DeepState: selecting test suites to enhance the robustness of

recurrent neural networks. In Proceedings of the 44th International Conference on Software Engineering. 598–609.
[64] Lei Ma, Fuyuan Zhang, Jiyuan Sun, Minhui Xue, Bo Li, Felix Juefei-Xu, Chao Xie, Li Li, Yang Liu, Jianjun Zhao, et al.

2018. Deepmutation: Mutation testing of deep learning systems. In ISSRE.
[65] Pingchuan Ma, Shuai Wang, and Jin Liu. 2020. Metamorphic Testing and Certified Mitigation of Fairness Violations

in NLP Models.. In IJCAI. 458–465.
[66] Shiqing Ma, Yousra Aafer, Zhaogui Xu, Wen-Chuan Lee, Juan Zhai, Yingqi Liu, and Xiangyu Zhang. 2017. LAMP:

data provenance for graph based machine learning algorithms through derivative computation. In FSE.
[67] Shiqing Ma, Yingqi Liu, Wen-Chuan Lee, Xiangyu Zhang, and Ananth Grama. 2018. MODE: automated neural

network model debugging via state differential analysis and input selection. In ESEC/FSE.
[68] David Marby and Nijiko Yonskai. 2021. Pyan3: Offline call graph generator for Python 3. Online document

https://github.com/davidfraser/pyan.
[69] David Marby and Nijiko Yonskai. 2022. Lorem Picsum. Online document https://picsum.photos.
[70] Phil McMinn, Muzammil Shahbaz, and Mark Stevenson. 2012. Search-based test input generation for string data

types using the results of web queries. In 2012 IEEE Fifth International Conference on Software Testing, Verification and
Validation. IEEE, 141–150.

[71] Microsoft. 2022. Microsoft Azure Cognitive Services. Online document https://azure.microsoft.com/en-us/services/
cognitive-services.

[72] Microsoft. 2022. Visual Studio Code. Online document https://code.visualstudio.com/.
[73] Mahdi Nejadgholi and Jinqiu Yang. 2019. A study of oracle approximations in testing deep learning libraries. In ASE.
[74] Augustus Odena, Catherine Olsson, David Andersen, and Ian Goodfellow. 2019. Tensorfuzz: Debugging neural

networks with coverage-guided fuzzing. In ICML.
[75] Omakase. 2022. A food manager application. Online document https://github.com/Seangottarun/Omakase.
[76] Tejit Pabari. [n. d.]. A prescription identification application. Online document https://github.com/gitika-bose/

ResearchSpring2019.
[77] Brandon Paulsen, Jingbo Wang, and Chao Wang. 2020. ReluDiff: Differential Verification of Deep Neural Networks.

In ICSE.
[78] Kexin Pei, Yinzhi Cao, Junfeng Yang, and Suman Jana. 2017. Deepxplore: Automated whitebox testing of deep learning

systems. In ASPLOS.
[79] Fabio Petrillo, Philippe Merle, Naouel Moha, and Yann-Gaël Guéhéneuc. 2016. Are REST APIs for cloud computing

well-designed? An exploratory study. In ICSOC. Springer, 157–170.

, Vol. 1, No. 1, Article . Publication date: May 2024.

https://www.kaggle.com/crowdflower/twitter-airline-sentiment
https://www.kaggle.com/crowdflower/twitter-airline-sentiment
 https://github.com/AllegraChen/uofthacks6
https://github.com/AlexNguyen27/lisa-assistant-gcp
https://github.com/AlexNguyen27/lisa-assistant-gcp
https://github.com/davidfraser/pyan
https://picsum.photos
https://azure.microsoft.com/en-us/services/cognitive-services
https://azure.microsoft.com/en-us/services/cognitive-services
 https://code.visualstudio.com/
https://github.com/Seangottarun/Omakase
https://github.com/gitika-bose/ResearchSpring2019
https://github.com/gitika-bose/ResearchSpring2019

28 Wan and Liu, et al.

[80] Hung Viet Pham, Thibaud Lutellier, Weizhen Qi, and Lin Tan. 2019. CRADLE: cross-backend validation to detect and
localize bugs in deep learning libraries. In ICSE.

[81] Phoenix. [n. d.]. A fire-detection application. Online document https://github.com/yunusemreemik/Phoenix.
[82] Prolific. [n. d.]. An online platform for recruiting participants. Online document https://www.prolific.co.
[83] Python. [n. d.]. ast — Abstract Syntax Trees. Online document https://docs.python.org/3/library/ast.html.
[84] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. 2019. Language models are

unsupervised multitask learners. OpenAI blog 1, 8 (2019), 9.
[85] RainorShine. [n. d.]. A weather application. Online document https://github.com/DanialKhan6312/RainorShine.
[86] Vincenzo Riccio and Paolo Tonella. 2020. Model-based Exploration of the Frontier of Behaviours for Deep Learning

System Testing. In ESEC/FSE.
[87] RoomR. 2020. A property management application. Online document https://github.com/rodrigoHM/RoomR-Server.
[88] Mark Santolucito, Jialu Zhang, Ennan Zhai, Jürgen Cito, and Ruzica Piskac. 2022. Learning CI Configuration Correct-

ness for Early Build Feedback. In IEEE International Conference on Software Analysis, Evolution and Reengineering,
SANER 2022, Honolulu, HI, USA, March 15-18, 2022.

[89] scikit learn. [n. d.]. scikit-learn: Machine Learning in Python. Online document https://scikit-learn.org/stable/.
[90] Muzammil Shahbaz, Phil McMinn, and Mark Stevenson. 2015. Automatic generation of valid and invalid test data for

string validation routines using web searches and regular expressions. Science of Computer Programming 97 (2015),
405–425.

[91] Arnab Sharma and Heike Wehrheim. 2020. Higher income, larger loan? monotonicity testing of machine learning
models. In ISSTA.

[92] SIVG. [n. d.]. A video generator application. Online document https://github.com/aarenstade/speech-img-vid-
generator.

[93] Soap. [n. d.]. A public opinion analysis application. Online document https://github.com/jcavejr/soap.
[94] Matthew Sotoudeh and Aditya V Thakur. 2021. Provable repair of deep neural networks. In Proceedings of the 42nd

ACM SIGPLAN International Conference on Programming Language Design and Implementation. 588–603.
[95] Evan R Sparks, Ameet Talwalkar, Virginia Smith, Jey Kottalam, Xinghao Pan, Joseph Gonzalez, Michael J Franklin,

Michael I Jordan, and Tim Kraska. 2013. MLI: An API for distributed machine learning. In ICDM.
[96] Madhusudan Srinivasan, Morteza Pourreza Shahri, Indika Kahanda, and Upulee Kanewala. 2018. Quality assurance

of bioinformatics software: a case study of testing a biomedical text processing tool using metamorphic testing. In
Proceedings of the 3rd International Workshop on Metamorphic Testing. 26–33.

[97] Bing Sun, Jun Sun, Long H Pham, and Jie Shi. 2022. Causality-based neural network repair. In Proceedings of the 44th
International Conference on Software Engineering. 338–349.

[98] Zeyu Sun, Jie M Zhang, Mark Harman, Mike Papadakis, and Lu Zhang. 2020. Automatic testing and improvement of
machine translation. In ICSE.

[99] Yida Tao, Shan Tang, Yepang Liu, Zhiwu Xu, and Shengchao Qin. 2019. How do api selections affect the runtime
performance of data analytics tasks?. In ASE.

[100] Yuchi Tian, Kexin Pei, Suman Jana, and Baishakhi Ray. 2018. Deeptest: Automated testing of deep-neural-network-
driven autonomous cars. In ICSE.

[101] Saeid Tizpaz-Niari, Pavol Cernỳ, and Ashutosh Trivedi. 2020. Detecting and Understanding Real-World Differential
Performance Bugs in Machine Learning Libraries. In ISSTA.

[102] Chengcheng Wan, Shicheng Liu, Henry Hoffmann, Michael Maire, and Shan Lu. 2021. Are Machine Learning Cloud
APIs Used Correctly?. In 43th International Conference on Software Engineering (ICSE’21).

[103] ChengchengWan, Shicheng Liu, Sophie Xie, Yifan Liu, Henry Hoffmann, Michael Maire, and Shan Lu. 2022. Automated
Testing of Software that Uses Machine Learning APIs. In 44th International Conference on Software Engineering
(ICSE’22).

[104] WanderStub. [n. d.]. An exchange conversion application. Online document https://github.com/richardjpark26/
WanderStub.

[105] Jiannan Wang, Thibaud Lutellier, Shangshu Qian, Hung Viet Pham, and Lin Tan. 2022. EAGLE: creating equivalent
graphs to test deep learning libraries. In Proceedings of the 44th International Conference on Software Engineering.
798–810.

[106] Wikidata. 2022. A free and open knowledge base. Online document https://www.wikidata.org/.
[107] Wikipedia. [n. d.]. A free encyclopedia. Online document https://en.m.wikipedia.org/.
[108] Shuzhao Xie, Yuan Xue, Yifei Zhu, and Zhi Wang. 2022. Cost Effective MLaaS Federation: A Combinatorial Reinforce-

ment Learning Approach. In IEEE INFOCOM 2022-IEEE Conference on Computer Communications. IEEE, 1–10.
[109] Xiaofei Xie, Lei Ma, Felix Juefei-Xu, Hongxu Chen, Minhui Xue, Bo Li, Yang Liu, Jianjun Zhao, Jianxiong Yin, and

Simon See. 2018. Deephunter: Hunting deep neural network defects via coverage-guided fuzzing. arXiv preprint
arXiv:1809.01266 (2018).

, Vol. 1, No. 1, Article . Publication date: May 2024.

https://github.com/yunusemreemik/Phoenix
https://www.prolific.co
https://docs.python.org/3/library/ast.html
 https://github.com/DanialKhan6312/RainorShine
https://github.com/rodrigoHM/RoomR-Server
https://scikit-learn.org/stable/
 https://github.com/aarenstade/speech-img-vid-generator
 https://github.com/aarenstade/speech-img-vid-generator
https://github.com/jcavejr/soap
https://github.com/richardjpark26/WanderStub
https://github.com/richardjpark26/WanderStub
https://www.wikidata.org/
https://en.m.wikipedia.org/

Keeper: Automated Testing and Fixing of Machine Learning Software 29

[110] Xiaofei Xie, Lei Ma, Felix Juefei-Xu, Minhui Xue, Hongxu Chen, Yang Liu, Jianjun Zhao, Bo Li, Jianxiong Yin, and
Simon See. 2019. Deephunter: A coverage-guided fuzz testing framework for deep neural networks. In ISSTA. 146–157.

[111] Kaidi Xu, Huan Zhang, Shiqi Wang, Yihan Wang, Suman Jana, Xue Lin, and Cho-Jui Hsieh. 2020. Fast and complete:
Enabling complete neural network verification with rapid and massively parallel incomplete verifiers. arXiv preprint
arXiv:2011.13824 (2020).

[112] Shenao Yan, Guanhong Tao, Xuwei Liu, Juan Zhai, Shiqing Ma, Lei Xu, and Xiangyu Zhang. 2020. Correlations
between Deep Neural Network Model Coverage Criteria and Model Quality. In ESEC/FSE.

[113] Heiga Zen, Viet Dang, Rob Clark, Yu Zhang, Ron J Weiss, Ye Jia, Zhifeng Chen, and Yonghui Wu. 2019. Libritts: A
corpus derived from librispeech for text-to-speech. arXiv preprint arXiv:1904.02882 (2019).

[114] Fuyuan Zhang, Sankalan Pal Chowdhury, and Maria Christakis. 2020. DeepSearch: A Simple and Effective Blackbox
Attack for Deep Neural Networks. In ESEC/FSE.

[115] Hao Zhang and WK Chan. 2019. Apricot: a weight-adaptation approach to fixing deep learning models. In ASE.
[116] Jialu Zhang, De Li, John Charles Kolesar, Hanyuan Shi, and Ruzica Piskac. 2022. Automated Feedback Generation for

Competition-Level Code. In 37th IEEE/ACM International Conference on Automated Software Engineering, ASE 2022,
Rochester, MI, USA, October 10-14, 2022.

[117] Jialu Zhang, Ruzica Piskac, Ennan Zhai, and Tianyin Xu. 2021. Static detection of silent misconfigurations with deep
interaction analysis. In OOPSLA.

[118] Mengshi Zhang, Yuqun Zhang, Lingming Zhang, Cong Liu, and Sarfraz Khurshid. 2018. DeepRoad: GAN-based
metamorphic testing and input validation framework for autonomous driving systems. In ASE. IEEE, 132–142.

[119] Xiyue Zhang, Xiaofei Xie, Lei Ma, Xiaoning Du, Qiang Hu, Yang Liu, Jianjun Zhao, and Meng Sun. 2020. Towards
characterizing adversarial defects of deep learning software from the lens of uncertainty. In ICSE.

[120] Yuhao Zhang, Luyao Ren, Liqian Chen, Yingfei Xiong, Shing-Chi Cheung, and Tao Xie. 2020. Detecting Numerical
Bugs in Neural Network Architectures. In ESEC/FSE.

[121] Xinghan Zhao and Xiangfei Gao. 2018. An ai software test method based on scene deductive approach. In 2018 IEEE
International Conference on Software Quality, Reliability and Security Companion (QRS-C). IEEE, 14–20.

[122] Hong Zhu, Dongmei Liu, Ian Bayley, Rachel Harrison, and Fabio Cuzzolin. 2019. Datamorphic testing: A method for
testing intelligent applications. In 2019 IEEE International Conference On Artificial Intelligence Testing (AITest).

, Vol. 1, No. 1, Article . Publication date: May 2024.

	Abstract
	1 Introduction
	1.1 Motivation
	1.2 Contributions

	2 Background
	2.1 ML Cloud APIs
	2.2 ML software
	2.3 ML Model Testing

	3 Overview of Keeper
	4 Test Input Generation
	4.1 Identifying relevant ML outputs
	4.2 Identifying ML API inputs
	4.3 Input Generation Summary

	5 Test Output Processing
	5.1 Failure identification
	5.2 Failure attribution

	6 Code Smell Detection
	7 Implementation
	7.1 Core algorithm
	7.2 IDE plugin

	8 Evaluation
	8.1 Methodology
	8.2 Software testing evaluation
	8.3 User studies
	8.4 Threats to Validity

	9 Related Work
	9.1 ML-related software
	9.2 ML-related testing
	9.3 Test generation using search engines

	10 Conclusion
	References

