

RetroBridge Modeling Retrosynthesis with Markov Bridges

Arne Schneuing, EPFL

Swiss Joint Research Centre, Spring Workshop April 10, 2024

@rneschneuing

arne.schneuing@epfl.ch

EPFL Computational Drug Discovery

Matthews, Holly, James Hanison, and Niroshini Nirmalan. ""Omics"-informed drug and biomarker discovery: opportunities, challenges and future perspectives." Proteornes 4.3 (2016): 28.

Targeting Proteins with Small Molecule Drugs

3

EPFL Structure-based Small Molecule Design Tools

- 3D-conditional diffusion model
- Generates atomic point clouds given protein structures
- Structure-based drug design with equivariant diffusion models (preprint)

- Select and place molecule fragments based on protein surface patterns
- Generate linker atoms with a diffusion model conditioned on the fragments
- Equivariant 3d-conditional diffusion models for molecular linker design (accepted at Nature Machine Intelligence)

EPFL Retrosynthesis Modeling

- Recursively decompose target molecule into simpler building blocks until available starting molecules are reached
- Single-step retrosynthesis prediction: predict possible reactants given a target molecule
- Multi-step retrosynthesis prediction: plan optimal reaction sequence that minimizes number of synthesis steps, cost of starting molecules etc.

EPFL Retrosynthesis as a Distribution Learning Task

- Each product molecule can be obtained starting from several valid sets of reactants
 - \rightarrow we want to sample from p(reactants|product)
 - \rightarrow confidence estimates should reflect this probability
- Most existing retrosynthesis models optimize...
 - ...the likelihood of single actions greedily
 calibration and global consistency issues
 - ...the likelihood of a sequence (SMILES, graph edits)

 $p(S) = \prod p(S_{i+1}|S_0, ..., S_i)$ i=0

▲ different sequences can lead to the same outcome

We want to be able to sample from the data distribution instead

EPFL Ourgoal

🔺 Intractable prior

Finite set of coupled samples

Looking for p(y|x)

Framework	Intractable prior	Coupled samples	Likelihood optimisation	Discrete data	
Requirement					
Discr. Diffusion	\otimes	\otimes			
CFM			\otimes	0	
Aligned SB			\otimes	\otimes	
Diffusion SB		\otimes	\otimes	\otimes	

EPFL Markov Bridge Model

Coupled data points: $oldsymbol{x}, oldsymbol{y} \sim p_{\mathcal{X}, \mathcal{Y}}(oldsymbol{x}, oldsymbol{y})$

Intractable distributions:

$$p_{\mathcal{X}}(\boldsymbol{x}) = \int p_{\mathcal{X},\mathcal{Y}}(\boldsymbol{x},\boldsymbol{y}) d\boldsymbol{y}$$

 $p_{\mathcal{Y}}(\boldsymbol{y}) = \int p_{\mathcal{X},\mathcal{Y}}(\boldsymbol{x},\boldsymbol{y}) d\boldsymbol{x}$

Markov bridge:

- A sequence of time steps and corresponding r.v.: $t=0,\ldots,T, \quad (m{z}_t)_{t=0}^T \sim p$
- Trajectory starts at product: $oldsymbol{z}_0 = oldsymbol{x}$
- Markov property: $p(\boldsymbol{z}_t|\boldsymbol{z}_0, \boldsymbol{z}_1, \dots, \boldsymbol{z}_{t-1}, \boldsymbol{y}) = p(\boldsymbol{z}_t|\boldsymbol{z}_{t-1}, \boldsymbol{y})$
- Process is pinned in the end: $p(\boldsymbol{z}_T = \boldsymbol{y} | \boldsymbol{z}_{T-1}, \boldsymbol{y}) = 1$

EPFL Markov Bridge Model

- Transition probabilities: $p(\boldsymbol{z}_{t+1}|\boldsymbol{z}_t, \boldsymbol{y}) = \operatorname{Cat}\left(\boldsymbol{z}_{t+1}; \boldsymbol{Q}_t \boldsymbol{z}_t\right)$
- Transition matrices: $\boldsymbol{Q}_t \equiv \boldsymbol{Q}_t(\boldsymbol{y}) = \alpha_t \boldsymbol{I}_K + (1 \alpha_t) \boldsymbol{y} \boldsymbol{1}_K^\top$
- Neural network approximation: $\hat{m{y}} = arphi_{ heta}(m{z}_t,t)$
- New transition kernel: $q_{\theta}(\boldsymbol{z}_{t+1}|\boldsymbol{z}_{t}) = \operatorname{Cat}\left(\boldsymbol{z}_{t+1}; \boldsymbol{Q}_{t}(\hat{\boldsymbol{y}})\boldsymbol{z}_{t}\right)$
- Train by maximizing log-likelihood: $\log q_{ heta}(oldsymbol{y}|oldsymbol{x})$

 $\log q_{\theta}(\boldsymbol{y}|\boldsymbol{x}) \geq -T \cdot \mathbb{E}_{t \sim \mathcal{U}(0,...,T-1)} \mathbb{E}_{\boldsymbol{z}_{t} \sim p(\boldsymbol{z}_{t}|\boldsymbol{x},\boldsymbol{y})} D_{\mathrm{KL}}(p(\boldsymbol{z}_{t+1}|\boldsymbol{z}_{t},\boldsymbol{y}) \| q_{\theta}(\boldsymbol{z}_{t+1}|\boldsymbol{z}_{t}))$

 $q_{ heta}(oldsymbol{y}|oldsymbol{x}) = \mathbb{E}_{oldsymbol{y}' \sim q_{ heta}(\cdot|oldsymbol{x})} \mathbb{I}\{oldsymbol{y}' = oldsymbol{y}\}$

EPFL Results

Top-k exact match: ground-truth set of reactants found among top-k samples

	Model	k = 1	k = 3	k = 5	k = 10
TB	GLN (Dai et al., 2019)	52.5	74.7	81.2	87.9
	GraphRetro (Somnath et al., 2021)	53.7	68.3	72.2	75.5
	LocalRetro (Chen & Jung, 2021)	52.6	76.0	84.4	90.6
TF	SCROP (Zheng et al., 2019)	43.7	60.0	65.2	68.7
	G2G (Shi et al., 2020)	48.9	67.6	72.5	75.5
	Aug. Transformer (Tetko et al., 2020)	48.3		73.4	77.4
	DualTF _{aug} (Sun et al., 2021)	53.6	70.7	74.6	77.0
	MEGAN (Sacha et al., 2021)	48.0	70.9	78.1	85.4
	Tied Transformer (Kim et al., 2021)	47.1	67.1	73.1	76.3
	GTA _{aug} (Seo et al., 2021)	51.1	67.6	74.8	81.6
	GraphŽSMILES (Tu & Coley, 2022)	52.9	66.5	70.0	72.9
	Retroformer _{aug} (Wan et al., 2022)	52.9	68.2	72.5	76.4
	RetroBridge (ours)	50.8	74.1	80.6	85.6

Limitation: does not account for other possible valid reactants

EPFL **Results**

		Coverage		Accuracy			
	Model	k = 1	k = 3	k = 5	k = 1	k = 3	k = 5
TB	GLN (Dai et al., 2019) LocalRetro (Chen & Jung, 2021)	82.5 82.1	92.0 92.3	94.0 94.7	82.5 82.1	71.0 71.0	66.2 66.7
TF	MEGAN (Sacha et al., 2021) Graph2SMILES (Tu & Coley, 2022) Retroformer _{aug} (Wan et al., 2022) RetroBridge (ours)	78.1 — 85.1	88.6 95.7	91.3 — 97.1	78.1 76.7 78.6 85.1	67.3 56.0 71.8 73.6	61.7 46.4 67.1 67.8

Limitation: quality of the forward reaction prediction method

EPFL Project Summary

- 3D generative models for drug design
- Experimental validation requires chemical synthesis
- Graph generative model for synthesis planning
- Markov Bridge Model is an efficient framework to address the one-tomany mapping problem

Acknowledgements <u>Ilia Igashov</u> Marwin Segler Max Welling Michael Bronstein Bruno Correia

@igashov @rneschneuing ilia.igashov@epfl.ch arne.schneuing@epfl.ch

EPFL Molecular graphs

Data representation:

- Graph of N nodes $\, oldsymbol{x} = (oldsymbol{H}, oldsymbol{E}) \,$
- Node features $oldsymbol{H} \in \mathbb{R}^{N imes d_h}$
- Edge features $oldsymbol{E} \in \mathbb{R}^{N imes N imes d_e}$
- All variables are categorical, represented as one-hot vectors

$$\boldsymbol{H} = \begin{pmatrix} \mathbf{C} & \mathbf{N} & \mathbf{O} & \mathbf{S} \\ 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}$$

$$oldsymbol{E} = egin{pmatrix} oldsymbol{e}_{11} & oldsymbol{e}_{12} & ... \ oldsymbol{e}_{21} & oldsymbol{e}_{22} & ... \ ... & ... & ... \end{pmatrix}$$

EPFL Ablations

Model	k = 1	k = 3	k = 5	k = 10	k = 50
DiGress (context)	47.32	68.56	73.93	78.45	80.88
RetroBridge-CE (no context)	48.71	66.84	72.33	76.08	79.38
RetroBridge-CE (context)	50.74	71.50	76.58	79.50	80.58
RetroBridge-VLB (no context)	47.42	69.46	75.21	79.40	83.82
RetroBridge-VLB (context)	48.92	73.04	79.44	83.74	86.31

no context:
$$\hat{\boldsymbol{y}} = \varphi_{\theta}(\boldsymbol{z}_t, t)$$
 context: $\hat{\boldsymbol{y}} = \varphi_{\theta}(\boldsymbol{z}_t, \boldsymbol{x}, t)$

VLB: $\mathcal{L}_{\text{VLB}}(\theta) = -T \cdot \mathbb{E}_{t \sim \mathcal{U}(0,\dots,T-1)} \mathbb{E}_{\boldsymbol{z}_t \sim p(\boldsymbol{z}_t | \boldsymbol{x}, \boldsymbol{y})} D_{\text{KL}}(p(\boldsymbol{z}_{t+1} | \boldsymbol{z}_t, \boldsymbol{y}) \| q_{\theta}(\boldsymbol{z}_{t+1} | \boldsymbol{z}_t))$

CE:
$$\mathcal{L}_{CE}(\theta) = -T \cdot \mathbb{E}_{t \sim \mathcal{U}(0,...,T-1)} \mathbb{E}_{\boldsymbol{z}_t \sim p(\boldsymbol{z}_t | \boldsymbol{x}, \boldsymbol{y})} \text{CrossEntropy}(\boldsymbol{y}, \varphi_{\theta}(\boldsymbol{z}_t, t))$$

EPFL **Examples**

 $\mathcal{L}^{\mathcal{D}}\mathcal{G}^{\mathcal{D}}\mathcal{F} \to \mathcal{L}^{\mathcal{D}}\mathcal{G}^{\mathcal{D}}\mathcal{F} + \mathcal{L}^{\mathcal{D}}\mathcal{G}^{\mathcal{D}}\mathcal{F}$

EPFL Neural network

- Fully-connected graph
- Graph transformer network
- Node (atom) features:
 - 16 atom types + 1 dummy
 - Additional spectral features
 - Number of cycles
- Edge (bond) features:
 - 3 bond types + "none" type

EPFL ML for Retrosynthesis Prediction

EPFL Molecule Edit Graph Attention Network (MEGAN)

- Predicts actions on atoms and bonds
- Optimizes likelihood of sequence of actions
- Imposes order on actions for training
- Teacher forcing

MEGAN generates reactions as sequences of graph edits

21

EPFL Diffusion models

Song, Yang, et al. "Score-based generative modeling through stochastic differential equations". 2020 Vignac, Clement, et al. "Digress: Discrete denoising diffusion for graph generation." 2022

Flow matching

<u>ODE:</u> $dx = u_t(x) dt$, <u>Loss:</u> $\mathbb{E}_{t,q(z),p_t(x|z)} \|v_{\theta}(t,x) - u_t(x|z)\|^2$

Generating vector fields:

Diffusion / Variance Exploding:

$$p_t(x|z) = \mathcal{N}(x \mid x_1, \sigma_{1-t}^2), u_t(x|z) = -\frac{\sigma'_{1-t}}{\sigma_{1-t}}(x - x_1),$$

Optimal transport:

$$p_t(x|z) = \mathcal{N}(x \mid tx_1, (t\sigma - t + 1)^2),$$

$$u_t(x|z) = \frac{x_1 - (1 - \sigma)x}{1 - (1 - \sigma)t},$$

Independent coupling / stochastic interpolants:

$$p_t(x|z) = \mathcal{N}(x \mid tx_1 + (1-t)x_0, \sigma^2),$$

 $u_t(x|z) = x_1 - x_0.$

Schrödinger bridge

 $rac{ ext{Schrödinger bridge Problem:}}{\min_{\mathbb{P}_0=\hat{\mathbb{P}}_0, \ \mathbb{P}_1=\hat{\mathbb{P}}_1} D_{ ext{KL}}(\mathbb{P}_t \| \mathbb{Q}_t).$

<u>a.k.a. entropy-regularised OT:</u> $\inf_{\pi} \int_{x_0} \int_{x_1} \frac{\|x_0 - x_1\|^2}{2} d\pi(x_0, x_1) - \gamma H(\pi)$

<u>Aligned SB:</u> samples are coupled <u>Loss:</u> $L(\theta) := \mathbb{E}\left[\int_{0}^{1} \left\| \frac{\mathbf{x}_{1} - X_{t}}{\beta_{1} - \beta_{t}} - \left(b_{t}^{\theta} + \nabla \log h_{t}^{\theta}(X_{t})\right) \right\|^{2} \mathrm{d}t \right]$

> hen, Tianrong, et al. Likelihood training of Schrödinger bridge using forward-backward sdes theory. 20 Vargas, Francisco, et al. Solving Schrödinger bridges via maximum likelihood. 20 Liu. Guan-Horno, et al. Deep oeneralized Schrödinger bridge.