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ABSTRACT

Evaluating conversational assistants, such as GitHub Copilot Chat,
poses a significant challenge for tool builders in the domain of
Software Engineering. These assistants rely on language models
and chat-based user experiences, rendering their evaluation with
respect to the quality of the Human-AI conversations complicated.
Existing general-purpose metrics for measuring conversational
quality found in literature are inadequate for appraising domain-
specific dialogues due to their lack of contextual sensitivity.

In this paper, we present RUBICON, a technique for evaluat-
ing domain-specific Human-AI conversations. RUBICON leverages
large language models to generate candidate rubrics for assessing
conversation quality and employs a selection process to choose the
subset of rubrics based on their performance in scoring conversa-
tions. In our experiments, RUBICON effectively learns to differenti-
ate conversation quality, achieving higher accuracy and yield rates
than existing baselines.
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• General and reference → Metrics; Evaluation; • Human-
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• Software and its engineering→ Collaboration in software de-
velopment; • Computing methodologies → Natural language
processing.
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1 INTRODUCTION

AI assistants for software developers, such as Github Copilot [10],
have started to adopt chat-based interfaces as one of the primary
means for enabling interactive AI assistance for developers. How-
ever, evaluating the quality of these chat-based AI assistants has
proven to be challenging due to the diverse range of tasks develop-
ers seek help with and the complex, multi-turn nature of Human-AI
conversations, making it difficult to determine the success of these
interactions. As a result, developers who build applications with
chat interfaces often lack sufficient insight into the performance
and quality of the interactions facilitated by their tools [22].

Recently, Lin et al. [16] introduced SPUR, a technique designed
to estimate User Satisfaction for open-domain conversations con-
ducted with Bing Copilot. SPUR leverages a large language model
(LLM) to analyze past labelled conversations, capturing user satis-
faction signals from upvoted conversations and user dissatisfaction
signals from downvoted conversations. These signals are then uti-
lized to generate a set of rubrics iteratively. A large language model
can assess the quality of new conversations by scoring them against
this learned set of rubrics. While user satisfaction rubrics learned
by SPUR can be effective in assessing Human-AI conversations that
contain user prompts indicating satisfaction or dissatisfaction, such
as compliments or rephrased questions, they may be less effective
in conversations where such signals are absent.

Figure 1 shows two sample conversations and a varied set of
rubrics automatically learned from them by our technique. The
rubrics highlight the wide gamut of signals, such as the repetition
of information, progress towards task, adherence to user requests,
provision of requisite information, etc., that determine the quality
of conversations with AI assistants. Note that most of the gener-
ated rubrics are domain-aware, i.e., are specific to a debugging AI
assistant. While rubrics like ‘provides a code snippet as a solution’
and ‘does not provide new or specific debugging guidance’ can be
approximated by generic domain-agnostic ones like ‘provides a
solution with an example’ and ‘does not help the user’ that may be
generated by a generic technique like SPUR [16], the domain-aware
ones are more contextual, definitive, as well as easier to evaluate.
Additionally, the learned rubrics in Figure 1 go beyond the idea of
user satisfaction, and instead address progress towards the com-
pletion of the task at hand. The aim of this paper is to tackle the
task of automatically generating such high-quality, domain- and
task-aware rubrics for task-oriented conversational AI assistants.

Developing rubrics that capture specific nuances from conver-
sations necessitates more than just data. We employ a targeted
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Figure 1: Two analogous conversations facilitated by the Debugger AI assistant evaluated against some representative rubrics.

The conversation on the right was deemed better, while the one on the left was considered subpar.

and guided task-specific approach to rubric generation to learn
these insights. Evaluating the quality of a task-oriented conversa-
tion presents challenges as it must satisfy multiple criteria, such
as amiability, task progression, and collaboration, unlike a generic
rubric generation technique like SPUR, which tends to produce
overly broad rubrics. We aim for a more refined comprehension of
conversations and their goals, enabling us to generate appropriate
rubrics with higher specificity to the nature of the conversation.

In this paper, we propose RUBICON, a technique for evaluating
domain-specific Human-AI conversations. RUBICON comprises
three main components: (1) rubric set generation, (2) rubric selec-
tion, and (3) conversation evaluation.

In the first step, RUBICON follows the SPUR approach to identify
signals in conversations labelled as negative and positive, generating
a set of rubrics. However, RUBICON extends SPUR by instructing
the model regarding domain-specific signals (DS) and conversation
design principles (CDP) in the form of Gricean maxims [11, 33],
which capture four dimensions of conversation effectiveness: quan-
tity, quality, relevance, and manner. Additionally, while SPUR com-
bines the rubrics produced in each batch of examples without eval-
uating the effectiveness of the final rubric set, RUBICON generates
fresh rubrics for each batch to create a pool. In the second step,
RUBICON, inspired by prompt optimization using multi-arm bandit
selection in Pryzant et al. [25], iteratively selects rubrics based on
two data-driven loss functions. This yields the final rubric set and a
score threshold for classifying conversations as negative or positive.
In the final step, RUBICON employs a Large Language Model (LLM)
to grade and classify the conversation under test using the selected
rubric set and a calculated threshold.

For our evaluation, we instantiated RUBICON to assess conver-
sations between developers and a widely used chat-based assistant
designed for C# developers. To create a labelled dataset, we col-
lected 100 conversations where developers sought assistance from
the chat-based assistant to resolve an exception while debugging
their code. To power RUBICON, we utilized GPT-4[20], a state-of-
the-art language model. GPT-4 was employed to generate rubrics,

select the most relevant ones, and assess the conversations based
on the learned rubric set and scoring threshold.

The rubrics generated using RUBICON exhibited superior per-
formance, creating a 9x higher delta in the score of negative and
positive conversations, compared to three alternative sets of rubrics:
the original set from [16], a manually adapted set, and a set learned
from our debugging dataset using SPUR. We are able to predict
conversation labels with an almost perfect (> 0.9) precision for 84%
of conversations on unlabelled data. Additionally, we conduct abla-
tion studies to show the effect of each component of our technique.
Overall, we present the following contributions:
• We propose RUBICON, a technique to automatically generate
rubrics and score conversations for domain-specific AI Assistants;
• We compare the performance of rubrics generated by RUBICON
and SPUR, using a dataset of 100 real conversations about debug-
ging exceptions between developers and an AI assistant;
• We evaluate the impact and effectiveness of the different compo-
nents within RUBICON.

2 RELATEDWORK

Natural language conversations have become the staple interface
for modern AI applications [7, 12, 29]. Despite the proliferation of
traditional NLP metrics, their maturity hasn’t kept pace in the era of
Large Language Models (LLMs) [6, 15, 21]. Metrics like BLEU [21],
RoBERTA [17], and Perplexity are often found short on being able
to measure long-form conversations, particularly due to lack of
ideal references and underlying intent. [18, 26, 34, 36].

In the broader sense, conversation quality analysis is not a new
problem, and domains, particularly sales and marketing, have em-
ployed various ways of measuring the quality of conversation their
end-users experience when interacting with agents [2]. User sat-
isfaction estimation has been used as a proxy for evaluating con-
versational quality from a user experience-led approach [16]. User
satisfaction through surveys and manual post-analysis of the con-
versation has been the most important of all other indicators. How-
ever, manual post-analysis of conversations has both privacy and
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resource implications, thus difficult to carry out at scale [9, 14, 31].
Human annotations of conversations themselves are subjective and
are known to be prone to bias [5, 8, 13, 19].

Given that data annotation and large-scale user study are tedious
and resource consuming tasks, recent works have explored using
languagemodels to replace human subjects in answering evaluation
related questions, proposing scoring systems built around judging
conversations against some assertions [9, 16, 19, 27]. These natural
language assertions are framed to ask specific questions about any
conversations, detecting the presence of themes ranging from user
experience - frustration, curiosity, satisfaction, impatience, etc., to
more sophisticated/abstract themes like engagement, inconsistency,
interestingness, understanding, etc.

This paper also discusses SPUR’s [16] proposed automatic tech-
nique, which uses general open domain conversations with thumbs
up/down user response signals to generate rubrics for user satis-
faction estimation. However, SPUR’s approach and other domain-
agnostic satisfaction estimation policies like [35] are only designed
for open-ended conversations. SPUR’s assertions measure satis-
faction signals, serving as a proxy for user satisfaction. However,
for a complete conversational quality evaluation, the literature in
HCI and other relevant fields focusing on Human-AI conversations
advocate for a holistic approach to designing conversational AI sys-
tems, emphasizing naturalness, engagement, trust, empathy, and
context awareness to create meaningful interactions that go beyond
mere user satisfaction. Cathy [23] and Semnick [28] emphasize the
importance of understanding user needs, expectations, and con-
versational norms to create engaging and satisfying experiences.
A holistic conversational evaluation, especially for task-oriented
interactions, should consider understanding expectations and the
progress the interaction enables in that direction [3, 6].

Evaluating multi-turn conversations typically uses scoring over
a Likert scale after a conversation is over [4, 9, 27, 31, 37]. Some
works also explore using continuous scales to rate conversations per
assertion [16]. However, we find that LLMs are usually inconsistent
and biased when giving numeric ratings to natural language asser-
tions. In this paper, we briefly discuss this trade-off and other than
for comparison purposes, we only use the Likert scale throughout.

In this work, we also explore the problem of selecting an optimal
subset of prompts from a larger set of prompts and compare our
approach with some bandit selection methods [25]. The selection
policy is optimised for two metrics related to binary classification:
distance between the means of the distribution of the two classes
and the percentage of the conversations that can be evaluated with
some minimum confidence threshold. Since it is challenging to
perform binary classification on dialogues due to their subjectivity,
we only consider conversations classified with high confidence
after the scoring. Similar techniques have been applied in problems
like credit default prediction or fraud detection where the precision
requirements of classification are very strict [30, 32].

3 TECHNIQUE

We propose RUBICON to estimate conversation quality for domain-
specific conversational assistants. Given a set of conversations la-
belled as positive and negative interactions, we learn rubrics cap-
turing Satisfaction (SAT) & Dissatisfaction (DSAT). Fig 2 outlines

three major components in our technique - (1) Generating a diverse
rubric set from conversation data; (2) Selecting an optimized set of
rubrics for online evaluation; (3) Scoring conversations and predict-
ing labels. We refer to (1) and (2) as the Generate & Select paradigm
of learning rubrics, which are carried out in an offline setting.

The Generation step is inspired from SPUR to support learn-
ing of attributes and patterns of Satisfaction/Dissatisfaction from
the available training conversations 𝐶train. We adapt Supervised
Extraction proposed in SPUR to include domain sensitization as
well as conversation design insights, while the manipulated Rubric
Summarization adheres to set standards of conversation while ac-
cumulating diverse assertions. Secondly, our novel selection policy
optimizes the number of assertions required to help converge to
rubric subsets of restricted sizes, making online evaluation feasi-
ble. The policy incorporates components to address concerns in a
data-scarce environment while providing a better opportunity for
labelling with high precision and coverage.

3.1 Rubrics and Conversation Quality

The core component of our system is a rubric 𝑟 , i.e., a natural lan-
guage assertion that denotes some property of a Human-AI assistant
conversation. For example, “the user explicitly thanks the assistant”
and “the information provided by the AI assistant was generic, and
did not consider the user’s current problem” are both rubrics. We
classify rubrics into satisfaction rubrics and dissatisfaction rubrics
(denoted SAT and DSAT) to say whether the rubric expresses a
positive or a negative sentiment about the conversation. We use the
symbols 𝑠 and 𝑑 to represent SAT and DSAT rubrics respectively.

Given a conversation 𝑐 , we can evaluate 𝑐 with respect to a
rubric 𝑟 by providing both of them to a language model and asking
it to rate the match on a 5-point Likert scale. This 5 point score
ranging from Strongly Disagree to Strongly Agree facilitates the LLM
to lexically articulate response on a uniform scale. The response
is then converted into a normalized score in the [0, 10] range to
remain consistent with SPUR. For ease of discussion, the score is
negated (i.e., in the range [−10, 0]) for DSAT rubrics to ensure that
a larger score always indicates a better conversation. We denote
this normalized score as eval(𝑟, 𝑐).

Rather than using a generic prompt for evaluation, we provide
domain & task-sensitized instructions to evaluate rubrics with re-
spect to a conversation with an instruction-tuned LLM. Given input
size limitations for the LLM and varying sizes of conversation to
be scored, the evaluations are carried out in batches of up to 10
rubrics with SAT & DSAT scored separately.

For a set of Rubrics 𝑅𝑆 comprising of SAT and DSAT rubrics
(𝑁 of each), we define the conversation score, which we refer to
as 𝑁𝑒𝑡𝑆𝐴𝑇 . The score measures the net satisfaction by adding
the sum of DSAT rubrics (negated) to the sum of SAT rubrics:

𝑁𝑒𝑡𝑆𝐴𝑇 (𝑅𝑆 , 𝑐) =
∑
𝑠∈𝑅𝑆

eval(𝑠, 𝑐) +∑𝑑∈𝑅𝑆
eval(𝑑, 𝑐)

3.2 Generation of Rubrics

The first component of the technique, as shown in Figure 2, is to
generate a rubric pool from a given training set of conversations
C, which is divided into positive and negative conversations C+
and C− . Inspired by SPUR [16], we use a two-phase strategy. First,
we perform a supervised extraction to identify conversation quality
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Figure 2: Representative Overview of the RUBICON.

(1) Extract task-specific patterns aligned with conversation design principles from each conversation. (2) Generate a large

rubric pool from extracted reasons in the context of Gricean Maxims & the task. (3) Use data-driven loss to select optimal

rubrics over conversation data (4) Score quality of each conversation over the learnt rubrics and thresholds

reasonings and patterns. Then, we summarize these reasonings
in batches and aggregate them into a large rubric pool. Both the
supervised extraction step and the rubric summarization steps are
modified significantly from the versions in [16], and we compare
the modifications experimentally in Section 4.

3.2.1 Supervised Extraction. Given a conversation 𝑐 ∈ Ctrain, the
supervised extraction step attempts to capture patterns 𝑟𝑖 for par-
ticular satisfaction and dissatisfaction aspects of the conversation.
If the conversation is annotated as positive in the ground-truth
training set, we extract satisfaction patterns 𝑠𝑖 (and dissatisfaction
patterns 𝑑𝑖 otherwise). Like in [16], we extract the top-𝑘 patterns
from each conversation (𝑘 = 3 in experiments). Figure 3(a) presents
the outline of the prompt used for supervised extraction.

Example 3.1. Sample Reasonings for conversations from Fig. 1.
When the user asked for further clarification, the assistant provided a
comprehensive and actionable plan in form of a detailed step-by-step
guide on how to implement the solution, including code examples.
(SAT, right conversation)
The assistant was unable to provide more specific information about
the missing file, which was the user’s direct question, due to lack of
additional information from the user. (DSAT, left conversation)
These reasonings are picked from localized patterns in the interac-
tion that could indicate why the user might be satisfied/dissatisfied
with this conversation.

User behaviour and Conversational Responsibility(CDP). The field
of classical conversation analysis assigns responsibility for conver-
sation quality to both parties involved [23, 24]. In a conversational
AI setting, it is easy to overlook the user’s responsibility as a first-
class participant and assign full responsibility of driving a positive
conversation towards completing the task to the assistant and, in
turn, the tool builder. In fact, prior works have done so [19, 27].
However, the prompt shown in Figure 3(a) presents a dedicated
block for conversation responsibility. In our study, we explicitly ask
the model to consider how both the user and the assistant take steps
to progress or hinder the conversation towards task completion.

Figure 1 (left) shows a redacted conversation where the user fails
to provide relevant information requested by the assistant.

Reasonings may point out issues with the user experience of the
tool and in the user’s understanding of its capabilities. For example,
based on the following user-related reasoning - “The assistant was
unable to access the file linked by the user, which hindered the progress
of the conversation and likely caused frustration for the user.", the
builders of the debugging assistant we test in our experiments are
able to identify two shortcomings in the design of the tool: (a) there
were insufficient UX affordances for users to provide new files to
the assistant and (b) the interface design sometimes leads to users
confusing the debugging assistant with other IDE assistants and
trying to ask non-debugging related questions of the assistant.

Domain Sensitization and Task Orientation (DS). We aim to pro-
duce rubrics that measure the quality of a conversation that is
specifically about achieving a domain-specific goal (for example,
debugging to fix an exception). That is, it does not matter if the as-
sistant and user have an engaging conversation about the weather
in Berlin if it is not goal-directed. Hence, it is important that the
prompt to extract reasonings specifically mentions aspects of what
the task is, expectations, and desired goals of the interaction. For
example, in the debugging domain, our prompt contains specific
expectations from the assistant described as “designed to hold a
conversation to understand, ask for more information, and investigate
the bug, then provide solutions to aid the user in their debugging
tasks.” This matches the intuition that for a task-oriented Human-
Human conversation to be positive – it needs to both have good
“conversational” qualities (e.g., participants know their roles, nei-
ther participant is frustrated or dominating, etc.) and task-specific
qualities (e.g., progress made towards fixing the bug, etc.).

3.2.2 Rubric Summarization. Here, we consolidate the patterns
generated in the Supervised Extraction step into SAT and DSAT
rubrics. Unlike in [16], we do not aim to produce a small and usable
set of rubrics updated at each step but instead to produce a large
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(a) Supervised Extraction (b) Rubric Summarization

Figure 3: Rubric Generation Prompt Outlines.

pool of diverse rubrics. The next step will select a smaller optimized
subset of good-quality rubrics from this pool.

This step incrementally generates new rubrics by processing a
mini-batch of patterns identified in the step. Let the 𝑖𝑡ℎ minibatch
be denoted as {𝑟𝑚∗(𝑖−1) , ..., 𝑟𝑚∗𝑖 }. For every minibatch, we prompt
the LLM to generate a rubric set 𝑅𝑖 based on its reasoning minibatch
while also providing rubrics generated until the previous minibatch
{𝑅1, ..𝑅𝑖−1}. The goal is to have the generated rubric set 𝑅𝑖 cover all
the patterns in the minibatch while diversifying over and beyond
the previously generated rubrics. The SAT and DSAT patterns are
batched separately, with corresponding changes in the prompts to
generate either SAT or DSAT rubrics, respectively. An important
point of difference with SPUR is that we do not update a restricted
set of 𝑁 rubrics 𝑅𝑖 at each turn and instead augment the rubric pool
with fresh rubrics at each batch. A restricted set is then selected
from a larger pool in a data-driven manner, instead of asking the
LLM to update the rubrics based on reasonings in each batch.

After obtaining the pool of rubrics 𝑅 consisting of all SAT/D-
SAT rubrics, we conduct a post-processing step to semantically
de-duplicate the set, removing rubrics that exhibit semantic similar-
ity to others. This is done to avoid any redundancy and bias in the
final rubric set after selection. If 𝑟 and 𝑟 ′ are two well-performing
semantically equivalent rubrics in the pool, they might likely end
up in the final rubric set after selection (section 3.3), which may
overpower and skew the resultant scores for the conversations us-
ing this set. To execute this, we use the reasoning capabilities of
GPT-4 with a curated instruction prompt (details in [1]) to remove
duplicate rubrics that cover similar reasonings, ideas or questions.

Gricean Maxims (CDP). We provide Grice’s maxims as a frame-
work of a cooperative principle for an effective conversation. These
rational principles for improving conversation quality are encapsu-
lated within four maxims: quantity, quality, relevance, and manner.
These enable the summarizer to gauge different aspects of the con-
versation while generating the rubrics, particularly aspects like
lapse on the part of any user, digression, confusion and lack of a
proper structure in the conversation. The prompt for rubric summa-
rization (Figure 3b) presents an ideal conversation as adhering to
Grice’s Maxims and stipulates that rubrics be crafted accordingly.

Example 3.2. The following rubrics below express the same idea:
Without CDP: The assistant does not adhere to the user’s specific
request for the format or structure of the response.
With CDP: The assistant’s responses are not aligned with the user’s

Figure 4: Positive & Negative Precision vs threshold for two

hypothetical rubric sets. A narrower uncertainty window

provides for larger ranges for high-confidence labels.

expectations. The first rubric highlights the mismatch between user
requests and AI responses without explaining why this is problem-
atic or how it impacts the interaction. In contrast, the second rubric,
aligned with the maxim of relevance, provides a more thorough and
fundamental explanation of the communication breakdown.

Domain Sensitization & Rubric Complexity (DS). The prompt incor-
porates instructions for the LLM to focus on the aspects that make
a conversation positive/negative in the cognizance of the domain.
For the Debugging use case, this includes progress towards the
debugging task, localization of the bug, answering user queries,
or providing an outright code snippet as the solution. Given that
complex rubrics are difficult to reason about and often lead to non-
determinism in response, even at low-temperature levels, we restrict
the assertions to be short and clean. The instruction prompt limits
the generation of complex rubrics by a natural language insight
that simple assertive statements tend to have a single verb.

3.3 Selecting Optimized Rubrics

From the large pool of rubrics generated as per Section 3.2, we
select a subset RS of a practical size.

Correctness and correctness loss. Given a set of rubric R and a
conversation 𝑐 , we first define the score Score(R, 𝑐) to be the sum∑
𝑟 ∈R Eval𝑟 (𝑐) where Eval𝑟 (𝑐) is the normalized [0, 10] Likert score

for a single rubric and conversation described in Section 3.2. Intu-
itively, R should separate positive and negative conversations, i.e.,
positive conversations should be scored significantly higher than
negative conversations. Hence, we define the correctness loss to be:

LossC (R) = mean𝑐∈C+ Score(R, 𝑐) −mean𝑐∈C− Score(R, 𝑐)

Sharpness and Sharpness loss. We want the rubric-set R to be
easily convertible into a binary classifier using a threshold. Correct-
ness loss measures the average separation between positive and
negative conversations but does not account for the sharpness of
the separation. Given a threshold 𝜃 , we call a conversation 𝑐 positive
if Score(R, 𝑐) > 𝜃 . The positive precision Prec+ (R, 𝜃 ) (resp. negative
precision Prec− (R, 𝜃 )) are the fractions of ground truth positive
and negative conversations correctly labelled using threshold 𝜃 ,
respectively. There is a trade-off between Prec+ and Prec− : we can
get very high positive precision by setting a high threshold (i.e.,
labelling almost all conversations negative) and vice-versa.

Figure 4 shows two hypothetical plots of threshold against posi-
tive and negative precision for two hypothetical rubric sets R1 and
R2. The left plot shows a narrow range of candidate thresholds
yielding high positive and negative precision, unlike the right plot.
The sharpness loss quantifies this idea of sharpness of a rubric-set
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Figure 5: Positive & Negative Precision v Score(Threshold)

plot, comparing the𝑇𝑎𝑛ℎ curves centred at the threshold and

the corresponding precision curves post selection.

precisely: we fit a tanh function for both positive and negative
precision curves while ensuring the mid-point 𝜃𝑐 for both curves is
the same. Given a rubric-set R, let

𝜃𝑐 =
1
2
·
(∑

𝑐∈C+ Score(R, 𝑐)
|C+ |

+
∑
𝑐∈C− Score(R, 𝑐)
|C− |

)
We define the sharpness loss as:

LossS (R) = Error𝜃 [tanh(𝜃 − 𝜃𝑐 ), Prec+ (R, 𝜃 )]
+ Error𝜃 [tanh(−(𝜃 − 𝜃𝑐 )), Prec− (R, 𝜃 )]

Note that we elide from the notation the scaling factors that ensure
that both the precision curves and tanh are in the same range.

Iterative selection of rubrics. Algorithm 1 depicts an algorithm
for selecting a rubric set R𝑆 from a rubric pool R𝑃 . It starts with
an empty set R𝑆 (line 1) and iteratively grows the set by adding
the rubric 𝑟∗ that minimizes the (weighted) sum of correctness and
sharpness loss (lines 2- 4). The weight 𝛼 (line 11) is a hyperparam-
eter selected based on the best average performance in a 5-fold
cross-validation over the training conversation data. In practice,
rather than a combined budget 𝑛, we instead have separate 𝑛SAT
and 𝑛DSAT budgets for the SAT & DSAT rubrics. We stop selecting
either SAT or DSAT rubrics as soon as the respective budget is hit.

Algorithm 1 Selecting rubrics from rubric pool
Require: ConversationsC = C+∪C− partitioned into pos. and neg. subsets
Require: Rubric pool R𝑃 , Budget 𝑛, and Sharpness loss weight 𝛼 ∈ R>0
Ensure: Selected rubric set R𝑆 and Threshold 𝜃
1: R𝑆 ← ∅
2: while |R𝑆 | ≠ 𝑛 ∧ |R𝑃 \ R𝑆 | > 0 do
3: 𝑟 ∗ ← argmax𝑟 ∈R𝑃 \R𝑆 Loss(R𝑆 ∪ {𝑟 },C+,C− )
4: R𝑆 ← R𝑆 ∪ {𝑟 ∗}
5: return ⟨R𝑆 ,GetThreshold(R𝑆 ,C+,C− ) ⟩
6:
7: procedure Loss(R,C+,C− )
8: LC← mean𝑐∈C+ Score(R, 𝑐 ) − mean𝑐∈C− Score(R, 𝑐 )
9: 𝜃𝑐 ← GetThreshold(R,C+,C− )
10: LS← LossS (R, 𝜃𝑐 ,C+,C− )
11: return LC + 𝛼 · LS
12:
13: procedure GetThreshold(R,C+,C− )
14: return

1
2 ·

(
mean𝑐∈C+ Score(R, 𝑐 ) +mean𝑐∈C− Score(R, 𝑐 )

)

4 EVALUATION

To evaluate RUBICON, we aim to answer the following questions:

• RQ1: How does the effectiveness of RUBICON compare to other
rubric-backed baseline methods?

• RQ2:What is the extent of the impact of Domain Sensitization
(DS) and Conversation Design Principles (CDP) instructions on
the performance of RUBICON?

• RQ3: How does the effectiveness of the proposed selection policy
compare to other baselines in selecting the final set of rubrics?

4.1 Data

Collection & Sanitization. The conversation data was sourced from
a C# Debugger Copilot assistant deployed in an IDE at a large
software company that was mined over 30 calendar days of de-
ployment. All conversations have a unique Conversation ID and
were collected anonymously. Of 127 conversations, after addressing
logging & data corruption issues, we were left with 100 conversa-
tions. The deployed assistant is aware of the context around the
exceptions like the error message and stack trace, and source code
details like exception location and current file. The deployment was
controlled and limited to maintain user access across the spectrum
of proficiency and experience in software development in C#.
Annotation. The filtered set of 100 conversations are then annotated
for ground truth of being Positive or Negative in reference to con-
crete aid to the user with the debugging task. Two authors with
experience of over 2 & 4 years of professional software development
in the industry annotate the data in the binary classification task. In
the initial phase, the first 20 conversations were annotated together
while discussing themes for annotation. Post these insights, both
engineers annotated another set of 20 conversations independently,
which were then tested for Inter-Rater Reliability (IRR). We found
that the annotators agreed on 17 conversations, giving us an IRR
of 0.85, which is an ‘almost perfect’ agreement. We split the re-
maining set between both the raters to label independently while
communicating in case of doubts or need for discussion.
Split. Given the limited data availability, we carry out a 50:50 train-
test split on the filtered conversation data. Both classification labels
are homogeneously represented in the splits.

4.2 Metrics

Accuracy, Precision, Recall and F1 Score are calculated on the test
set𝐶𝑡𝑒𝑠𝑡 based on threshold 𝜃 learned from the𝐶𝑡𝑟𝑎𝑖𝑛 for each final
set of rubrics. We define two additional metrics in our evaluation -
∆NetSAT score measures how well a rubric set separates the clus-
ters of positive and negative conversations across the score axis.
The metric is the difference between the means of the NetSAT score
of positive and negative conversations, i.e. Δ𝑁𝑒𝑡𝑆𝐴𝑇 = 𝑁𝑒𝑡𝑆𝐴𝑇 +−
𝑁𝑒𝑡𝑆𝐴𝑇 − . The higher the Δ𝑁𝑒𝑡𝑆𝐴𝑇 , the higher the separation be-
tween the two distributions, meaning that the rubric differentiates
between positive and negative conversations better. Note: In our
experiments, which we describe in Section 4.5, we observe a −0.69
Pearson correlation coefficient between the SAT and DSAT scores
across conversations on our final rubric set generated by RUBICON,
indicating as scores on SAT increase, the scores on DSAT tends to
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decrease, and the difference is actually representative of the separa-
tion, making it unlikely for a positive conversation and a negative
conversation to have similar scores, in general.
Yield Rate measures what fraction of the test set 𝐶𝑡𝑒𝑠𝑡 can be la-
belled with a certain precision. Classifying conversations as dis-
tinctly positive or negative is a difficult and subjective task, even
for humans. To be confident about our generated labels, we only
consider conversations which can be classified with a minimum
acceptable precision. 𝑌𝑖𝑒𝑙𝑑𝑅𝑎𝑡𝑒@𝑃 is the percentage of conversa-
tions that fall above the 𝑃 precision threshold. For the purpose
of our experiments, we fix 𝑃 to be 0.9 and refer to the metric as
𝑌𝑖𝑒𝑙𝑑𝑅𝑎𝑡𝑒@90. We calculate the Prec− and Prec+ as a function of
threshold 𝜃 . Prec− (𝜃 ) is the percentage of negative labels classi-
fied with a threshold 𝜃 , similarly for Prec+. By setting a 0.9 pre-
cision threshold, we divide the scores into three windows. The
first window with Prec− > 0.9, the second with Prec− < 0.9 and
Prec+ < 0.9, which we call the uncertainty window, and the third
with Prec+ > 0.9. Only the conversations with scores outside of the
uncertainty window are considered, and the yield rate measures
the ratio of these conversations. Figure 4 shows the positive and
negative precision curves based on a 0.9 precision cutoff. Note: A
high overall precision does not translate to a high Yield Rate, as the
latter depends on the spread of the score and the uncertainty win-
dow. One may have high precision values for more data with low
confidence in the uncertainty interval; however, this performance
does not translate to practical deployment scenarios.

4.3 Baselines

We compare RUBICON against the other baselines for the end-to-
end task of generating scoreable rubric sets. We further compare
dedicated baselines for the Rubric Selection policy separately.

BING. Authors of SPUR investigate, generate and share rubrics
for the Bing Copilot [16] generatedwith their technique. These SAT/
DSAT rubrics were learned from training data for open-domain
question-answering of Bing Copilot.

BING (DomainAdapted). For this baseline, wemanually adapted
the 𝐵𝐼𝑁𝐺 rubrics to be more inclusive of our domain and expec-
tations. This was done by an independent software engineer who
works on the Visual Studio Copilot with over 6 years of professional
development experience. We ask them to completely replace rubrics
that did not apply to the use case with domain-aware rubrics for
both SAT/DSAT based on their intuition and understanding. The
BINGDA rubric set (provided in Supplementary [1]) finally received
had 3 replacements in SAT and 4 replacements in DSAT.

SPUR.We re-implemented the SPUR technique [16] using the
prompts and strategies provided in the paper. We ran this pipeline
on our training data to get the final set of rubrics for evaluation.

4.3.1 Selection Policy. Given a rubric pool and some validation
data, the selection policy chooses a subset of rubrics optimised for
performance on the validation dataset.

UCB Bandits. This policy treats rubric selection as a bandit
selection problem, with UCB used to select prompts based on per-
formance [25]. We define the reward score of a rubric as the sum
of its scores over a batch of conversations. Reinforcement Learning
methods balance exploration and exploitation, assuming prompt
evaluations are limited and costly. This may not necessarily be the

case in domain-specific conversations where data may be scarce,
rendering evaluating all rubrics over a smaller data size manageable.

Brute Force. We also compare with a brute force approach
where the score of each rubric is defined the same as in UCB Ban-
dits. This assumes that complete evaluation over the rubric and
conversation is manageable, akin to RUBICON.

4.4 Experimental Setup

Throughout our experiments, we use GPT-4 to power RUBICON
and SPUR. Two authors of the paper created the proposed prompt
instructions as discussed in Section 3 (exact details in [1]) For all
these configurations, we maintain a consistent selection policy for
the final rubrics, as proposed in Algo. 1, with both SAT & DSAT
rubric set to 𝑁 = 10. For RQ1, we use the final rubric sets obtained
from all baselines and our technique, which are then analyzed for
the rating and classification task. To evaluate RQ2, we conduct an
ablation study to differentiate the contribution of each component
in the prompts. We establish four configurations by systematically
excluding instructions related to DS, CDP, and both from the final
proposed prompts. Finally, to answer RQ3 - for all selection poli-
cies, we fix the rubric pool to the one acquired on executing the
augmentation as described in 3.2. Thereafter, the ability of these
techniques to select an optimized rubric set is studied.

4.5 Results

4.5.1 RQ1: How does the effectiveness of RUBICON compare to the
other rubric-backed baseline methods? Table 1 summarises the re-
sults. The improvement of RUBICON over other methods is readily
apparent in Δ𝑁𝑒𝑡𝑆𝐴𝑇 . This highlights the effectiveness of our tool
in distancing positive conversations from negative ones in terms
of 𝑁𝑒𝑡𝑆𝐴𝑇 which creates the highest separation as compared to
other baselines. SPUR, in particular, is unable to generalize over
our data to create differences in scores of positive and negative
conversations. Furthermore, we observed that RUBICON also out-
performs in terms of 𝑌𝑅@90, scoring 20 points (abs.) higher than
the next best. This indicates that our tool offers a high precision
(>0.9) in classifying 84% of conversations. SPUR only classifies 28%
of conversations with this level of precision. 𝐵𝐼𝑁𝐺𝐷𝐴 achieves a
6.2% precision score improvement over 𝐵𝐼𝑁𝐺 just through the sub-
stitution of a few rubrics with domain-specific ones, underscoring
the significance of domain specificity. While 𝐵𝐼𝑁𝐺𝐷𝐴 achieved a
slightly higher precision score, it classified far fewer conversations
(64%) with the minimum acceptable level of precision. Our results
suggest that RUBICON rubrics perform better than SPUR rubrics
and rubrics manually written by experts.

Table 1: Rubric performance across different techniques.

Δ𝑁𝑆 = Δ𝑁𝑒𝑡𝑆𝐴𝑇 , 𝑌𝑅@90 = 𝑌𝑖𝑒𝑙𝑑𝑅𝑎𝑡𝑒@90%, 𝐴 = 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦,

𝑃 = 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛, 𝑅 = 𝑅𝑒𝑐𝑎𝑙𝑙, 𝐹1 = 𝐹1𝑠𝑐𝑜𝑟𝑒

Technique Δ𝑁𝑆 𝑌𝑅@90 𝐴 𝑃 𝑅 𝐹1

𝐵𝐼𝑁𝐺 11.0 58.0 70.0 64.7 88.0 74.6
𝐵𝐼𝑁𝐺𝐷𝐴 11.3 64.0 76.0 70.9 88.0 78.6
𝑆𝑃𝑈𝑅 3.0 28.0 58.0 55.9 76.0 64.4
RUBICON 27.4 84.0 76.0 68.6 96.0 80.0
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4.5.2 RQ2: What is the extent of the impact of Domain Sensitization
(DS) and Conversation Design Principles (CDP) instructions on the
performance of RUBICON?. Table 2 showcases the various configu-
rations for the augmentation step ablation. We observe that domain
sensitization is crucial in recognizing patterns and significantly
improves metrics across the board. Notably, the removal of both DS
and CDP resulted in the steepest decline, highlighting their pivotal
role. This also suggests that DS and CDP are complementary, opti-
mizing the technique’s performance when combined. The prompts
are engineered to elicit domain-specific responses, identify points
of satisfaction/progress signals, and clarify the joint responsibil-
ity of the user and assistant in accomplishing the task objectives.
CDP establishes a framework for the desired structure and content
of an ideal conversation, guiding the generation of rubrics that
encapsulate singular ideas that check off the most relevant con-
versational attributes. A higher recall in the absence of DS could
indicate over-generalization, increasing both true and false posi-
tives. Thus, DS helps recognize more nuanced and domain-specific
patterns, enhancing selectivity for positive instances.

Table 2: Ablation study of Rubric Augmentation

Technique Δ𝑁𝑆 𝑌𝑅@90 𝐴 𝑃 𝑅 𝐹1

RUBICON 27.4 84.0 76.0 68.6 96.0 80.0

−𝐶𝐷𝑃 23.7 72.0 64.0 58.5 96.0 72.7
−𝐷𝑆 17.9 66.0 52.0 51.0 100.0 67.6
−𝐶𝐷𝑃 − 𝐷𝑆 15.7 62.0 50.0 50.0 100.0 66.67

4.5.3 RQ3: How does the effectiveness of the proposed selection
policy compare to that of other baselines in selecting the final set
of rubrics? The experimental results (Table 3), reveal several key
insights about the performance of our selection policy. Our pol-
icy outperforms baseline methods in terms of Δ𝑁𝑒𝑡𝑆𝐴𝑇 score and
𝑌𝑖𝑒𝑙𝑑𝑅𝑎𝑡𝑒@90% precision with clear contributions from both com-
ponents of loss as hypothesized. These results suggest that our
selection policy is particularly effective in separating positive and
negative conversations while also being able to confidently label
a larger proportion of conversations compared to baselines. In-
terestingly, though 𝐵𝑟𝑢𝑡𝑒𝐹𝑜𝑟𝑐𝑒 and 𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑛𝑒𝑠𝑠𝐿𝑜𝑠𝑠 consider all
possibilities, the objective allows the latter to have better accuracy
and separation while maintaining a similar confidence. Overall,
the Generate & Select framework allows us to generate a diverse
set of rubrics, followed by a selection step that can be optimised
to various evaluation needs. Our implementation prioritizes both
surety and correctness of the classifications, and this focus is evi-
dent in the selection policy construction. The last row suggests that
𝑆ℎ𝑎𝑟𝑝𝑛𝑒𝑠𝑠𝐿𝑜𝑠𝑠 enables us to classify confidently with high yield
rates without losing on performance as compared to other baselines
with respect to the 𝑁𝑒𝑡𝑆𝐴𝑇 separation, counterbalancing effects of
overfitting tendencies from the other loss component.

Table 3: Comparative analysis of Selection policies.

Technique Δ𝑁𝑆 𝑌𝑅@90 𝐴 𝑃 𝑅 𝐹1

UCB 23.6 68.0 72.0 65.7 92.0 76.7
BruteForce 24.2 74.0 74.0 67.7 92.0 78.0
CorrectnessLoss 29.7 74.0 76.0 69.7 92.0 79.3
RUBICON 27.4 84.0 76.0 68.6 96.0 80.0

5 THREATS TO VALIDITY

Internal Validity The ground truth labels for the binary classi-
fication of conversations into positive or negative were manually
assigned. Despite our high inter-annotator agreement, this pro-
cess is inherently subjective and prone to errors or inconsistencies,
which might impact the rubric learning process.
External Validity The data used in our experiments were collected
over a month from a C# debugger copilot assistant deployed in an
IDE at a large software company. The limitation in the dataset’s
diversity in terms of the number of conversations we could col-
lect due to ethical limitations might lead to biases in the results.
Additionally, our study is conducted in the context of software
debugging tasks, making the results domain-specific to software
engineering (SE). We use debugging specific sensitization in our
experiments, and the resultant rubrics and evaluator may not di-
rectly translate to other domains or tasks. While the concept and
technique are transferable, generalizing the results to other areas
within SE or other domains might require additional validation.
Construct Validity Our research leverages automated scoring of
rubrics based on instruction tuned LLM. However, the performance
of the automated scoring is optimized with respect to the task, its
accuracy is not directly evaluated. Changes to the underlying scor-
ing model could influence our results. The use of the Likert scale
and its arithmetic manipulations makes several implied assump-
tions. Converting the ordinal Likert scale to a [0, 10] scale assumes
the difference between ‘Neutral’ and ‘Disagree’ to be the same as
‘Agree’ and ‘Strongly Agree’. We also club ‘Not Applicable’ with
‘Neutral’ and sum evaluations from different rubrics with equal
weightage for the final 𝑁𝑒𝑡𝑆𝐴𝑇 score, despite varying importance
of rubrics for different users or conversations. Future work will
explore different options for calculating the 𝑁𝑒𝑡𝑆𝐴𝑇 score.

6 CONCLUSION

We introduced RUBICON, a novel methodology for automated eval-
uation of AI-assisted debugging conversations. We showed that by
incorporating domain knowledge and conversational design princi-
ples, we can considerably enhance the quality of generated rubrics.
Furthermore, we demonstrated that our proposed selection policy
effectively differentiates between good and bad conversations and
surpasses baseline methods. A domain-adapted Likert scale scor-
ing system also proved effective in scoring rubrics. We share the
prompts used in the pipeline as well as the rubrics generated at [1].

We implement a strategy where extracting rubrics and selecting
a rubric set for online evaluations are two distinct but consequent
problems within the Generate & Select framework. Our technique
optimises different steps for handling multi-turn task-oriented con-
versations, aiming to provide a powerful yet easy-to-implement
technique for evaluating AI assistants and chatbots.

RUBICON has been successfully deployed in a popular IDE at
a large software company to monitor two Software Engineering
AI Assistant Copilots, with promising results. The insights gained
from this study open new avenues for future research, emphasizing
that the synergistic application of AI and human expertise can
lead to robust and effective tools for evaluating and improving
conversational debugging experiences.
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