
Efficient Policy-Rich Rate Enforcement with PhantomQueues

Ammar Tahir¶,†, Prateesh Goyal¶ , Ilias Marinos¶ , Mike Evans¶ , Radhika Mittal†

¶Microsoft, †UIUC

ABSTRACT
Rate enforcement is routinely employed in modern networks
(e.g. ISPs rate-limiting users traffic to the subscribed rates). In
addition to correctly enforcing the desired rates, rate-limiting
mechanismsmust be able to support rich rate-sharing policies
within each traffic aggregate (e.g. per-flow fairness, weighted
fairness, and prioritization). And all of this must be done at
scale to efficiently support the vast magnitude of users. There
are two primary rate-limiting mechanisms – traffic shaping
(that buffers packets in queues to enforce the desired rates and
policies) and traffic policing (that filters packets as per the de-
sired rates without buffering them). Policers are light-weight
and scalable, but do not support rich policy enforcement and
often provide poor rate enforcement (being notoriously hard
to configure). Shapers, on the other hand, achieve desired
rates and policies, but at the cost of high system resource
(memory and CPU) utilization which impacts scalability. In
this paper, we explore whether we can get the best of both
worlds – the scalability of a policerwith the rate and policy en-
forcement properties of a shaper. We answer this question in
the affirmativewith our systemBC-PQP. BC-PQP augments a
policer with (i) multiple phantom queues that simulate buffer
occupancy using counters, and enable rich policy enforce-
ment, and (ii) a novel burst control mechanism that enables
auto-configuration of the queues for correct rate enforcement.
We implement our rate-limiter as a middlebox over DPDK.
Our evaluation shows how BC-PQP achieves the rate and
policy enforcement properties close to that of a shaper while
being up to 7 ×more efficient.

1 INTRODUCTION
Rate limiting is prevalent among network operators and In-
ternet Service Providers (ISPs) [14, 21, 28, 33]. ISPs routinely
rate-limit their customers’ traffic based on their plans and sub-
scriptions.Cellular serviceproviders also commonly rate limit
bandwidth-hungry video streaming traffic for each user in the
cellular core, before the traffic hits their radio access network
(RAN), so as to not overwhelm the limited RAN resources
[1, 28, 33, 45]. Programs like T-Mobile’s “Binge on” [45] and
Verizon’s “Netflix & Max” [49] provide unlimited access to
specific video streaming services, but limit the subscribers’
network traffic outside of those services.
The rate limiting mechanim must correctly enforce the

desired cumulative rate for each traffic aggregate (e.g. set of
flows belonging to a given user). In addition to that, it must

satisy twomore important requirements. First, it should be
able to support different rate sharing policies among flows
within each aggregate. For example, enforcing per-flow fair-
ness within an aggregate allows flows using different conges-
tion control algorithms (BBR [17], New Reno [50], Cubic [26],
Vegas [13], etc) to compete fairlywith one another [34, 38, 39].
It is also often desirable to enforce weighted fair sharing or
prioritization within a given user’s traffic as per their prefer-
ences (e.g. prioritizing video streams or web traffic over bulk
downloads). 1 Per-flow fairness is also desired when cellular
operators rate limit video streaming sessions, so as to ensure
that audio chunks are not head-of-the-line blocked by video
chunks (based on our conversations with a large US-based
telecom company, this is a highly desirable feature that is
difficult to implement for reasons we discuss below).

The second requirement is that the rate and policy enforce-
ment mechanismmust be efficient. This requirement stems
from the scale at which such systems operate, with a typical
ISP supporting thousands of customers.

Rate limiting can be done using two different mechanisms
(that are typically implemented in a softwaremiddlebox): traf-
fic shaping and traffic policing. Traffic shaping for a given
aggregate involves buffering packets in one or more queues,
which can be served based on desired policies (e.g. prioriti-
zation, round-robin for fairness, weighted round-robin, etc).
Traffic shapers are thus able to enforce a rich set of policies.
However, as we detail in §2, doing so is costly as it requires
buffering packets in memory and pointer chasing at the time
of dequeues – this cost materializes as increased utilization of
system resources (memory and CPU cycles), which impacts
scalability.

Policers, in contrast, are much more lightweight and there-
fore more scalable. They do not require storing packets, and
instead immediately determine whether an incoming packet
should be dropped or transmitted depending on whether in-
coming traffic’s rateexceeds theenforcedrate.This is typically
implemented using a token-bucket filter, where tokens are
added to a fixed size bucket at the specified rate (by incre-
menting a counter) – a packet is allows to pass through only if
there are enough tokens in the bucket (worth the packet size).

By the virtue of beingmore efficient, policers have emerged
as the more popular rate limiting choice [22]. But the scala-
bility provided by this choice has come along with notable
1Commercial SD-WAN solutions [4, 5] already provide interfaces for
enterprise customers to express such preferences to their ISPs, and there are
several research proposals to enable this more broadly [12, 18, 25, 30, 51, 52].

1



SIGCOMM’18, August 21-23, 2018, Budapest, Hungary X.et al.

downsides: (1) Typical policers, by design, do not provide any
mechanism for enforcing desired rate sharing policies within
each rate-limited traffic aggregate. (2) Policers are notoriously
hard toconfigure,often leading topoor rateenforcement (with
a trade off between meeting the desired average rate limit vs
reducing burstiness and packet drop rates) [21, 22, 28, 47].
Shapers can adequately address these downsides of a policer,
but at the cost of lower system efficiency (and scalability).

The questionwe explore in this paper iswhetherwe can get
the best of both worlds: can we have the system efficiency and
scalability of a policer, along with the network-level properties
(ability to enforce desired rates and policies) of a shaper?

Weanswer thisquestion in theaffirmativeby implementing
policers using phantom queues. Phantom queues simulate the
occupancy of a buffer without actually buffering packets, and
havebeenusedbefore for activequeuemanagement [8, 31, 32].
We apply a similar concept for policing. A phantom queue
based policer immediately transmits a packet upon arrival if
there is enough capacity (worth the packet size) in the phan-
ton queue, and drops it otherwise. Every time a packet is
transmitted, it enqueues a phantom packet of the same size
in the phantom queue – these phantom packets are simply
realized as byte counters. It dequeues the phantom queue at
the desired rate by decrementing the byte counters.

A policer implemented in the above manner using a single
phantom queuemimicks the behavior of a token-bucket filter.
In order to enforce different rate sharing policies, we extend
such a policing system for each traffic aggregate to usemul-
tiple phantom queues – an incoming packets gets classified
into one of these phantom queues (based on flow identifiers
in the packet header fields), and is immediately transmitted or
discarded based on the queue occupancy as described above.
The phantom packets in each of these phantom queues are
then dequeued (i.e. the byte counters are decremented) based
on the desiredpolicy, e.g. prioritization, round-robin, etc, anal-
ogous to a shaper system.We refer to such a phantom queue
based policer as PQP.We show (both analytically and empir-
ically) how PQP can correctly enforce the desired aggregate
rate, as well as achieve the desired rate sharing policies on an
average, as long as the phantom queues are sufficiently sized.
While PQP correctly enforces the desired rates on aver-

age, the instantaneous rates can burst to much higher values
(with the burst increasingwith queue size). Theminimumsize
required for enforcing correct average rates with phantom
queues is very large to begin with (𝑂 (𝐵𝐷𝑃2) as opposed to
𝑂 (𝐵𝐷𝑃) for shaper queues with real packets). The burstiness
caused by such a large queue is further aggravated in PQP –
with 𝑁 active phantom queues the worst case burst can be 𝑁
times larger!

We therefore need a mechanism to control the burst while
still ensuring correct average rate enforcement. For this, we
design a novel burst control mechanism for phantom queues,

0.5 0.6 0.7 0.8 0.9 1.0
Policy Enforcement (Fairness)

0
50

100
150
200
250
300
350
400

CP
U 

Us
ag

e 
(C

yc
le

s/
Pa

ck
et

)

Shaper

BC-PQPPolicer

Better

(a) Traffic shapers
are costly whereas policers cannot

enforce policies like fairness.

0.7 0.8 0.9 1.0
Average Rate (Normalized)

0

2

4

6

8

10

12

Bu
rs

t (
No

rm
al

ize
d)

Policer
(BDP-sized)

BC-PQP

Policer
(BDP2-sized)

Better

(b) Policers are challenging to
size, a liberally sized policer does
correct rate enforcement but

with large bursts and vice versa.

Figure 1: Drawbacks of traffic shapers and policers

where we start with sizing each phantom queue to a suffi-
ciently large value. However, if the enqueue rate of the queue
exceeds a certain threshold, we vacuously fill up the queue
withmagic phantom packets (that do not correspond to real
packets). Filling up the queue in this manner prevents the
flow from bursting and induces early drops. At the same time,
keeping the queue large (but occupied by the magic packets
that drain at the desired dequeuing rate) complies with the
queue size requirement for correct average rate enforcement.
We refer to this extension of PQP as BC-PQP (for burst con-
trolled PQP). The rate threshold for vacuously filling up a
phantim queue in a BC-PQP system is governed by the rate
at which the queue is served (as per the rate sharing policy).
This enables auto-tuning of the queue configuration, as the
set of active flows (and consequently the rate assigned to a
given phantom queue) changes.

We implement our system on a testbed comprising of three
Linux servers (a sender, a middlebox implementing BC-PQP,
and a receiver). The middlebox transparently rate-limits the
traffic sent by the sender using a kernel-bypass stack based on
Intel’s DPDK. Our evaluation (using self-generated traffic as
well as real-world applications) shows how BC-PQP achieves
the rate and policy enforcement properties close to that of
a shaper while being 7 ×more efficient (with the efficiency
within 1.5-2 × of a standard policer). Through dynamic burst
control, BC-PQP further achieves up to 2.5× lower drop rates
and up to 6× smaller burst (tail throughput deviation from
desired value) than a policer. BC-PQP is able to enforce a
variety of rate-sharing policies including per-flow fairness,
weighted fairness, prioritization, and nested combinations of
these policies.

2 BACKGROUNDANDMOTIVATION
Today, there are two prevalentmechanisms to do rate enforce-
ment: traffic shapers and traffic policers. We describe both of
them below.

2



Efficient Policy-Rich Rate Enforcement with PhantomQueuesSIGCOMM’18, August 21-23, 2018, Budapest, Hungary

2.1 Traffic Shapers
Traffic shapers are often implemented on network routers,
and dedicated hardware appliances. Recently, with the ad-
vent of software defined networking (SDN), traffic shapers
are implemented in software as virtualized network functions
for flexibility. They can support a large set of Quality of Ser-
vice mechanisms such as Priority Queueing, Weighted Fair
Queueing (WFQ) [41, 43].
Rate enforcement with traffic shapers. Traffic shapers
maintain separate buffer for each traffic aggregate. An incom-
ing packet gets enqueued into the buffer corresponding to its
traffic class (e.g. based on the end-user). If the buffer is full,
the packet is dropped. Each such buffer is dequeued at the
required rate 𝑟 (that is the rate that wewish to enforce on that
traffic aggregate).
Policy enforcement with traffic shapers. Traffic shapers
further divide the buffer for each traffic aggregate into a set
of 𝑁 queues, and dequeue packets from these queues as per
the desired policy at a cumulative rate 𝑟 . For example, to en-
force weighted fairness, a deficit round-robin scheduler is
often used, which attempts to dequeue𝑤𝑖𝑀𝑆𝑆 bytes from any
queue 𝑖 (if the queue is not empty), before moving on to the
next one. Since a packet can be dequeued from the shaper
only after 𝑀𝑆𝑆/𝑟 time, a dequeue call is scheduled period-
ically every 𝑀𝑆𝑆/𝑟 . When doing such rate enforcement at
scale, typically a timer wheel [48] is used to schedule these
dequeue calls efficiently for different shapers.

Inefficiency of shapers:While shapers can achieve very
accurate rates and policy enforcement, they can be compu-
tationally inefficient to implement. For starters, they require
a large amount of memory e.g. for a single traffic shaper with
16 drop-tail queues of size 48 MSS-sized packets, the mem-
ory that needs to be reserved is at least 1 MB. When doing
rate enforcement at scale for thousands of shapers, memory
bottlenecks start to arise. On modern x86 CPUs that feature
Intel’s Data Direct IO (DDIO), incoming packets are being
DMAed to the CPU’s Last Level Cache (LLC) and the CPU can
classify themwithout incurring cache misses, but since they
cannot be dequeued immediately they are eventually evicted
to the main memory (DRAM). The CPU is constantly polling
all available shapers (i.e., queues) and instructs the NIC to
DMA packets out when allowed. This could be a relatively
efficient operation if the shapermaintains a single FIFOqueue
and the packets are being buffered to contiguous memory,
but it could become quite expensive when enforcing policies
like DRR or prioritization with numerous flows: in such cases,
packets are not necessarily dequeued in the order that they
were received and the CPU needs to lookup for each packet
individually from different locations in memory before in-
structing the NIC to transmit them. Hence this operation can

cause frequent CPU stalls (manifesting as increased cycles
per instruction) due to LLCmisses.

This can be seen in Figure 1a.While the policy enforcement
(fairness in this case) is quite effective, far more CPU cycles
are spent per packet compared to a policer. Throughout the
paper, we use CPU efficiency as a proxy for scalability. If a
rate-limiting mechanism consumes higher number of CPU
cycles per packet, it will require proportionally larger number
of cores (and servers) to meet the scalability requirements.

2.2 Traffic Policer
Unlike traffic shapers that attempt to regulate traffic by buffer-
ing and delaying packets, network policers enforce rate lim-
iting by dropping them when a certain rate is exceeded. By
avoiding packet buffering, policers are quite lightweight and
scale better than traffic shapers on conventional hardware.
Traffic policing is done using token bucket filters (TBF) [21].
Policers maintain a TBF for each traffic aggregate. In a TBF,
tokens are added to a bucket of size 𝐵 at the desired rate 𝑟 .
For each packet of size 𝑠 that arrives, if there are at least size
𝑠 worth of tokens in the bucket, the packet consumes those
and is immediately forwarded. Otherwise, it is dropped. This
way, policer does not need to store any packets, and hence
eliminates the overhead of memory-related bottlenecks.
While providing an excellent option in terms of system-

level efficiency, trafficpolicers suffer from twokey limitations:
1. Poor rate enforcement.Network policers are notoriously
hard to configure [21]. An inappropriately small bucket size
(𝐵) can result in an average rate lower than the desired one.
Whereas, an appropriately large bucket size can cause a large
burst sometimesordersofmagnitudehigher than theenforced
rate. Figure 1b illustrates the tradeoffbetween the steady-state
rate and peak rate due to bursts allowed by a policer. This
can be quite problematic: bursty behavior can result in packet
drops and unfairness which can severely impact the users
quality of experience. As per our analysis in §3.5 (and as per
what prior studies have reported [22, 47]), such a trade-off
is fundamental for any TBF-based policer with a statically
configured bucket size.
2. Lackof policy enforcement.By design, traditional traffic
policers (that use TBFs) can only support simple rate enforce-
ment on a traffic aggregate, without providing any means
for controlling how this aggregate rate is further subdivided
between different flows or applications within the aggregate.
Recent work, called FairPolicer, has explored the idea of

augmenting TBF-based policers with per-flow fairness across
𝑁 flows [38, 39]. It achieves this by effectively dividing the
bucket 𝐵 equally across the 𝑁 flows, and distributing the to-
kens equally between buckets of active flows. However, it
is not immediately clear how to extend the point solution
provided by FairPolicer to support more general rate-sharing

3



SIGCOMM’18, August 21-23, 2018, Budapest, Hungary X.et al.

policies (e.g. weighted or hierarchical fairness). Moreover,
due to a statically configured bucket size, it suffers from large
bursts and poor rate and policy enforcement under many
scenarios. Our evaluation in §6 provides detailed comparison
with FairPolicer.

2.3 Our Goals
Based on the applications and use cases we have discussed so
far, we need a rate enforcement mechanism that:

• Does rate enforcement correctly without large bursts.
• Allows arbitrary rate-sharing policies within the aggre-
gate.

• Is scalable, efficient, and lightweight.
Shapers satisfy the first two goals, but fail on the third goal.

Policers satisfy the third goal, but fail on the first two.
In the next few sections, we present our system that aug-

ments policer with phantom queues to meet all of the above
goals. As shown in Figure 1, our system has efficiency compa-
rable to a policer, and rate and policy enforcement capabilities
comparable to a traffic shaper.

3 POLICERSWITH PHANTOMQUEUES
We augment a policer with phantom queues to realize differ-
ent rate sharing policies. Prior work has used the concept of
phantom (or virtual) queues for active queue management
[8, 31, 32] – these queues simulate the occupancy of the link
with lower utilization using packet counters (without actually
buffering the packets), enabling early signaling (via ECN or
packet drops) when the simulated buffer is full. We apply a
similar concept for policing as follows.

3.1 TBF as a PhantomQueue
Consider a policer implemented using a token-bucket filter,
that enforces a rate of 𝑟 and allows a burst of size 𝐵 (as de-
scribed in §2.2).We can realize the samepolicing systemusing
a phantom queue with a (simulated) buffer of size 𝐵, served at
rate 𝑟 . When a packet of size 𝑠 arrives at the policer, we first
check if there is sufficient capacity in the phantom queue’s
simulated buffer. If the remaining capacity in the phantom
queue is atleast 𝑠 , we immediately transmit the (real) packet,
and enqueue a “phantom” packet of size 𝑠 in the phantom
queue on its behalf. If the phantom queue is full (or its re-
maining capacity is less than 𝑠), we drop the (real) packet. We
dequeue the phantom packets in the phantom queue at rate
𝑟 . Notice how we do not buffer any real packets – we either
transmit or drop the real packets rightaway upon arrival. The
phantompackets in thephantomqueueare simplymaintained
as byte counters that get incremented and decremented upon
enqueue andphantomdequeue events respectively.Moreover,
unlike a shaper, where we need to regularly dequeue packets

based on rate 𝑟 , phantom dequeues can be batched and done
only when the phantom queue becomes full.

3.2 Policing withMultiple PhantomQueues
Oncewe realize a policer as a phantomqueue,we can extend it
to a system of𝑁 phantom queues (analogous to a shaper with
𝑁 queues) to realize different rate sharing policies. When a
packet of size 𝑠 arrives, we classify it into one of the𝑁 queues
(say𝑄𝑖 with a buffer size of 𝐵𝑖 ) based on packet header fields
(e.g. flow ID, hash of source-destination addresses, etc). If the
remaining buffer capacity in𝑄𝑖 is atleast 𝑠 , we transmit the
real packet and enqueue the corresponding phantom packet
in𝑄𝑖 by incrementing its byte counter by 𝑠 . If the remaining
buffer capacity in𝑄𝑖 is less than 𝑠 (after accounting for any
pending phantom dequeues), we drop the packet.

Wedequeue thephantompackets fromthephantomqueues
(by decrementing the corresponding byte counters) as per the
desired policy. For example, to enforce per-flow fairness, we
maintain a phantom queue for each flow (or approximate it
by hashing the flow identifiers in the packet header fields into
one of the 𝑁 queues), and dequeue phantom packets from
the occupied phantom queues in a round-robin manner at a
cumulative rate of 𝑟 . This phantom system (maintained via
counters) is exactly analagous toa shaper systemthat enforces
fairness via per-flow queues storing real packets served in a
round-robinmanner at a cumulative rateof𝑟 .Wecan similarly
emulate other policies – weighted fairness (doing weighted
round-robin between occupied phantom queues with differ-
ing weights), prioritization (dequeuing from lower priority
phantom queue only when the higher priority queue is unoc-
cupied), or hierarchical combinations of these (e.g. dividing
the queues into two classes, with the first class of queues hav-
ing 2× the weight of the second class, and enforcing per-flow
fairness across the queues within each class).

We refer to such a policing systemwith multiple phantom
queues as PQP. We further use the term “analagous shaper
system” to refer to a hypothetical shaper system that applies
the same enqueuing and dequeing policies on real packets as
PQP does on phantom packets.

3.3 Scope and Properties of PQP
NoticehowPQPdirectly enforces thedesiredpoliciesonphan-
tom packets (that are maintained as counters). These policies
indirectly influence real packets by changing the phantom
queue occupancy, thereby determiningwhether the real pack-
etsmust be transmitted or dropped. This discrepancybetween
real and phantom behavior imposes certain restrictions on
the kind of policies we can realize with PQP.
Restriction #1: No drop after enqueue. The first restric-
tion stems from the fact that PQP decides whether a packet

4



Efficient Policy-Rich Rate Enforcement with PhantomQueuesSIGCOMM’18, August 21-23, 2018, Budapest, Hungary

should be transmitted or dropped upon its arrival. If the cor-
responding phantom queue occupancy allows the packet to
be transmitted, that is done right-away, and its phantom copy
is enqueued (with the assumption that it will eventually be
dequeued). By design, such a system cannot emulate policies
where the fate of the packet (whether it should be dropped
or transmitted) changes after the packet has been enqueued.
An example of such a policy is priority dropping – where a
queue enqueues packets with differing priorities, dropping
the lowest priority packet when it is full.
We therefore restrict PQP to emulate a set of 𝑁 drop-tail

queues, where each queue𝑄𝑖 has a fixed size 𝐵𝑖 – if the oc-
cupancy of 𝑄𝑖 allows the packet to be transmitted (and its
phantom copy to be enqueued) upon arrival, then the cor-
responding phantom packet is guaranteed to be eventually
dequeued (with the dequeue time governed by the policy as
described in §3.2). This restriction complies with howmost
policy-rich shaper systems are implemented [2, 41]. Note that
we use the term drop-tail rather generously – the only require-
ment being that a (phantom) packet cannot be dropped after
it has been enqueued. We need not necessarily wait for 𝑄𝑖

to become full before we drop a packet upon its arrival; we
can apply active queue management policies (as we do in §4)
or even access control based filters that drop packets upon
arrival based on other criteria.
Restriction #2: Rate-sharing Policies. The second restric-
tion stems from the fact that real and phantom packets in
PQP are dequeued at different times. So while PQP enforces
the desired policies (that an analogous shaper system applies
on real packets) on phantom packets, the specific timings do
not translate to real packets. As a result, PQP cannot enforce
policies pertaining to packet timings or scheduling order –
a packet arriving at PQP at time 𝑡 will either be dropped or
transmittedat time 𝑡 . For example, a shaper servedat rate𝑟 can
ensure that high priority packets never experiences queuing
delay from low priority if all downstream hops have capacity
greater than 𝑟 . In contrast, PQP can transmit burst of (real)
low priority packets before transmitting high priority packets
that arrive later (while the phantom low priority packets wait
behind phantom high priority ones) – this can cause the high
priority packets to wait behind the burst of low priority ones
at a downstream hop whose link capacity, while greater than
𝑟 , is lower than the burst rate.

While we cannot control fine-grained packet timings with
PQP, we can enforce different rate-sharing policies – how the
cumulative rate 𝑟 is divided between individual queues on
average. For example, a per-flow fairness policy (implemented
as round-robin dequeue from per-flow phantom queues) will
serve𝑄𝑖 roughly at rate 𝑟𝑖 =𝑚𝑎𝑥 (𝑟/𝑁 ′), where𝑁 ′ is the num-
ber of non-empty queues. A weighted fairness policy will
serve𝑄𝑖 at rate 𝑟𝑖 = 𝑤𝑖𝑟∑

𝑄𝑗𝑛𝑜𝑡𝑒𝑚𝑝𝑡𝑦𝑤𝑗
, where𝑤𝑖 is the weight of

𝑄𝑖 . A prioritization policy will serve a lower priority queue
at rate of 𝑟 minus the rate at which the higher priority queues
are served (as driven by their packet arrival rates). 2
PQP, by design, guarantees the following properties, that

allow it to enforce such rate-sharing policies on average:
Property 1.Assuming the set of packets that arrive at a PQP
system is exactly same as the set of packets that arrive at the
analogous shaper system, if a packet gets dequeued at time 𝑡𝑑
in the shaper system, its phantom copy will also be dequeued
at the same time 𝑡𝑑 in the PQP system.
Property 2. If a (real) packet is transmitted by a PQP, then its
phantom copy is eventually dequeued by the PQP.
Property 3. If a PQP transmits a (real) packet at time 𝑡𝑒 , its
phantom copy will be enqueued in phantom queue𝑄𝑖 at time 𝑡𝑒
andwill be dequeuedat time 𝑡𝑑 =𝑡𝑒+𝐷 (𝑖,𝑡𝑒 ),where𝐷 (𝑖,𝑡𝑒 ) is the
phantom queuing delay i.e. the time needed to drain phantom
queue build up until time 𝑡𝑒 at𝑄𝑖 .

We can combine these properties to see how PQP can effec-
tively enforce rate-sharing policies. As per Property 1, if an
analogous shaper system divides the rate 𝑟 between𝑁 queues
such that𝑄𝑖 is served at rate 𝑟𝑖 (e.g. as dictated by weighted
round-robin scheduling, priority scheduling, or their hierar-
chical combination), then the corresponding PQP systemwill
serve the phantom packets in𝑄𝑖 at rate 𝑟𝑖 . As per Properties 2
and3, if thephantompackets in𝑄𝑖 aredequeuedat rate𝑟𝑖 , then,
on an average (over a long enough timescale), the correspond-
ing real packets alsoget servedat rate𝑟𝑖 .Howmuch the instan-
taneous rates of real packets deviate from their ideal phantom
counterparts is dictated by the phantomqueuing delay, which
in turn is governed by the phantom queue size (that controls
theamountof burst allowed thePQPsystem)–weanalyze this
more formally in §3.4 and devise a mechanism to effectively
limit the burst in §4. Further note that Property 1 holds under
the assumption that the set of input packets are the same in
the PQP system and the analogous shaper system. However,
timing deviations in when a packet actually gets transmitted
impact the feedback loop of congestion control algorithms,
thereby affecting the packet arrival rates. Our evaluation in §6
shows how the rate and policy enforcement with PQP, inspite
of this effect, closely matches the analogous shaper system.

3.4 Bounds on Rate and Policy Enforcement
Consider a phantom queue𝑄 of size 𝐵 that is serviced at rate
𝑟 . Let the length of the phantom queue (the number of bytes
in the queue’s simulated buffer) at time 𝑡 be given by 𝐿(𝑄,𝑡).
This queue length governs the phantom queuing delay of a
packet transmitted at time 𝑡 .

2The precise rates at which each queue is served would depend on the rate
at which packets get enqueued in each queue, which dictates the max-min
weighted fair share ratesaswell as thesparecapacity (incaseofprioritization).

5



SIGCOMM’18, August 21-23, 2018, Budapest, Hungary X.et al.

Theorem 1: Over any time interval Δ𝑡 = 𝑡2−𝑡1, as long as
phantom queue 𝑄 does not go to zero i.e. 𝐿(𝑄,𝑡) > 0, where
𝑡1< 𝑡 < 𝑡2, then the number of packets it accepts over duration
Δ𝑡 is bounded by (𝑟Δ𝑡±𝐵)+.
Proof:
Given, 𝐿(𝑄,𝑡) > 0 over 𝑡1 < 𝑡 < 𝑡2, 𝑄 continues to drain

phantom packets at rate 𝑟 . Over time Δ𝑡 , it drains 𝑟Δ𝑡 bytes.
Therefore, the amount of data,𝐴(𝑡1,𝑡2), that𝑄 accepts during
duration (𝑡1,𝑡2) can be given as:
𝐴(𝑡1,𝑡2)= (𝐿(𝑄,𝑡2)−𝐿(𝑄,𝑡1)+𝑟Δ𝑡)+
Here, (𝑣)+=max(0,𝑣).
Since 0<𝐿(𝑄,𝑡) ≤𝐵, we can find upper and lower limits on

the number of accepted packets as follows:
Upper Limit: 𝐿(𝑄,𝑡1)=0 and 𝐿(𝑄,𝑡2)=𝐵

𝐴𝑚𝑎𝑥 (𝑡1,𝑡2)+=𝑟Δ𝑡+𝐵
Lower Limit: 𝐿(𝑄,𝑡1)=𝐵 and 𝐿(𝑄,𝑡2)=0

𝐴𝑚𝑖𝑛 (𝑡1,𝑡2)= (𝑟Δ𝑡−𝐵)+

Thus, number of accepted packets over durationΔ𝑡 is given
as:

𝐴(𝑡1,𝑡2)= (𝑟Δ𝑡±𝐵)+

Dividing the above equationbyΔ𝑡 gives the actual enforced
rate, 𝑟 ′ over duration Δ𝑡 . As Δ𝑡 grows, the actual enforced
rate comes closer to phantom queue draining rate of 𝑟 :

𝑟 ′= lim
Δ𝑡→∞

𝐴(𝑡1,𝑡2)
Δ𝑡

= lim
Δ𝑡→∞

(𝑟± 𝐵

Δ𝑡
)+=𝑟

This is provably achieved only as long as the phantom
queue remains non-empty over the durationΔ𝑡 . This requires
correctly sizing the queue (as we discuss in §3.5).

Now consider a set of 𝑁 phantom queues, serviced at a cu-
mulative rate 𝑟 , where 𝑟 is divided across individual phantom
queues𝑄𝑖 , each serviced at rate 𝑟𝑖 as per the desired policy
(as discussed in §3.3). If each queue is sized by 𝐵𝑖 , we can use
the above theorem to show the following bounds on such a
system: If any phantom queue𝑄𝑖 that does not go to zero over a
durationΔ𝑡 has a phantom dequeue rate of 𝑟𝑖 , it has an enforced
rate of 𝑟 ′𝑖 = (𝑟𝑖± 𝐵𝑖

Δ𝑡 )
+ over duration of Δ𝑡 .Moreover, if we sum

this for all queues, we get bounds on overall rate enforced for
the aggregate as: 𝑟 ′= (𝑟±

∑𝑛
𝑖 𝐵𝑖

Δ𝑡 )+. So, if each phantom queue
is sized to be 𝐵, the overall rate enforced is 𝑟 ′= (𝑟±𝑁 𝐵

Δ𝑡 )
+

Takeaways.We have the following two key takeaways from
these theorems: (i) The average rate that PQP enforces on real
packets will match the desired rates (enforced on phantom
packets) over a long enough timescales as long as the phan-
tom queue remains occupied. (ii) The discrepancies in these
two rates over a smaller timescale is bounded by the size of
the phantom queues. Very large queue sizes can cause instan-
taneous enforced rates to be much higher than the desired

phantom rates (cause large bursts). Very small queue sizes, on
the other hand,will result in lower than desired instantaneous
(and average) rates as this may lead to phantom queue going
empty at times. We discuss how phantom queues should be
sized next.

3.5 Sizing the PhantomQueues
Guidelines on how to size the phantom queue depend on fac-
tors like rate 𝑟 , RTT, and congestion control protocol used
by the flow.We now analyze how phantom queues should be
sized for correct average rate enforcement.

Notice that our bounds on enforced rates were conditioned
on the queue remaining occupied over the given time dura-
tion. Therefore, in order to achieve these bounds, the phantom
queuemust be sized such that the congestion control protocol
of a backlogged sender (that generates data at rate higher
than the policed rate of 𝑟 ) is able to keep it occupied. 3 This is
analogous to howwe reason about sizing shaper queues (that
manage real packets)[9]. However, we find that the outcome
(i.e. the required queue size) is very different for phantom
queues, due to the discrepancy between timings in when the
phantompacket isdequeuedand the realpacket is transmitted,
and how that affects the congestion control loop.

We consider congestion control protocols frequently used
in production today: Cubic (default for most users [19]), New
Reno (used by Netflix[44]), and BBR (used by Google and
YouTube [3, 10]). The phantom queue size 𝐵 should be large
enough to support any of these protocols. Reno has the largest
queue size requirements amongst these protocols (we use the
term Reno to refer to both Reno and New Reno protocols,
that share the same core logic, other than fast recovery). This
means that if we size the phantom queues as per Reno’s re-
quirements, we can ensure correct rate enforcement for other
protocols too.
Need𝑂 (𝐵𝐷𝑃2) sized phantom queues. The rule-of-thumb
for shaper queues (with real packets) requires𝑂 (𝐵𝐷𝑃) size
to ensure they are occupied by backlogged Reno sender[9],
where BDP is the bandwidth-delay product of the network.
In contrast, we find that in order to keep a phantom queue
occupied with a backlogged Reno flow, we need to size it at
𝑂 (𝐵𝐷𝑃2). Specifically, we find that for correct rate enforce-
ment for aRenoflow, thephantomqueue size should be atleast
𝐵𝐷𝑃2

18 ×𝑀𝑆𝑆 bytes, where 𝐵𝐷𝑃 =𝑟×𝑅𝑇𝑇 , with 𝑟 being the de-
sired rate (at which the phantom queue is dequeued) and𝑅𝑇𝑇
is the flow’s round-trip time. This comes from our analysis
(detailed in Appendix A) that shows that in order to maintain
an average enforced rate of 𝑟 , the instantaneous rate of the
Reno flow should vary between 2𝑟

3 and 4𝑟
3 in the steady AIMD

3Senders that generate data at a rate lower than 𝑟 are app-limited, and not
affected by policing.

6



Efficient Policy-Rich Rate Enforcement with PhantomQueuesSIGCOMM’18, August 21-23, 2018, Budapest, Hungary

0 20 40 60 80
Time (s)

0

10

20

30

40

Th
ro

ug
hp

ut
 (M

bp
s) Q = 130KB

Q = 1000KB
Q = 4000KB

(a) Throughput over time
(shaded region represents 𝑐𝑙 and 𝑐ℎ .)

0 20 40 60 80
Time (s)

0

1000

2000

3000

4000

Qu
eu

e 
Bu

ild
up

 (K
B)

Q = 130KB
Q = 1000KB
Q = 4000KB

(b) Queue occupancy over time

130 1000 4000
Q (KB)

0

500

1000

1500

Pa
ck

et
 D

ro
ps

(c) Packet drops

Figure 2: A Reno flow’s behavior with differently sized phantom queues.

(additive increase multiplicative decrease) phase, and a phan-
tom queuewith buffer size atleast 𝐵𝐷𝑃2

18 ×𝑀𝑆𝑆 bytes is needed
to support this rate variation.
Why not 𝐵𝐷𝑃-sized queues?. The reason for larger buffer
size requirement with phantom queue (when compared to
the rule-of-thumb for regular queues with real packets) stems
from the fact that phantom queue does not have any queuing
delay for real packets. In a real queue, when 𝑐𝑤𝑛𝑑 exceeds
𝐵𝐷𝑃 , additional packets are queued and dequeued at rate 𝑟 .
Only when the acknowledgment for these additional packets
has reached the sender, 𝑐𝑤𝑛𝑑 is updated by 1 – this slows
down the feedback loop and gives more time for the buffered
packets of the previous 𝑐𝑤𝑛𝑑 round to drain the queue, mak-
ingmore room for newer packets in the next𝑐𝑤𝑛𝑑 roundwith
a relatively smaller buffer. In the phantom queue, however,
acknowledgment reaches within 𝑅𝑇𝑇 time (irrespective of
however long it takes the phantom queue to drain). With the
shorter feedback loop,by the timepackets for thenext𝑐𝑤𝑛𝑑 ar-
rive, phantom packets for the previous 𝑐𝑤𝑛𝑑 are also present.
So, inaphysicalqueue,queuebuild-up increasesby1packetaf-
ter each𝑐𝑤𝑛𝑑 update,whereas in phantomqueues it increases
by 𝑐𝑤𝑛𝑑−𝐵𝐷𝑃 packets. A phantom queue therefore must be
sized such that it can hold all of these additional packets.
Drawbacks of𝑂 (𝐵𝐷𝑃2) sized queues. If queues are sized
by the𝑂 (𝐵𝐷𝑃2) rule, they result in good rate enforcement in
a steady state for all congestion control protocols. However,
it can cause many other problems. During the slow start of a
flow, it can burst at a very large rate. For example, consider a
phantom queue sized for enforcing a rate of 15Mbps andwith
amax RTT of 100ms. If a flowwith 10ms RTT passes through
this phantomqueue, it canburst up to a rate of 143Mbpsover a
100ms period. This also results in a high drop rate, as 𝑐𝑤𝑛𝑑 af-
ter a slowstart is sohigh that it takesmultiple roundsof packet
losses and 𝑐𝑤𝑛𝑑 halving before it comes down to a value com-
parable to 𝐵𝐷𝑃 , thus resulting in correct rate enforcement.
Empirical results. Figure 2 shows the impact of howwe size
the phantom queue buffer (𝐵) on a Reno flow.We have a Reno
flowwith 𝑅𝑇𝑇 of 100 ms and we want to enforce rate 𝑟 of 10

Mbps. For suchaflow,𝐵 needs tobe at least 1000KB.When𝐵 is
set to a smaller size, queue occupancy ends up going to 0more
often which results in Reno 𝑐𝑤𝑛𝑑 not being able to reach the
required peak, and thus incorrect rate enforcement. Whereas,
when𝐵 is too large,whilewe have correct rate enforcement in
thesteadystate,wecanhaveavery largeburst andhigherdrop
rate. Also, as long as the queue remains occupied, its size does
not matter in the steady-state, e.g. a 4000 KB sized phantom
queue does as good a rate enforcement as a 1000 KB one.
The issue of sizing gets worse when we have multiple

queues insteadofone. Shouldeachqueuebesizedby𝑂 (𝐵𝐷𝑃2)
rule to ensure correct rate enforcement even when only one
queue is active? The burst caused by this would be much
larger and it can further lead to poor policy enforcement if we
have a secondary bottleneck after the phantom queue. Figure
3a shows a scenario where we use phantom queues to enforce
fair sharing of 7.5Mbps between 4 flows.Wehave a secondary
bottleneck of 8.5Mbps after phantomqueues4. Since phantom
queues allow such a large burst to go through, the packets are
really bottlenecked at the secondary bottleneckwhich results
in poor policy enforcement i.e. fairness in this case.
Most policers deployed today are sized by a fixed value

[21] and as we discuss this has an inherent trade-off between
correct rate enforcement and high burst. Previous work has
explored the idea of adapting the policer bucket size by look-
ing at the behavior of the flow passing through the policer e.g.
by increasing the token bucket size if the flowdoes not borrow
tokens from the bucket for large periods of time [47]. This
takesmultipleadjustments toconverge toacorrectbucket size.
Doing this for multiple queues is more challenging because
their queue/bucket sizes would also depend on the demands
of flows in other queues/buckets.
So how do we deal with this conundrum? We need the

phantom queue buffers to be large enough for correct rate

4This is a common occurrence e.g. service providers to rate enforcement
before flows actually hit RAN which may have bandwidth comparable to
enforced rate.

7



SIGCOMM’18, August 21-23, 2018, Budapest, Hungary X.et al.

5 10 15 20
Time (s)

0.0

2.5

5.0

7.5

10.0

12.5

15.0

Th
ro

ug
hp

ut
 (M

bp
s) Reno

Cubic
Vegas
BBR

(a) PhantomQueues sized𝑄

5 10 15 20
Time (s)

0.0

2.5

5.0

7.5

10.0

12.5

15.0

Th
ro

ug
hp

ut
 (M

bp
s) Reno

Cubic
Vegas
BBR

(b) Phantom
Queues withmagic packets.

Figure 3: 𝑟 =7.5
Mbps shared across 4 flows with different CC protocols
with a secondary bottleneck of 8.5Mbps afterward.

enforcement in the steady state, but would still like to avoid
the large transient burst. We address this in the next section.

4 BURST CONTROLLED PQP
Wesaw in the previous section that once a queue becomes full,
irrespective of how big it is (albeit it is larger than Reno’s re-
quirements), it does correct rate enforcement. In other words,
there is no upper limit on how the queue should be sized for
it to do correct rate enforcement in the steady state of a flow.
Thus, instead of asking amore complicated question of how to
dynamically size the queues, the answer of which depends on
various factors like flow’s congestion control protocol, RTT,
enforced rate 𝑟 , and demands of other flows, we ask how can
we put flows in the steady state without letting them burst.

We have seen in the previous section that to enforce a rate
of 𝑟 , we need to allow some rate variation e.g. between 2

3𝑟 and
4
3𝑟 for Reno. However, any burst larger than this is undesir-
able. We now develop an active phantom queue management
scheme that allows us to minimize this burst while still doing
correct rate and policy enforcement.
Our idea is based on the observation that once an appro-

priately sized phantom queue becomes full, a saturating flow
(with demand greater than the desired rate 𝑟 ) tries to keep
it full in the steady state (e.g. the AIMD state for TCP Reno),
and that results correct average rate enforcement. However,
during the starting (slow-start) phase, the flow can burst up
to a very large rate while it is filling up an empty phantom
queue, exiting the slow-start phase only when the queue is
full. Our key insight is that we do not need to wait until the
queue becomes full to exit starting phase. Instead,we can ‘mag-
ically‘ fill the queue when the flow’s sending rate exceeds a
certain upper threshold (e.g. 4

3𝑟 , which is the upper bound
on Reno’s rate in steady state). Similarly, we can drain these
‘magic packets‘ once the flow is finishing up i.e. its sending
rate falls below a lower threshold (e.g. 23𝑟 , which is the lower
bound on Reno’s rate in steady state).

Our algorithm achieves this in the followingway.Wemain-
tain the following additional parameters to configure a PQP
systemwith𝑁 queues: (i) an upper thresholdmultiplier𝜃+, (ii)
a lower thresholdmultiplier𝜃− , and (iii) a timeperiod length𝑇 .

On enqueue of any packet into phantom queue𝑄𝑖 , we esti-
mate the dequeue rate 𝑟 ∗𝑖 for this phantomqueue and calculate
the expected number of bytes that may be dequeued from𝑄𝑖

over time period 𝑇 as 𝑋𝑖 = 𝑟 ∗𝑖 𝑇 . 𝑟 ∗𝑖 can be calculated simply
based on what queues are active and the rate sharing policy
𝑃 . For example, in the case of fairness, 𝑟 ∗𝑖 is simply 𝑟 divided
by the number of active queues. For prioritization, 𝑟 ∗𝑖 =𝑟 if𝑄𝑖

is the highest priority queue that is active, while 0 otherwise.
Maintaining a list of active queues also has an efficiency ben-
efit, since during phantom dequeue, we do not have to iterate
over all queues but only active queues.

Based on this, we compute the upper and lower thresholds
on how many bytes each phantom queue is allowed to de-
queue before we fill it up with magic packets. Specifically, if
the number of packets accepted by a phantom queue𝑄𝑖 over
the current timewindowof length𝑇 is greater than𝑋 +

𝑖 =𝜃
+𝑋𝑖 ,

we fill up the queue with magic packet by magically incre-
menting its byte counter by𝑀𝑖 =𝐵−𝐿(𝑄𝑖 ,𝑡) (where 𝑡 is the
current time). Whereas, if the accepted bytes over time𝑇 is
less than𝑋 −

𝑖 =𝜃−𝑋𝑖 , we remove all𝑀𝑖 ‘magic packets’ from
this phantom queue 5. We refer to a PQP system that adopts
such an algorithm as burst-controlled PQP (BC-PQP).
With this, any phantom queue𝑄𝑖 bursts at most𝑋 +

𝑖 bytes
where 𝑋 +

𝑖 is proportional to BDP if 𝑇 is set to a value com-
parable to RTT. Across all flows in an aggregate, burst is at
most 𝑛𝜃+𝑋 for any arbitrary rate-sharing policy. However, it
is much smaller on average for policies like fair sharing and
prioritization. In the worst case for fairness, we may have all
𝑛 flows become active over time period𝑇 and burst the maxi-
mumpossible value of𝑋 +

𝑖 . For thefirst flow, this is𝜃+𝑋 , for the
second 𝜃+𝑋/2, then 𝜃+𝑋/3, and so on. This is a harmonic se-
ries, which sums to𝜃+𝑋 (ln𝑛+0.5772) [11]. For 64 queues, this
number is approximately 4.72×𝜃+𝑋 . Similarly, for prioritiza-
tion, anyqueue𝑄𝑖 gets𝑋𝑖 =0 if anyof theotherhigher-priority
queues are active.As before, the cost of this small burst further
amortized, the longer the queues remain occupied.
We configure𝑇 according to p99 𝑅𝑇𝑇 e.g. 100 ms (to get

a reasonable estimate of packet enqueue and dequeue rates).
We further configure 𝜃− and 𝜃+ to be small multipliers (0.5
and 1.5 respectively based on requirements for New Reno).
These configurations ensure that we do correct rate enforce-
ment while avoiding unnecessary bursts. Figure 3b shows
how flows see a very small and controlled burst which results
in fair sharing of 7.5 Mbps across 4 different flows.

5It is possible that we may not have enough packets in queue size to reclaim
all magic packets, however, this is a transient behavior for a backlogged flow
and does not affect rate/policy enforcement much.

8



Efficient Policy-Rich Rate Enforcement with PhantomQueuesSIGCOMM’18, August 21-23, 2018, Budapest, Hungary

We discuss some design insights below:
Why do we need to drain the magic packets? Firstly, to avoid
under-utilization.Moreover, sincewe drain the queue as soon
as the flow becomes inactive, we can immediately allocate the
spare rate elsewhere. In normal PQP with very large queues,
when a flow becomes inactive, it takes a long time before
its phantom queue is drained, this results in transient under-
enforcement of rate even though other flows are active.
HowBC-PQP automatically adjusts to different dequeue rates of
different phantom queues? A burst-controlled phantom queue
estimates its dequeue rate independently and automatically
adapts to avoid bursts and do correct rate enforcement. This
makes it easily composable within any arbitrary rate-sharing
policy.
How to set the phantom queue buffer size 𝐵𝑖 in a BC-PQP? A
full phantom queue for an active flow automatically makes
room for new packets at the correct rate. As long as the queue
is large enough to not go to zero during normal operation of
a saturating flow, it does not matter how high a value we set
for the phantom queue size.

5 IMPLEMENTATION
For our evaluation, we use microbenchmarks to test various
aspects of rate and policy enforcement of our design against
baselines. We have developed a middlebox responsible for
transparently enforcing network traffic rates using a kernel-
bypass stack based on Intel’s DPDK. For this, we implement
BC-PQP and other mechanisms discussed previously includ-
ing shaper, policer, and fairpolicer. We run microbenchmarks
onAzurepubliccloudanduse threestandardF8sv2VirtualMa-
chines running Ubuntu 22.04 dedicated for the client, server,
and the middlebox respectively. For traffic, we create flows of
different sizes using TCP sockets and control the Congestion
Control algorithm at a per flow granularity. We use Linux
kernel implementation of all congestion control protocols.
Furthermore, we also use Linux netem to artificially inflate
latency and approximate realisticWANRTTs. The sender traf-
fic is routed through the middlebox responsible for enforcing
the network rate before it reaches the receiver.
We also test phantom queues with real applications. For

this, we implement phantom queues and other baselines in
Mahimahi. Inside the Mahimahi shell, we run a browser to
run different applications i.e. video streaming services like
YouTube and Netflix, and web browsing.

6 EVALUATION
We now evaluate the following:
• BC-PQP’s ability to do correct rate and policy enforcement
efficiently. We compare BC-PQP against baselines like traffic
shapers, trafficpolicers, and FairPolicer in §6.1.We also report

the system efficiency of BC-PQP compared to other baselines
in §6.2
•Wealso show the feasibility of different rate-sharingpolicies
that can be enforced correctly using BC-PQP in §6.3.
• Lastly, we show some experiments with real-world applica-
tions like video streaming and web browsing to demonstrate
how BC-PQP can help improve application QoE in §6.4.

6.1 Rate Enforcement
In this experiment, we do rate enforcement for 100 flow aggre-
gates, each consisting of multiple flows. Our setup consists
of 3 machines, a sender machine, a rate enforcer machine,
and a receiver machine. The sender machine starts multiple
flows of different sizes ranging from a few 10s of KBs to 100s
of MBs at different times, using different congestion control
protocols amongst New Reno, Cubic, BBR, and Vegas. We use
Linux kernel implementation of all these protocols. We also
use netem to inject different delays to different flows rang-
ing from 2ms to 50 ms. We have a mix of aggregates, in half
of the aggregates all flows use the same congestion control
protocol and have the same RTT, while in the other half, we
have flowswith different congestion control protocols as well
as different RTTs. Moreover, in each of these groups, some
aggregates only have backlogged flows, whereas others only
have short on-and-off flows, whereas a third subgroup has
both backlogged and short on-and-off flows.

The traffic from the sender machine is routed through the
rate enforcer machine. Our goal is to enforce a rate 𝑟 for each
aggregate and do per-flow fairness within each aggregate.We
test with different enforced rates 𝑟 , i.e. 1.5, 7.5, 25, 50, and 100
Mbps. We compare BC-PQP with following baselines:
• Shaper: Each shaper hasmultiple queues each sized accord-
ing to maximum BDP.
• FairPolicer (FP): We size the bucket 𝐵 for FP to be the
maximumofanyflow’s requirement i.e.wepick themaximum
RTT and compute 𝐵 needed for correct rate enforcement for
New Reno and Cubic, and pick the maximum value. For small
values of RTT and rate, Cubic requires a larger bucket size,
whereas in other cases NewReno requires a larger bucket size.
• Policer: A token bucket traffic policer sized according to
maximum BDP.
• Policer+: A token bucket traffic policer sized similar to FP.
For BC-PQP, we do not need to set an explicit size of the

bucket thuswe pick a very high value of at least 10×𝑂 (𝐵𝐷𝑃2).
For other parameters of BC-PQP, we set 𝜃+, 𝜃− , and𝑇 to be
1.5, 0.5, and 100 ms respectively.

The rate enforcer machine forwards traffic to the receiver
machine,where per-flow throughput ismeasured over 250ms
windows.We sum the throughput of each flowwithin each ag-
gregate over these 250 ms windows and normalize this aggre-
gate throughput by enforced rate 𝑟 . Figure 4 summarizes the

9



SIGCOMM’18, August 21-23, 2018, Budapest, Hungary X.et al.

0.6 0.8 1.0 1.2 1.4
Normalized Throughput

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

BC-PQP
FP
Shaper
Policer
Policer+

(a)
CDF of instantaneous throughput

0 2 4 6 8 10 12
Normalized Throughput

0.95

0.96

0.97

0.98

0.99

1.00

1.01

CD
F

BC-PQP
FP
Shaper
Policer
Policer+

(b) Tail throughput (burst)

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d 
Th

ro
ug

hp
ut

BC
-P

QP FP
Sh

ap
er

Po
lic

er
Po

lic
er

+

(c) Average
aggregate throughput

1.57.5 25
.0

50
.0

10
0.0

Rates (Mbps)

0.0

2.5

5.0

7.5

10.0

12.5

15.0

Dr
op

 (%
)

BC-PQP
FP
Shaper
Policer
Policer+

(d) Drop rate

Figure 4: Aggregate rate enforced by BC-PQP and
other baselines, 4a and 4b show distribution of aggregate throughputmeasured over 250ms windows normalized by
enforced rate, 4c shows normalized average aggregate throughput and 4d shows drop rate at different enforced rates

rate enforcement performance of BC-PQP and different base-
lines. We can draw the following insights from these results:

1- The distribution of normalized throughput of each aggre-
gate for all the rates is shown in figure 4a. It can be seen that
the shaper does accurate rate enforcement over short time
scales, but for the most part, the instantaneous rate for other
baselines also stayswithin small bounds (roughly 0.8𝑟 to 1.2𝑟 ).
2- However, Policer+ and FP cause a much larger burst

and have a long tail for aggregate throughput (figure 4b). BC-
PQP’s smallburst ensures that therateandpolicyenforcement
arecorrect even in thepresenceofa secondarybottleneckwith
bandwidth comparable to 𝑟 (as shown previously in figure 3).

3- It can also be observed infigure 4a that the line for policer
is slightly shifted left which results in average throughput
being lower than desired rate 𝑟 . This can be seen in figure 4c,
which reports the average of all non-zero aggregate through-
put measurements. The number is higher for FP and Policer+
because bursty throughput points skew the average up.

4-Due to lackofbuffering, all schemesother than theshaper
6 induce a higher number of packet drops. The number of
packet drops reduces as the BDP (either of rate or RTT) in-
creases, this is especially apparent from trends for BDP-sized
policer andBC-PQP.However, as discussed previously a large-
sized policer (and also FP) results in a higher number of packet
drops especially when flows go into their slow start and over-
estimate their congestionwindow. BC-PQP on the other hand
avoids such drops by avoiding large bursts and has drop rates
comparable with BDP-sized policer. Shaper’s small drop rates
comeat thecostof inducinghigherqueuingdelay.Wefind that
the high queuing delay of Shaper can at times hurt application
performancemore than the relativelyhigherpacket drop rates
of BC-PQP (§6.4) – so the trade-off between them is unclear.

Overall, BC-PQP results in correct aggregate rate enforce-
ment with a small burst compared with FP or correctly sized
policer which can burst more than 10 times the enforced rate.
6While deep buffers in shapers can reduce or for some CCs eliminate packet
drops, this alternatively induced high queuing delays .

1.57.5 25
.0

50
.0

10
0.0

Rates (Mbps)

50

100

150

200

250

300

350

cy
cle

s/
pa

ck
et BC-PQP

FP
Shaper
Policer

Figure 5: CPU cycles spent per packet

6.2 System Efficiency
We use CPU cycles spent per packet as a proxy to quantify
the efficiency and scalability of different rate enforcement
schemes. This indirectly captures other overheads e.g. storing
and retrieving of packets from the memory. Moreover, spend-
ingmore CPU cycles per packet results in a system being able
to handle fewer packets per second. Figure 5 reports the aver-
age number of CPU cycles spent on each packetwith different
schemes. BC-PQP uses 5-7× fewer CPU cycles per packet and
is marginally costlier than a simple policer. A shaper spends
several CPU cycles during its dequeue routine where it needs
to gather packets from different queues of different shapers
before sending them to theNIC to dequeue.On the other hand,
all other schemes do not need to store packets and make the
decision about the fate of the packet on its enqueue thus avoid-
ing spending CPU cycles on costly memory trips. Policer and
BC-PQP furthermore are more efficient than FP because we
can batch phantom dequeues or token replenishing, and only
call phantom dequeue or token generator when the phantom
queue is full or the token bucket is empty. On the other hand,
FP makes decisions to drop incoming packets based on a dy-
namic threshold which is a function of up-to-date per-flow
residual bucket space. This requires generating and allocating
tokens on each enqueue of a packet.

10



Efficient Policy-Rich Rate Enforcement with PhantomQueuesSIGCOMM’18, August 21-23, 2018, Budapest, Hungary

0.4 0.6 0.8 1.0
Fairness Index

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

BC-PQP
FP
Shaper
Policer
Policer+

(a) CDF
of Fairness Index per aggregate

0 10 20 30 40 50 60
Timestamp

0

20

40

60

80

100

Th
ro

ug
hp

ut

w1
w2
w3
w4

w5
w6
w7

(b)
Weighted Fairness with Fairpolicer

0 10 20 30 40 50 60
Timestamp

0

20

40

60

80

100

Th
ro

ug
hp

ut

w1
w2
w3
w4

w5
w6
w7

(c)Weighted Fairness with BC-PQP

0 20 40 60 80
Timestamp

0

10

20

30

40

50

Th
ro

ug
hp

ut

p1: w1
p1: w2

p1: w3
p2

(d) Nested Policies with BC-PQP

Figure 6: Policy enforcement with BC-PQP and other baselines: 6a shows
per-flow fairness between flows within an aggregate, 6b and 6c showweighted fairness achieved by FairPolicer
and BC-PQP respectively and 6d shows a nested policy with prioritization andweighted fairness using BC-PQP.

6.3 Policy Enforcement
In this section, we look at how well BC-PQP enforces rate-
sharing policies within an aggregate.

6.3.1 Per-flow Fairness. For the experiment from §6.1, we
measure theper-flowthroughputover250mswindowswithin
each aggregate and estimate fairness using Jain’s Fairness In-
dex. CDF of this fairness index is reported in figure 6a.We can
see the shaperachievesclose toperfect fair sharingof enforced
rate as expected and policers are unable to do so. BC-PQP also
achieves fairness comparable to the shaper. While FP does
better than policers, it falls a bit short for two reasons. Firstly,
since it allows a large burst to go through, flows with smaller
RTT or aggressive CC can burst faster. Secondly, for AIMD-
style CC protocols, if flows have large RTTs, they achieve
lower than their fair share with FP, as also reported in FP pa-
per [38]. This happens because such a flow needs a very large
bucket size, if it is not large enough and the flow cannot keep
the bucket active, it won’t be able to achieve its fair share. Set-
ting a very large bucket, as we have observed, can cause large
bursts, high packet drop rates, and poor rate enforcement. BC-
PQP is able to get around this by sizing queues to a very large
number but also reacting to queue fill rate as described in §4.

6.3.2 WeightedFairness. In thismicrobenchmark,weshow
how BC-PQP can do accurate weighted sharing within an ag-
gregate. We enforce a rate of 50 Mbps and share it between
7 flows, each with weights from 1 to 7. All flows start at the
same time and are sized proportional to their weights so that
they should complete at the same time if the rate is shared
fairly between them.We also adapt the token allocation logic
in FairPolicer to make it do similar weighted sharing as well.
Figures 6b and 6c show the time series of per-flow and ag-
gregate throughput for FP and BC-PQP. BC-PQP enforces
weighted sharing correctly resulting in all flows completing
at the same time. FP fails to do so, this is becausewhile FP tries
to allocate tokens in a weighted fair manner, the way it sizes

each flow’s bucket works only for fair sharing. It sets each
flow bucket’s capacity to be equal to the number of tokens
remaining in the main token bucket. Thus, each flowwith dif-
ferent weights gets approximately same-sized token buckets
even though a flowwith a higher weight should get a larger
one. It is not trivial to extend FP’s bucket sizing algorithm to
support arbitrary rate-sharing policies.

6.3.3 Prioritization and Nested Policies. In this section, we
show the feasibility of enforcing prioritization and nested
policies with a phantom queue with a microbenchmark. We
have 4 flows divided into two priority groups: p1 is the higher
priority groupwith 3 on-and-off flows, andwithin p1, the rate
is shared in a weighted fair manner between the 3 flows, p2 is
the lower priority groupwith a single backlogged flow. Figure
6d shows how BC-PQP allocates all bandwidth to p1 flows
in a weighted fair manner whenever they’re active and only
allocates bandwidth to p2 flowwhen no p1 flow is active.

6.4 RealWorld Applications
We show the feasibility of using BC-PQP to enforce rates with
policy enforcement for different applications. We look at sce-
narios where an enforced rate 𝑟 is shared by different kinds
of flows.

6.4.1 Video Streaming. We look at a scenario where a rate
of 3 Mbps is shared between a video stream and some other
traffic. Cellular service providers often use policers or single
queue shapers to do such rate enforcement for each user. Such
rate enforcement is done to ensure careful resource manage-
ment of limited RAN resources otherwise bandwidth hungry
video stream flows can hog all resources resulting in uneven
and poor service across users. We simulate this scenario by
sharing 3 Mbps between video flow and the rest of the traffic
(webpage loads, downloads, etc.). We want to ensure these
categories of flow share the enforced rate of 3 Mbps fairly.

11



SIGCOMM’18, August 21-23, 2018, Budapest, Hungary X.et al.

0.6 0.7 0.8 0.9 1.0
Fairness

240p

360p

480p

720p

Vi
de

o 
Qu

al
ity

Netflix
Youtube

BC-PQP
Shaper: 1 Queue
Shaper: DRR
Policer

(a) Fairness vs Video QoE

0 10 20 30 40 50
Page Load Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Policer
Shaper: 1 Queue
Shaper (DRR): 4:1
BC-PQP: 4:1

(b)Web page load times

Figure 7: Video streaming and web browsing with PQP.

We repeat this experiment using 3 videos from YouTube
and 2 videos fromNetflix. YouTube uses BBR [3],whileNetflix
uses New Reno [44] for its congestion control protocols. For
baselines, we use a simple policer and a single queue shaper
as well as a shaper with deficit round robin. The first two are
the status quo mechanisms to do rate enforcement. Figure
7a shows the average video quality achieved vs the fairness
index ensured between video flow and the rest of the traffic.
BC-PQP shared the rate perfectly between the flows and also
achieved high video quality with both Netflix and YouTube.
Single queue shaper and policer, on the other hand, are not
able to share the rate fairly, and in the process affect video
quality or fairness with the rest of the traffic. While shaper
with DRR ensures fairness between traffic, YouTube videos’
quality suffers. This is likely due to an additional queuing
delay introduced due to buffering of packets. However, the
precise reason for this is not clear because of the lack of vis-
ibility into YouTube’s ABR algorithm.

6.4.2 Web Browsing. Similar to the previous setup, we
share the 3 Mbps link between a download flow and web
browsing traffic. We open 50 web pages for each experiment
in the presence of a bulk download flow.We use DRR shaper
andBC-PQP to enforceweighted sharing of rate between bulk
flow and web browsing flows in ratio of 4:1. CDF of web page
load times is reported in figure 7b. BC-PQP achieves 2-8×
lower page load times compared to status quo baselines of
policer and single queue shaper.

7 RELATEDWORK
Rate enforcement is a key building block for any kind of
network management. Mechanisms to do rate enforcement
correctly have been explored in the past [7, 24, 36–39]. These
solutions usually include traffic shapers [7, 24, 36, 37], which
buffer packets in memory or traffic policers [38, 39, 47]. Pre-
vious works have noted the limitations of traffic shapers and
policers, namely traffic shapers are expensive to implement
[21, 38], whereas traffic policers suffer from poor rate enforce-
ment and high packet losses [21, 28, 47].

Traffic policers are known to be difficult to configure [22,
47]. Guidelines around configuring policer bucket sizes are
not homogenous and depend largely on which factor is more
important: correct rate enforcement [38, 39] or small burst
[6, 22]. [47]presentsadynamically sizedbucket that isadapted
based on how long it takes for a flow to ramp up after packet
losses. This is an iterative process that takesmultiple attempts
to gauge the correct size needed for a flow, eventually setting
the size to𝑂 (𝐵𝐷𝑃2) for a Reno flow. BC-PQP does not need
to vary phantom queue sizes, instead, it relies on the burst
control mechanism to avoid bursts and enforce correct rates.

Enforcing different policies within a traffic aggregate is de-
sirable for the operators aswell as users [16, 29, 46]. Pastwork
has looked into various mechanisms to implement policies
like per-flow fairness, weighted fair queuing, or prioritization
[20, 34, 35, 40, 42]. These works usually depend on buffering
packets, sometimes intomultiple queues,whereas other times
into a single shared buffer to be more space efficient [34, 40].
Using bufferlessmechanisms for such policy enforcement has
not been explored that much. Recent work attempts to make
token bucket policers fair when flows with different conges-
tion control protocols pass through it [38, 39]. However, this
does not extend to other rate-sharing policies. Moreover, it
suffers from burstiness and some level of RTT unfairness [38].

Phantomqueueshavebeenproposedunderdifferentnames
for different functionalities. More recently, they have been
popularizedasanactivequeuemanagement scheme[8, 31, 32].
However, some of the earliest works in ATM networks used
"leaky buckets as a meter" for rate enforcement, which work
the same as a token bucket in principle, albeit it has also been
called a pseudo queue [15, 23, 27]. Our key contribution lies
in augmenting a policer withmultiple phantom queues, and
showing how it can do policy-rich rate enforcement.

8 CONCLUSION
Even though we, as users, do not like the idea of ISPs rate lim-
iting our traffic, it is prevalent and we cannot escape it – the
need for it is inherently coupled with Internet economics. In
this paper, we embrace the idea of rate limiting, and focus on
doing it right. This requires enabling the ISPs to enforce differ-
ent rate sharing policies (fairness across flows using different
congestion control algorithms, weighted rate sharing across
a given user’s flows as per their preferences, etc) at scale. Our
system BC-PQP enables that by providing the system-level
efficiency of a policer (by not buffering any packets) but the
network-level properties of a shaper (characterized by its
ability to correctly enforce the desired policy and rate).

This work does not raise any ethical concerns.

REFERENCES
[1] [n. d.]. ([n. d.]). https://www.att.com/support/article/wireless/

KM1169198/
12

https://www.att.com/support/article/wireless/KM1169198/
https://www.att.com/support/article/wireless/KM1169198/


Efficient Policy-Rich Rate Enforcement with PhantomQueuesSIGCOMM’18, August 21-23, 2018, Budapest, Hungary

[2] [n. d.]. Linux Hierarchical Token Buckets. http://luxik.cdi.cz/~devik/
qos/htb/. ([n. d.]).

[3] [n. d.]. TCP BBR congestion control comes to GCP – your internet just
got faster | google cloud blog. ([n. d.]).

[4] [n. d.]. VMWare SD-WAN. https://
docs.vmware.com/en/VMware-SD-WAN/3.3/
VMware-SD-WAN-by-VeloCloud-Administration-Guide/
GUID-EE8C35B8-FA4E-4C59-9AC2-4FD14509F60C.html. ([n. d.]).

[5] [n. d.]. What Is SD-WAN? https://www.cisco.com/c/en/us/solutions/
enterprise-networks/sd-wan/what-is-sd-wan.html. ([n. d.]).

[6] 2023. (Sep 2023). https://www.cisco.com/c/en/us/support/docs/
quality-of-service-qos/qos-policing/19645-policevsshape.html#
traffic

[7] SaamerAkhshabi, LakshmiAnantakrishnan, ConstantineDovrolis, and
Ali CBegen. 2013. Server-based traffic shaping for stabilizing oscillating
adaptive streaming players. In Proceeding of the 23rd ACMworkshop on
network and operating systems support for digital audio and video. 19–24.

[8] Mohammad Alizadeh, Abdul Kabbani, Tom Edsall, Balaji Prabhakar,
Amin Vahdat, andMasato Yasuda. 2012. Less is more: Trading a little
bandwidth for {Ultra-Low} latency in the data center. In 9th USENIX
Symposium on Networked Systems Design and Implementation (NSDI
12). 253–266.

[9] Guido Appenzeller, Isaac Keslassy, and Nick McKeown. 2004. Sizing
router buffers. ACM SIGCOMMComputer Communication Review 34,
4 (2004), 281–292.

[10] Eneko Atxutegi, Fidel Liberal, Habtegebreil Kassaye Haile, Karl-Johan
Grinnemo, Anna Brunstrom, and Ake Arvidsson. 2018. On the use of
TCP BBR in cellular networks. IEEE Communications Magazine 56, 3
(2018), 172–179.

[11] RalphPBoas JrandJohnWWrenchJr. 1971. Partial sumsof theharmonic
series. The American Mathematical Monthly 78, 8 (1971), 864–870.

[12] Ilker Nadi Bozkurt, Yilun Zhou, Theophilus Benson, Bilal Anwer, Dave
Levin, Nick Feamster, Aditya Akella, Balakrishnan Chandrasekaran,
Cheng Huang, Bruce Maggs, et al. 2015. Dynamic prioritization of
traffic in home networks. In Proc. CoNEXT Student Workshop.

[13] Lawrence S. Brakmo, Sean W. O’Malley, and Larry L. Peterson. 1994.
TCP Vegas: New Techniques for Congestion Detection and Avoidance.
In Proc. ACM Conference on Communications Architectures, Protocols
and Applications. 24–35.

[14] Lloyd Brown, Yash Kothari, Akshay Narayan, Arvind Krishnamurthy,
Aurojit Panda, Justine Sherry, and Scott Shenker. 2023. How I Learned
To Stop Worrying About CCA Contention. In Proceedings of the
Thirty-First Workshop on Hot Topics in Networks (HotNets) (HotNets ’23).
Association for Computing Machinery, New York, NY, USA.

[15] Milena Butto, Elisa Cavallero, and Alberto Tonietti. 1991. Effectiveness
of the’leaky bucket’policing mechanism in ATM networks. IEEE
Journal on selected areas in communications 9, 3 (1991), 335–342.

[16] Frank Cangialosi, Akshay Narayan, Prateesh Goyal, Radhika Mittal,
MohammadAlizadeh, andHari Balakrishnan. 2021. Site-to-site internet
traffic control. In Proceedings of the Sixteenth European Conference on
Computer Systems. 574–589.

[17] Neal Cardwell, Yuchung Cheng, C. Stephen Gunn, Soheil Hassas
Yeganeh, and Van Jacobson. 2016. BBR: Congestion-Based Congestion
Control. ACMQueue 60, 2 (2016), 58–66.

[18] Saoussen Chaabnia and Aref Meddeb. 2018. Slicing aware QoS/QoE
in software defined smart home network. In NOMS 2018-2018 IEEE/IFIP
Network Operations and Management Symposium.

[19] Saahil Claypool, Jae Chung, andMark Claypool. 2021. Measurements
comparing TCP cubic and TCP BBR over a satellite network. In 2021
IEEE 18th Annual Consumer Communications & Networking Conference
(CCNC). IEEE, 1–4.

[20] Alan Demers, Srinivasan Keshav, and Scott Shenker. 1989. Analysis
and simulation of a fair queueing algorithm. ACM SIGCOMMComputer
Communication Review 19, 4 (1989), 1–12.

[21] Tobias Flach, PavlosPapageorge,AndreasTerzis, LuisPedrosa, Yuchung
Cheng, Tayeb Karim, Ethan Katz-Bassett, and Ramesh Govindan. 2016.
An Internet-Wide Analysis of Traffic Policing. In Proceedings of the
ACM SIGCOMM 2016 Conference, Florianopolis, Brazil, August 22-26,
2016, Marinho P. Barcellos, Jon Crowcroft, Amin Vahdat, and Sachin
Katti (Eds.). ACM, 468–482. https://doi.org/10.1145/2934872.2934873

[22] Tobias Flach, Pavlos Papageorge, Andreas Terzis, Luis Pedrosa,
Yuchung Cheng, Tayeb Karim, Ethan Katz-Bassett, and Ramesh
Govindan. 2016. An Internet-Wide Analysis of Traffic Policing. In
Proceedings of the 2016 ACM SIGCOMM Conference (SIGCOMM ’16).
Association for Computing Machinery, New York, NY, USA, 468–482.
https://doi.org/10.1145/2934872.2934873

[23] G Gallassi, G Rigolio, and Luigi Fratta. 1989. ATM: Bandwidth
assignment and bandwidth enforcement policies. In 1989 IEEE Global
Telecommunications Conference and Exhibition’Communications
Technology for the 1990s and Beyond’. IEEE, 1788–1793.

[24] Leonidas Georgiadis, RochGuérin, Vinod Peris, and KumarN Sivarajan.
1996. Efficient network QoS provisioning based on per node traffic
shaping. IEEE/ACM transactions on networking 4, 4 (1996), 482–501.

[25] Hassan Habibi Gharakheili, Jacob Bass, Luke Exton, and Vijay
Sivaraman. 2014. Personalizing the home network experience using
cloud-based SDN. In Proceeding of IEEE International symposium on
a world of wireless, mobile and multimedia networks 2014.

[26] Sangtae Ha, Injong Rhee, and Lisong Xu. 2008. CUBIC: a New
TCP-friendly High-Speed TCP Variant. ACM SIGOPS Operating System
Review (2008), 64–74.

[27] Joseph SMHo, Hüseyin Uzunalioglu, and Ian F Akyildiz. 1995. Cooper-
ating leaky bucket for average rate enforcement of VBR video traffic in
ATMnetworks. In Proceedings of INFOCOM’95, Vol. 3. IEEE, 1248–1255.

[28] Arash Molavi Kakhki, Fangfan Li, David Choffnes, Ethan Katz-Bassett,
and AlanMislove. 2016. Bingeon under themicroscope: Understanding
t-mobiles zero-rating implementation. In Proceedings of the 2016 work-
shop on QoE-based Analysis and Management of Data Communication
Networks. 43–48.

[29] Alok Kumar, Sushant Jain, Uday Naik, Anand Raghuraman, Nikhil
Kasinadhuni, Enrique Cauich Zermeno, C Stephen Gunn, Jing Ai,
Björn Carlin, Mihai Amarandei-Stavila, et al. 2015. BwE: Flexible,
hierarchical bandwidth allocation forWAN distributed computing. In
Proceedings of the 2015 ACM Conference on Special Interest Group on
Data Communication. 1–14.

[30] Himal Kumar, Hassan Habibi Gharakheili, and Vijay Sivaraman.
2013. User control of quality of experience in home networks using
SDN. In 2013 IEEE International conference on advanced networks and
telecommunications systems (ANTS).

[31] Srisankar Kunniyur and Rayadurgam Srikant. 2001. Analysis and
design of an adaptive virtual queue (AVQ) algorithm for active queue
management. ACM SIGCOMM Computer Communication Review 31,
4 (2001), 123–134.

[32] Srisankar S Kunniyur and Rayadurgam Srikant. 2004. An adaptive
virtual queue (AVQ) algorithm for active queuemanagement. IEEE/ACM
Transactions on networking 12, 2 (2004), 286–299.

[33] Fangfan Li, Arian Akhavan Niaki, David Choffnes, Phillipa Gill,
and Alan Mislove. 2019. A large-scale analysis of deployed traffic
differentiation practices. In Proceedings of the ACM Special Interest
Group on Data Communication. 130–144.

[34] Rong Pan, Lee Breslau, Balaji Prabhakar, and Scott Shenker. 2003.
Approximate fairness through differential dropping. ACM SIGCOMM
Computer Communication Review 33, 2 (2003), 23–39.

13

http://luxik.cdi.cz/~devik/qos/htb/
http://luxik.cdi.cz/~devik/qos/htb/
https://docs.vmware.com/en/VMware-SD-WAN/3.3/VMware-SD-WAN-by-VeloCloud-Administration-Guide/GUID-EE8C35B8-FA4E-4C59-9AC2-4FD14509F60C.html
https://docs.vmware.com/en/VMware-SD-WAN/3.3/VMware-SD-WAN-by-VeloCloud-Administration-Guide/GUID-EE8C35B8-FA4E-4C59-9AC2-4FD14509F60C.html
https://docs.vmware.com/en/VMware-SD-WAN/3.3/VMware-SD-WAN-by-VeloCloud-Administration-Guide/GUID-EE8C35B8-FA4E-4C59-9AC2-4FD14509F60C.html
https://docs.vmware.com/en/VMware-SD-WAN/3.3/VMware-SD-WAN-by-VeloCloud-Administration-Guide/GUID-EE8C35B8-FA4E-4C59-9AC2-4FD14509F60C.html
https://www.cisco.com/c/en/us/solutions/enterprise-networks/sd-wan/what-is-sd-wan.html
https://www.cisco.com/c/en/us/solutions/enterprise-networks/sd-wan/what-is-sd-wan.html
https://www.cisco.com/c/en/us/support/docs/quality-of-service-qos/qos-policing/19645-policevsshape.html#traffic
https://www.cisco.com/c/en/us/support/docs/quality-of-service-qos/qos-policing/19645-policevsshape.html#traffic
https://www.cisco.com/c/en/us/support/docs/quality-of-service-qos/qos-policing/19645-policevsshape.html#traffic
https://doi.org/10.1145/2934872.2934873
https://doi.org/10.1145/2934872.2934873


SIGCOMM’18, August 21-23, 2018, Budapest, Hungary X.et al.

[35] Abhay K Parekh and Robert G Gallager. 1993. A generalized processor
sharing approach to flow control in integrated services networks: the
single-node case. IEEE/ACM transactions on networking 1, 3 (1993),
344–357.

[36] Ahmed Saeed, Nandita Dukkipati, Vytautas Valancius, Vinh The Lam,
Carlo Contavalli, and Amin Vahdat. 2017. Carousel: Scalable traffic
shaping at end hosts. In Proceedings of the Conference of the ACM Special
Interest Group on Data Communication. 404–417.

[37] Ahmed Saeed, Yimeng Zhao, Nandita Dukkipati, Ellen Zegura, Mostafa
Ammar, Khaled Harras, and Amin Vahdat. 2019. Eiffel: Efficient and
flexible software packet scheduling. In 16th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 19). 17–32.

[38] Danfeng Shan, Linbing Jiang, Peng Zhang, Wanchun Jiang, Hao
Li, Yazhe Tang, and Fengyuan Ren. 2023. Enforcing Fairness in the
Traffic Policer Among Heterogeneous Congestion Control Algorithms.
IEEE/ACM Transactions on Networking (2023).

[39] Danfeng Shan, Peng Zhang, Wanchun Jiang, Hao Li, and
Fengyuan Ren. 2021. Towards the Fairness of Traffic Policer.
In 40th IEEE Conference on Computer Communications, INFO-
COM 2021, Vancouver, BC, Canada, May 10-13, 2021. IEEE, 1–10.
https://doi.org/10.1109/INFOCOM42981.2021.9488761

[40] Naveen Kr Sharma, Ming Liu, Kishore Atreya, and Arvind Krish-
namurthy. 2018. Approximating fair queueing on reconfigurable
switches. In 15th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 18). 1–16.

[41] M. Shreedhar and George Varghese. 1995. Efficient Fair Queueing
Using Deficit Round Robin. ACM SIGCOMMComputer Communication
Review (1995), 231–242.

[42] Madhavapeddi Shreedhar and George Varghese. 1995. Efficient fair
queueing using deficit round robin. In Proceedings of the conference
on Applications, technologies, architectures, and protocols for computer
communication. 231–242.

[43] Madhavapeddi Shreedhar and George Varghese. 1996. Efficient
fair queuing using deficit round-robin. IEEE/ACM Transactions on
networking (1996).

[44] Bruce Spang, Shravya Kunamalla, Renata Teixeira, Te-Yuan Huang,
Grenville Armitage, Ramesh Johari, and Nick McKeown. 2023. Sammy:
smoothing video traffic to be a friendly internet neighbor. In Proceedings
of the ACM SIGCOMM 2023 Conference. 754–768.

[45] T-Mobile. 2024. Unlimited video streaming with Binge On™. (2024).
https://www.t-mobile.com/tv-streaming/binge-on

[46] Ammar Tahir and Radhika Mittal. 2023. Enabling Users to Control
their Internet. In 20th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 23). 555–573.

[47] Ronald van Haalen and Richa Malhotra. 2007. Improving TCP
performance with bufferless token bucket policing: A TCP friendly
policer. In 2007 15th IEEE Workshop on Local & Metropolitan Area
Networks. IEEE, 72–77.

[48] George Varghese and Anthony Lauck. 1987. Hashed and Hierarchical
Timing Wheels: Data Structures for the Efficient Implementation
of a Timer Facility. In Proceedings of the Eleventh ACM Symposium
on Operating System Principles, SOSP 1987, Stouffer Austin Hotel,
Austin, Texas, USA, November 8-11, 1987, Les Belady (Ed.). ACM, 25–38.
https://doi.org/10.1145/41457.37504

[49] Verizon. 2024. Verizon customers can save more in
2024. (2024). https://www.verizon.com/about/news/
verizon-customers-can-save-more-2024

[50] Gary RWright andW Richard Stevens. 1995. TCP/IP Illustrated, Volume
2 (paperback): The Implementation. Addison-Wesley Professional.

[51] Yiannis Yiakoumis, Sachin Katti, Te-Yuan Huang, Nick McKeown,
Kok-Kiong Yap, and Ramesh Johari. 2012. Putting home users in
charge of their network. In Proceedings of the 2012 ACM Conference

on Ubiquitous Computing.
[52] Yiannis Yiakoumis, Sachin Katti, and Nick McKeown. 2016. Neutral

Net Neutrality. In Proceedings of the 2016 ACM SIGCOMMConference
(SIGCOMM ’16). Association for Computing Machinery, New York, NY,
USA, 483–496. https://doi.org/10.1145/2934872.2934896

A SIZING
THE PHANTOMQUEUE FORRENO

We analyze how to size the buffer 𝐵 of a phantom queue𝑄 ,
being served at rate 𝑟 (in packets per second), for a back-
logged Reno flow. Reno is a congestion window-driven ad-
ditive increase, multiplicative decrease protocol that is sen-
sitive to packet losses. The sender maintains a congestion
window, 𝑐𝑤𝑛𝑑 , to cap the inflight packets. On each success-
ful packet delivery, the congestion window is updated as
𝑐𝑤𝑛𝑑 =𝑐𝑤𝑛𝑑+1/𝑐𝑤𝑛𝑑 . Whereas, on packet loss, the conges-
tion window is halved: 𝑐𝑤𝑛𝑑 = 𝑐𝑤𝑛𝑑/2. Since the phantom
queue does not cause any queuing delay, all 𝑐𝑤𝑛𝑑 packets’
acknowledgments are received in one round trip time.
Consider that a flow has a round trip time of 𝑅𝑇𝑇 . In the

steady state of Reno, when the phantomqueue becomes full, a
packet loss causes Reno to halve its congestion window, let’s
call this congestionwindow 𝑐𝑙 . Thus, Reno sends 𝑐𝑙 packets in
the next round trip. After successfully delivery of all packets,
𝑐𝑙 + 1 packets are sent in the next round, and so on. As the
congestion window increases additively, the phantom queue
is drained at rate𝑟 packets per second. Suppose it takes𝑛 RTTs
for the queue to become full again. At this point, we reach the
highest congestion window – let’s call it 𝑐ℎ . Thus over time
duration 𝑛𝑅𝑇𝑇 , if the queue does not go to zero, we phantom
dequeue𝑛𝑅𝑇𝑇 ×𝑟 =𝑛×𝐵𝐷𝑃 packets from the phantom queue,
and

∑𝑛
𝑖=1 (𝑐𝑙 +𝑖) more packets are accepted over this duration.

Thus, we have:

𝑛×𝐵𝐷𝑃 =
𝑛∑︁
𝑖=1

(𝑐𝑙 +𝑖)

Wehave following relationship between 𝑐𝑙 and 𝑐ℎ : 𝑐𝑙 =𝑐ℎ/2
and 𝑐ℎ = 𝑐𝑙 +𝑛, through which we have 𝑐𝑙 =𝑛. Plugging this
in the above equation gives us values of 𝑛 = 𝑐𝑙 ≈ 2

3𝐵𝐷𝑃 and
𝑐ℎ≈ 4

3𝐵𝐷𝑃 . Thismeans, that for correct rate enforcementwith
Reno, we need the instantaneous rate (over 𝑅𝑇𝑇 period) to
vary between 2𝑟

3 and 4𝑟
3 . When 𝐵 is not large enough, we are

unable to phantom dequeue 𝑛×𝐵𝐷𝑃 packets over the given
duration, which results in the average enforced rate being
less than 𝑟 . We need 𝐵 to be at least as large as the area of the
shaded in Figure 8 to hold the additional packets that are sent
beyond rate 𝑟 , which comes out to be 𝐵𝐷𝑃2

18 ×𝑀𝑆𝑆 bytes.

B YOUTUBE’S VIDEO STREAMANALYSIS
The time series for one video with different schemes is shown
in figure 9. Since YouTube uses BBR, with a policer, the video

14

https://doi.org/10.1109/INFOCOM42981.2021.9488761
https://www.t-mobile.com/tv-streaming/binge-on
https://doi.org/10.1145/41457.37504
https://www.verizon.com/about/news/verizon-customers-can-save-more-2024
https://www.verizon.com/about/news/verizon-customers-can-save-more-2024
https://doi.org/10.1145/2934872.2934896


Efficient Policy-Rich Rate Enforcement with PhantomQueuesSIGCOMM’18, August 21-23, 2018, Budapest, Hungary

ch = 
4BDP/3

r

cl =
2BDP/3

n = 2BDP/3

BDP/3

BDP/3
BDP2/18

Figure 8: Reno’s 𝑐𝑤𝑛𝑑 progression over𝑛 RTTs, we need
phantom queue to be at least the size of shaded region.

flow hogs most of the bandwidth thus achieving high video

quality but at the cost of affecting the rest of traffic sharing
the link. On the other hand, with a shaper, the video flow
is not as aggressive. There can be two explanations for this,
firstly since competing traffic carries buffer-filling flows, BBR
yields bandwidth to bring down queuing delay. The second
plausible reason could be that YouTube’s ABR algorithm is
also sensitive to queuing delay. The result with DRR-shaper
gives more weight to this conclusion. Even though YouTube
flow has a separate queue, its video quality still suffers.

15



SIGCOMM’18, August 21-23, 2018, Budapest, Hungary X.et al.

0 50 100 150 200
Time (s)

0

1

2

3

4

5

Th
ro

ug
hp

ut
 (M

bp
s)

Video flow
Bulk Flow

240p
360p
480p
720p
1080p
1440p
2160p

Qu
al

ity

Rebuffering
Video Quality

(a) Policer

0 50 100 150 200
Time (s)

0

1

2

3

4

5

Th
ro

ug
hp

ut
 (M

bp
s)

Video flow
Bulk Flow

240p
360p
480p
720p
1080p
1440p
2160p

Qu
al

ity

Rebuffering
Video Quality

(b) BC-PQP

0 50 100 150 200
Time (s)

0

1

2

3

4

5

Th
ro

ug
hp

ut
 (M

bp
s)

Video flow
Bulk Flow

240p
360p
480p
720p
1080p
1440p
2160p

Qu
al

ity

Rebuffering
Video Quality

(c) Single Queue Shaper

0 50 100 150 200
Time (s)

0

1

2

3

4

5

Th
ro

ug
hp

ut
 (M

bp
s)

Video flow
Bulk Flow

240p
360p
480p
720p
1080p
1440p
2160p

Qu
al

ity

Rebuffering
Video Quality

(d) DRR Shaper

Figure 9: A youtube video stream sharing 3Mbps link with some other trafficwith different schemes.

16


	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Traffic Shapers
	2.2 Traffic Policer
	2.3 Our Goals

	3 Policers with Phantom Queues
	3.1 TBF as a Phantom Queue
	3.2 Policing with Multiple Phantom Queues
	3.3 Scope and Properties of PQP
	3.4 Bounds on Rate and Policy Enforcement
	3.5 Sizing the Phantom Queues

	4 Burst Controlled PQP
	5 Implementation
	6 Evaluation
	6.1 Rate Enforcement
	6.2 System Efficiency
	6.3 Policy Enforcement
	6.4 Real World Applications

	7 Related Work
	8 Conclusion
	References
	A Sizing the phantom queue for Reno
	B YouTube's video stream analysis

