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Abstract
Immutable data structures are a powerful tool for building
concurrent programs. They allow the sharing of data without
the need for locks or other synchronisation mechanisms.
This makes it much easier to reason about the correctness
of the program.

In this paper, we focus on what we call deep immutability
from freeze, that is, objects are initially mutable, and then can
be frozen, and from that point on the object and everything
it refers to (transitively) can no longer be mutated. A key
challenge with this form of immutability is “how to man-
age the memory of cyclic data structures?” The standard
approach is to use a garbage collector (GC), or a back-up
cycle detector. These approaches sacrifice the promptness
of memory reclamation, and the determinism of memory
usage.

In this paper, we argue that memory underlying an im-
mutable data structure can be efficiently managed using ref-
erence counting even in the presence of cycles, based on the
observation that the cycles are themselves immutable. Our
approach takes a classic algorithm for calculating strongly
connected components (SCCs) and managing equivalence
classes with union-find (UF), and combines them so that the
liveness of each SCC can be tracked efficiently using only a
single reference counter. The key observation is that since
the graph is unchanging, we can calculate the SCCs once, in
time that is almost linear in the size of the graph, and then
use the result to reference count at the level of the SCCs. This
gives precise reachability information, and does not require
any backup mechanism to detect or handle cycles.

CCSConcepts: • Software and its engineering→Garbage
collection;
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1 Introduction
Immutable data structures are a powerful tool for building
concurrent programs. The core of most functional languages
is immutable data structures [19], although recent years have
seen increased interest in safe in-place updates of unique or
linear data in functional languages like Koka [23].

Immutable data structures allow the sharing of data with-
out the need for locks or other synchronisation mechanisms.
This makes it much easier to reason about the correctness
of the program.

There are many forms of immutability in the literature.
We can categorise these many forms with two axes: temporal,
and spatial. The temporal axis is “when does immutability
become enforced?” The two common cases are: immutable
from construction, when allocating an object we must know
the value of the fields, and they can never be changed from
that initial value; and immutable from freeze, an object is
initially mutable, but can be “frozen”, and from that point on
is immutable. The spatial axis is “how deep does immutability
go?” The two common cases are: shallow, immutable objects
can reference mutable objects; and deep, immutable objects
can only reference immutable objects.

In this paper, we focus on what we call deep immutability
from freeze. This is the form of immutability that is found in
the Pony and System C♯ programming languages [7, 8, 11].
Neither of these languages exploit the immutability to man-
age the memory of the objects. They use a classic tracing GC
to discover when the objects become unreachable. In these
languages immutable state is used to share data between ac-
tors/threads meaning the objects are likely long-lived, which
means the GC will scan that numerous times.

An alternative approach to tracing GC is to use reference
counting. Reference counting has the advantage of prompt-
ness of memory reclamation, and the determinism of mem-
ory usage. However, as the objects become immutable after
the freeze operation it is possible for the frozen objects to
form cycles. Cycles are challenging for reference counting as
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they can lead to memory leaks [18]. Back up cycle detection
can be used, but would lose the advantage of promptness of
memory reclamation, and would result in the object graph
being scanned multiple times.

In this paper, we argue that memory underlying an im-
mutable data structure can be efficiently managed using ref-
erence counting even in the presence of cycles. Our approach
takes a classic algorithm for calculating strongly connected
components (SCCs) and managing equivalence classes with
union-find (UF), and combines them so that the liveness of
each SCC can be tracked efficiently using only a single ref-
erence counter. SCCs are used to factor the graph into an
equivalence relation, and a directed acyclic graph. The key
observation is that since the graph is unchanging, we can
calculate the SCCs once, in time that is almost linear in the
size of the graph, and then use the result to reference count
at the level of the SCCs, which are acyclic. This gives precise
reachability information, and does not require any backup
mechanism to detect or handle cycles.

The paper is structured as follows: In section 2 we give
a brief overview of the required background. In section 3
we present the algorithm. In section 4 we give a proof of
correctness. In section 5 we give a complexity analysis. In
section 6 we evaluate the performance of the algorithm and
discuss its potential applications. In section 7 we discuss
related work. In section 8 we conclude.

2 Background
Our algorithm depends on two classic algorithms: union-
find and strongly connected components. We give a brief
overview of the required background in this section.

2.1 Union-Find
Union-find is a well-known algorithm [26] for maintaining
equivalence classes. The algorithm supports two operations,
find and union. The find operation takes an element and
returns the representative (see below) of the equivalence
class. The union operation takes two elements and merges
the equivalence classes that the elements are in.

The algorithm maintains a forest of inverted trees, where
each tree represents an equivalence class. The root of the
tree is called the representative of the equivalence class. With
this representation, the find operation is simply a traversal
up the tree to the root, and the union operation is a merge
of the two trees by making one of the roots a child of the
other root.

The core challenge with union-find is to minimise the
distance find must travel from any element to its represen-
tative. There are two key optimisations in the literature to
achieve almost linear time in the number of operations.

The first optimisation is to make the inverted tree balanced.
The optimisation involves tracking the maximum inverted
tree depth, called the rank, and always merge the tree with

1 def find(r):

2 match r.status

3 | REP(ptr) =>

4 let result = find(ptr);

5 r.status = REP(result);

6 result

7 | _ => r

8
9 def rank(r):

10 match r.status

11 | RANK(N) => N

12
13 def union(r1, r2):

14 r1 = find(r1); r2 = find(r2);

15 if (r1 == r2) return false;

16 if (rank(r1) > rank(r2))

17 r1,r2 = r2,r1; // swap r1 and r2

18 else if (rank(r1) == rank(r2))

19 r1.status = RANK(rank(r1) + 1);

20 r2.status = REP(r1);

21 true

Figure 1. Pseudo-code for union-find.

the smaller rank into the tree with the larger rank. If the
two trees have the same rank, then the rank of the merged
tree is considered one larger. By doing this, the maximum
path in the inverted tree is at most log2 𝑛 where 𝑛 is the
number of elements in the tree. The second optimisation is
to compress the path from an element to its representative.
With many union operations the path from any particular
element to the root can become long. Path compression is
the optimisation of making the path from any element to
the root shorter. This can be done by either making the
parent of every element on the path the root, or pointing
each element on the path to its grandparent. When combined
with the earlier balancing, both approaches have been shown
to achieve the same complexity [27].

We can implement union-find using a single, status, field
in each element, that contains either:
RANK(N) the object is a representative, and has a maximum

tree depth of N; or
REP(ptr) the object is part of an SCC, and its representative

is reachable from ptr.
We give a pseudo-code implementation of the two opera-
tions in Figure 1. The implementation performs both path
compression and balancing. Note that we use the compress
to the root in the find operation.

2.2 Strongly Connected Components (SCCs)
Let us define a graph, 𝐺 , as a pair of a set of nodes, 𝑁 , and a
set of edges, 𝐸, where each edge is a pair of nodes. We define
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SCCs as the symmetric core of reachability:
SCC(𝑁,𝐸 ) = 𝐸∗ ∩ (𝐸∗)−1

where we use𝑅∗ to denote the reflexive and transitive closure
of 𝑅, and 𝑅−1 to denote the inverse of the relation 𝑅.

Informally, this can be explained as two nodes are in an
SCC iff there is a path in both directions between them. Note
that SCC is an equivalence relation, and that the equivalence
classes are the strongly connected components of the graph.
We refer to the edges between SCCs as external. We can form
a quotient of a graph using the SCC equivalence relation,
and that quotient is a directed acyclic graph (DAG). First, we
define a mapping from an element to the set of equivalent
elements as follows:

𝑛/𝑅 = {𝑛′ | 𝑛 𝑅 𝑛′}
We write 𝑁 /𝑅 where we lift the mapping to sets of elements.
We can quotient the edges, 𝐸, of a graph by an equivalence
relation, 𝑅, as follows:

𝐸/𝑅 = {𝑛1/𝑅, 𝑛2/𝑅 | 𝑛1 (𝐸 \ 𝑅) 𝑛2)}

Theorem 2.1. The graph ((𝑁 /SCC(𝑁,𝐸 ) ), (𝐸/SCC(𝑁,𝐸 ) )) is
acyclic.

3 Algorithm
The core observation of our memory management algorithm
is the following:

By factoring a graph into strongly connected
components, we can use reference counting at
the level of SCCs to manage its memory.

Strongly connected components can be used to factor an
arbitrary graph into an equivalence relation, and a directed
acyclic graph. This means that reference counting at the level
of SCCs does not have to handle cycles, they are handled by
the SCC algorithm. As we are focussing on immutable state,
we never have to recalculate the SCCs of the graph after the
initial freeze operation.

This section splits the implementation into three core
pieces: freeze which calculates the strongly connected com-
ponents of a graph and the reference counts, dispose which
deallocates the memory of an SCC, and removes references to
all the components it can reach, and basic reference counting
operations (acquire and release).

3.1 Freeze
The freeze function is responsible for calculating both the
SCCs of the graph, and each SCC’s external reference count.
The function uses union-find to represent the SCCs, and the
reference count is stored in the SCC’s representative. The
freeze operation performs a linear number of find opera-
tions on the graph, and is hence almost linear in the size of
the graph.

Our algorithm is based on the Purdom’s path-based algo-
rithm [22] for calculating the SCCs of a graph. Path-based

algorithms keep track of the tentative SCCs on the path from
the root of the traversal to the current node, and when they
detect a back edge they merge all the SCCs on the path from
the current node to the target of the back edge. To track the
SCCs on the path from the root of the traversal to the current
node, we use the union-find datastructure. This differs from
the classic presentation but provides the union-find structure
we need for reference counting at the level of SCCs.

To implement the algorithm, we extend the representation
from the union-find algorithm earlier with two new states,
UNMARKED and RC(𝑁). Thus, it can contain one of four states:

UNMARKED the object has not been visited by the algorithm
yet;

RANK(𝑁) the object is on the pending stack, and is part of
an SCC with rank 𝑁 ;

REP(𝑝𝑡𝑟) the object is part of an SCC, and its representative
is reachable from 𝑝𝑡𝑟 ; or

RC(𝑁) the object is the representative of an SCC with a
current external reference count of 𝑁 .

We give the freeze algorithm in pseudo-code in Figure 2.
We use def to define functions; atomic to indicate that the
function is atomic; and match to perform a pattern match
on the status field (similar to Rust or OCaml). The pattern
match on lines 29 to 31 will return true if it has the status of
RC with the value 1. If the status is RC with a value greater
than 1, then the status is decremented by 1, and the function
returns false.

The algorithm takes a root object, and calculates the SCCs
of the graph reachable from the root, and their incoming
external reference count. We present the algorithm as a
recursive function, freeze_inner, that takes a node, and
modifies the captured pending stack. The recursive function
performs a depth-first search on the graph, and pushes nodes
onto the pending stack as they are first visited (line 40). Im-
portantly, the algorithm performs operations both on the
pre-order and post-order of the depth-first search. The post-
order step (lines 43 to 45) is responsible for processing a
complete SCC, and giving it its initial (external) reference
count. The pre-order steps are responsible for adding un-
explored nodes to the pending stack (line 40), finding ad-
ditional edges into completed SCCs and increasing their
reference count (lines 49 to 50), and merging SCCs when a
back edge is detected (lines 46 to 48).

We illustrate the execution of the algorithm in fig. 3. The
algorithm starts at Node A, which has two outgoing edges
(shown in sub-diagram 1). It takes the first edge to Node B and
adds it to the pending stack (line 40) (shown in subdiagram
2). As B has no outgoing edges, then we move to the post-
order step (line 43). This observes that the current node is
the top of the pending stack, and hence it is a completed
SCC, and gives it a reference count of 1 and removes it from
the pending stack (shown in sub-diagram 3).
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22 def incref(r):

23 atomic

24 match r.status

25 | RC(n) => r.status = RC(n+1)

26
27 def decref(r):

28 atomic

29 match r.status

30 | RC(1) => true

31 | RC(n) => r.status = RC(n-1); false

32
33 def freeze(r):

34 pending = []

35
36 def freeze_inner(x):

37 match find(x).status

38 | UNMARKED =>

39 x.status = RANK(1);

40 pending.push(x);

41 for each f in x

42 freeze_inner(x.f);

43 if (pending.peek() == x)

44 pending.pop();

45 find(x).status = RC(1);

46 | RANK(N) =>

47 while (union(x, pending.peek()))

48 pending.pop();

49 | RC(N) =>

50 incref(find(x));

51
52 freeze_inner(r)

Figure 2. Pseudo-code for the freeze algorithm.

The algorithm then explores the second outgoing edge
of A to Node C, and adds C to the pending stack (shown
in sub-diagram 4). This has two outgoing edges, and the
algorithm follows the first to Node D and also adds it to the
pending stack (shown in sub-diagram 5). The algorithm then
follows the first outgoing edge of D to Node B. This node is
part of a completed SCC and hence the algorithm increases
its reference count (shown in sub-diagram 7) using lines 49
to 50.

The algorithm then explores the second outgoing edge of
D to Node C. This is an edge to an SCC on the pending stack.
The algorithm detects this as a back edge, and hence merges
the SCCs (shown in sub-diagram 8) using lines 46 to 48. This
removes D from the pending stack. The postorder step for D,
does not create a completed SCC as it is not the top of the
pending stack.

The algorithm then explores the second outgoing edge
of C to Node E, and adds it to the pending stack (shown in
sub-diagram 9). Node E has a single outgoing edge to Node

A. This is a back edge to an SCC on the pending stack. It
then unions A with E (shown in sub-diagram 10), and then
A with C (shown in sub-diagram 11).

The algorithm then executes the postorder step for E and
C, but neither do anything as they have been removed from
the pending stack. The final post-order step for A detects that
it is the top of the pending stack, and hence it is a completed
SCC. It gives it a reference count of 1, and removes it from
the pending stack (shown in sub-diagram 12).

The end result is a graph with two SCCs, one containing
just B, and the second containing all the other nodes. The
reference count of the SCC containing all the other nodes is
1, and the reference count of B is 2.

3.2 Dispose
Once we have calculated the SCCs of the graph and their
reference counts, we can use this to manage the memory
associated with them. The second key challenge is the correct
deallocation of an SCC. The key observation is that if the
reference count of an SCC is 0, then it is safe to deallocate
all the nodes in the SCC, and remove all the references from
the SCC.

In fig. 4 we give the pseudo-code for the dispose algorithm.
The traversal order is subtle as it must deallocate each SCC
in one go. The algorithm uses two stacks, dfs and scc, and
a free_list. The dfs stack is used to traverse the DAG
of SCCs, and the scc stack is used to traverse the SCCs
themselves. Once an object has been traversed, it is added to
the free_list, which is processed when all the elements of
the SCC have been traversed.

The algorithm uses the same status field from before, but
with a different interpretation. It uses a PROCESSING state to
indicate that the object has been visited by the algorithm. If
an object is in a PROCESSING state, then it is currently in one
of the three stacks: dfs, scc, or free_list.

When we begin processing an SCC for disposal, we always
start with the representative of the SCC, and mark it as
PROCESSING (lines 59 and 73). If the representative pointer
points to an object that is marked as PROCESSING, then this
node must also be in the same SCC, but has not been visited
yet. This is detected on lines 68 to 70, and the object is added
to the scc stack, and the algorithm continues to process the
SCC.

Once the algorithm has finished processing an SCC, it can
deallocate all the objects in the SCC (lines 75 to 76). It then
pops the next SCC from the dfs stack (lines 60 to 61), and
continues processing the next SCC (lines 62 to 73).

3.3 Reference Counting
In fig. 4, we provide two methods for modifying the reference
count of an object: acquire and release. These objects are
standard except that instead of manipulating the object, they
first follow the representative pointer to the representative
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53 def add_stack(stack, r):

54 stack.push(r)

55 r.status = PROCESSING

56
57 def dispose(r):

58 dfs = []; scc = []; free_list = [];

59 add_stack(dfs, find(r));

60 while (!dfs.empty())

61 scc.push(dfs.pop())

62 while(!scc.empty())

63 x = scc.pop()

64 free_list.push(x)

65 for each f in x

66 n = find(x.f);

67 match n.status

68 | PROCESSING =>

69 if (x.f != n)

70 add_stack(scc, x.f);

71 | RC(_) =>

72 if (decref(n))

73 add_stack(dfs, n);

74
75 while(!free_list.empty())

76 deallocate(free_list.pop())

77
78 def acquire(r):

79 incref(find(r))

80
81 def release(r):

82 if (decref(find(r)))

83 dispose(r)

Figure 4. Pseudo-code for the dispose algorithm.

of the SCC, and then manipulate the reference count of the
SCC.

If the reference count reaches zero, then the object is
passed to dispose and the memory of that SCC, and po-
tentially others that it can reach, is deallocated.

3.4 Note on the Implementation
The freeze algorithm in this section is presented as a recur-
sive algorithm for clarity. An implementation naturally uses
a work-list as object graphs can often be too large to process
with a recursive algorithm. This is indeed the case for the
benchmarked code (see next section) which processes both
pre-order and post-order steps of a depth-first search.

4 Correctness
The core correctness of the algorithm depends on the follow-
ing invariant:

A node whose representative is marked as RC
can only reach other nodes whose representative
is marked as RC.

This invariant is maintained by the freeze algorithm. The
post-order step (lines 43 to 45) will only be called once there
are no nodes reachable that are in an UNMARKED state. The
current node is necessarily still PENDING. If this node is not
the top of the pending_stack, then it could reach something
visited earlier, and the SCC may have out-going edges that
have not been explored yet. If this is the case, then it remains
in the pending state. Otherwise, it is the top of the stack, and
we have followed every field out of this SCC, and it is safe to
convert it into an RC, because it cannot reach anything that
is UNMARKED.

Based on this invariant, we can see that if one starts with
all nodes UNMARKED, then the algorithm will only create
DAGs of SCCs. This is because we create RCs one at a time,
and thus cannot create a cycle of RCs.

We can also see that this invariant ensures that upon ter-
mination there are no reachable nodes marked as UNMARKED
or PENDING. The last step of the algorithm is guaranteed
to turn the original root into an RC, and thus everything
reachable must be an RC.

5 Complexity
The freeze algorithm is almost linear in the size of the graph
with its complexity being:

𝑂 ( |𝐸 | · 𝛼 ( |𝑁 |))

where 𝛼 (𝑥) is the inverse-Ackermann function. As the algo-
rithm uses union-find to represent the SCCs, the complexity
of the freeze algorithm takes on the inverse-Ackermann cost
for find.

To prove this complexity bound, we observe two things:
• Each edge is followed at most once.
• Each node is added at most once to the pending stack.

Both of these properties are true because we only add edges
when a node has not previously been visited (UNMARKED),
and we only add nodes to pending on the first visit.

The most subtle part of the complexity argument is dealing
with the loop on line 46. This loop removes one element from
the pending stack for each iteration. We know that x has
the same representative as a single element in the pending
stack. This means that the loop is guaranteed to terminate
once it reaches that element. Moreover, as each iteration of
the loop body removes an element from the pending stack,
the loop can only iterate at most |𝑁 | times across the entire
run of the algorithm. Thus, this loop can contribute at most

𝑂 ( |𝑁 | · 𝛼 ( |𝑁 |))

to the complexity of the algorithm, as the union on each
iteration performs two find operations.
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The core algorithm visits each edge once (lines 41 to 42).
Each visit will involve two to three calls to find in addition
to the find calls in the iterations of the nested loop. Hence,
the complexity of the algorithm is:

𝑂 (( |𝑁 | + |𝐸 |) · 𝛼 ( |𝑁 |))
As the algorithm is only concerned with reachable ele-

ments of the graph, we can assume |𝑁 | is less than |𝐸 |. We
can therefore simplify to

𝑂 ( |𝐸 | · 𝛼 ( |𝑁 |))
The dispose algorithm is also almost linear in the size of

the graph with its complexity also being:

𝑂 ( |𝐸 | · 𝛼 ( |𝑁 |))
The argument for this is simpler than the freeze algorithm.
The dispose algorithm visits each edge once, and each visit
involves a single call to find.

6 Evaluation
We split the evaluation of the algorithm into two parts. A
quantitative evaluation of the performance of the algorithm
relative to other operations, and a qualitative evaluation of
the potential applications of the algorithm.

6.1 Performance
This section provides a small quantitative evaluation of the
algorithm for a range of data structures to illustrate the
performance characteristics of the algorithm. Our aim is to
provide the reader with an idea of the cost relative to other
operations such as construction of the data structure. We
have not attempted to compare the algorithm to other mem-
ory management algorithms, which we believe is beyond
the scope of an intellectual abstract.

We have implemented this algorithm as part of the Project
Verona runtime.1 The micro-benchmark directly calls the
operations on the runtime using C++ and is available on
GitHub.

To evaluate the performance of our algorithm, we imple-
mented a few common data-structures that represent differ-
ent types of graphs. We chose various graphs with different
types of cycles, and chains. All the graphs were implemented
using binary nodes, and using linked lists to form larger log-
ical nodes where required. Each node contained the status
field from the previous section, a descriptor field containing
how to trace the object, and two pointer fields that were used
to form the graph.

We chose the following data structures as they represent
a wide range of graphs:
Linked List a linked list with a single forward pointer.
Doubly-Linked List a doubly-linked list with forward and

backward pointers.
1https://github.com/Microsoft/verona-rt

Balanced Binary Tree a binary tree where the right sub-
tree has at most one more node than the left subtree.

Balanced Binary Tree with Leaf to Root cycle same as
the balanced binary tree, but instead of using a null
pointer for the empty tree, a pointer to the root is used.

Tree with parent pointers a balanced binary tree with a
pointer to the parent. Two nodes are used to encode a
node with three pointers.

Balanced 4-tree a balanced tree where each node has up
to four children. To represent the nodes of the tree a
singly-linked list of node objects is used.

We then measured the time taken to allocate the graph
(Alloc), freeze it (Freeze), and then dispose of it (Dispose).
Additionally, our runtime contains a simple mark and sweep
collector that we ran before freezing the graph (Trace). We
use snmalloc [14] to reduce the noise associated with allocat-
ing nodes compared to the system allocator. Each benchmark
was run with a variety of sizes of the graph,⋃

1≤𝑖≤22
({4, 5, 6, 7} ∗ 2𝑖 )

We repeated the run𝑚𝑎𝑥 (100000/graph_size, 50) times to
reduce the noise in the benchmark. We have an additional
warm-up run that is not reported to remove any set up costs.
The presented results are normalised to the time taken per
binary node to make comparison between the different data
structures easier.

The results are presented in fig. 5. The shaded area for
each line represents the 95 percentile interval. The graph
shows that the Freeze operation is generally about twice the
cost of the Trace operation. The worst case is the Linked
List, where it is 2̃.5x the cost. This implies that this approach
could lead to a net win if the frozen graph is going to be
traced more than a couple of times.

The graph shows that the freeze operation is cheaper than
allocation for small sizes for all the acyclic benchmarks. For
the linked list, the freeze operation becomes more expensive
than allocations between 105 and 106 nodes. This is due to
the state required for both the depth-first search, and the
pending stack. In the case of the linked list example, these
are both linear in the size of the graph. We believe this means
the cache will be under more pressure, and the cost of the
freeze operation will increase. In the balanced binary tree
example, the freeze operation stays cheaper than allocation
as these other data structures are only logarithmic in the size
of the graph.

For the cyclic examples (“Doubly Linked List”, “Balanced
Binary Trees with Leaf to root cycle”, and “Tree with Parent
Pointers”), freeze generally costs a bit more than allocation,
but stays under double the cost. These larger costs only occur
at the largest sizes again due to additional cache pressure.
The traversal order of the graph can have a dramatic effect on
the cost of the freeze operation. If you compare the “Doubly
Linked List” and “Doubly Linked List (Reverse field order)”

https://github.com/Microsoft/verona-rt
https://github.com/Microsoft/verona-rt
https://github.com/microsoft/verona-rt/blob/8f4fc5f0afc9666eb3d504d2739960e27d260b5c/test/perf/immutablescc/immutablescc.cc
https://github.com/Microsoft/verona-rt
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Figure 5. Latency of various stages of processing different data structures.

benchmarks, the latter performs better. This is due to the
cycles being discovered instantly with the “Reverse field
order”, which means the pending stack is only ever a single
element. Whereas the “Doubly Linked List” has a pending
stack that is linear in the size of the graph. Moreover, in the
reverse order the previous pointer is followed, and then the
next pointer. This means the two accesses are very close in
time, and likely to remain in cache. This is not the case for
the “Doubly Linked List” benchmark as the two accesses are
far apart in time.

The graphs also contain the time taken to run the dispose
operation. This is generally slightly higher than the cost of
allocation in the acyclic cases, and in the cyclic cases as the
graph grows the dispose operation becomes the most costly.
The example here has SCCs that cover the entire graph, and
hence the dispose operation must first traverse the entire
graph to calculate the SCC, and only then can it begin to
deallocate it.

Overall, the results again show that in the majority of sce-
narios the cost of dispose is close to the cost of constructing
the graph.

The algorithm’s complexity is almost linear, but empiri-
cally it seems the costs increase as the size of the data struc-
ture grows. For each of the data structures, we also plot
the total length of find traversals divided by the number of
nodes, “FreezeFind” and “DisposeFind”. These operations can
be seen to not be growing as the data structure grows. This
shows empirically that the algorithm’s find traversal lengths
are linear in the size of the graph. The lack of linearity in the
reported time is due to cache effects, which become more
pronounced as the size of the graph grows.

6.2 Applicabilty
We are currently building a new language runtime that takes
advantage of our algorithm. We believe the algorithm is
applicable to other existing languages.

Our algorithm requires a language design for deeply im-
mutable state with a freeze operation. There are a couple
of notable languages that have this feature: System C♯ [11]
and Pony [7, 8]. Both of these languages have exactly the
right type of immutable state for our algorithm. System C♯
was an extension of C♯ with various capabilities to enable
data-race free concurrency. It has a freeze operation that can
be used to make regions of memory deeply immutable. The
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freeze operation is a purely type-level operation and has no
runtime operation or representation associated with it. The
language runtime was not designed to take advantage of the
frozen memory, and thus used a standard tracing garbage
collector to handle the memory. Pony also uses the same
notion of deep immutablity with a freeze operation. It does
not represent immutability at the runtime level and thus
uses a tracing garbage collector to manage the lifetime of
the immutable state.

Both of these language designs could benefit from our
algorithm. If the freeze operation was turned into a runtime
operation, then the language runtime could use our algo-
rithm to manage the memory of the immutable state. This
would be a substantial change to either implementation. It
is not possible to make this change to System C♯ as it is not
publicly available. Making this change to Pony would be a
substantial amount of work, and would likely require a com-
plete redesign of the runtime’s representation of memory
management.

We believe, in these languages, any long-lived immutable
state would benefit from our algorithm. As the immutable
state in these languages is primarily used to share data be-
tween threads/actors, the freeze operation is likely to be used
on long-lived data. If the data survives more than a couple
of rounds of GC, then the freeze operation will be cheaper
than the cost of the GC tracing.

Access to the immutable objects would require reference
counting. However, as the state is deeply immutable holding
reference counts on dominating references would be suf-
ficient to ensure the memory is not collected. This would
drastically reduce any intermediate reference count opera-
tions, but would require compiler support.

There is also potential applications in more mainstream
languages. In an analysis of Java object connectivity, Hirzel
et al. study the object graphs of 22 different benchmarks and
find that between 0.4 % and 78.8 % of all objects (14.4 % on
average) are part of “non-trivial SCC’s”, which are defined
as SCC’s with more than two objects [13]. Analysing the Da-
Capo benchmark suite, Brandauer and Wrigstad [3] found
that 54.9 % of all objects were shallow-immutable, 47.9 %
were deeply immutable, and 72.6 % of all classes only create
stationary objects (each field is written once, but not nec-
essarily during object creation). Revisiting and combining
these two studies would be an interesting direction for future
work that could demonstrate the potential application of our
algorithm to Java.

7 Related Work
7.1 Freezing Objects
The world of programming languages contains many exam-
ples of creating mutable data structures and then “freezing”
them with various amount of language support. For example,
Ruby comes with a built-in freeze method that makes an

object unmodifiable. The immutability is notably shallow,
meaning it only freezes the receiver object, not its transitive
closure. This is arguably a reasonable design in an untyped
language, where it can be extremely difficult to reason about
the propagating effects of a deep freeze operation. JavaScript
supports a similar, also shallow, freeze method.

An early application of capturing transition from mutable
to immutable in static types is found in Parameterized race-
free Java [2] (PRFJ). PRFJ permitted the creation of immutable
objects by destructively reading a variable of unique type and
storing the result in a variable with read-only type. Freezing
in PRFJ affects all objects that are dominated (aka owned [6])
by the unique object. PRFJ’s adoption of ownership types [6]
permits the distinction between paths internal to a struc-
ture (leading to transitively owned objects) and paths to
external objects (not owned). Thus, it is close in spirit to our
freeze operation, but permits outgoing references from an
immutable aggregate to mutable objects. Given that types
can be used to tell references to outside of the structure from
references to inside of the structure, our algorithm could be
successfully applied to PRFJ’s freeze-equivalent, as well as
to several other works based on ownership types that apply
similar tricks [5, 21, 28]. Type systems that permit flexible
object initalisation [10, 12] also permit staged construction
of immutable objects where a typestate change is the static
equivalent of our freeze operation, like in PRFJ. PRFJ did not
leverage immutability for memory management.

7.2 Clusters and Cycles
A close work in spirit is Cutler and Morris’ Clustered Col-
lection [9], which was implemented as a modification of the
Racket collector. The goal of clustered collection is to re-
duce pause times and repeated scanning of object structures
by identifying clusters which are kept alive by a specific
dominating object. Liveness of the dominator thus governs
liveness of its dominated structure. Note that clusters are
not SCC’s – the root of a tree is a dominator for all subtrees.
Like our SCC’s, clusters can have outgoing pointers, which
must be kept track of as they act as roots as long as their
containing cluster is still alive. Foreshadowing our work, the
main challenge with clustered collection is that clusters are
mutable. A write that replaces a reference to an object in the
same cluster forces the cluster to be traced fully during the
next GC cycle for completeness.

The problems of cycles in a reference counted systems
leading to memory leaks has been long known [18]. There
are two common approaches to handling cycles. The first
is to add a second class of reference, a weak reference, that
does not prevent the object from being collected [4]. If any
cycle contains at least one weak reference, then the cycle can
be collected. The second approach is to introduce a backup
mechanism that can detect cycles and collect them. Martínez
et al. [17] present a backup tracing mechanism for reference
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counted systems to find cycles. Lins [15, 16] provides numer-
ous optimisations to reduce the cost and frequency of the
back-up tracing. Python uses a different algorithm to detect
and collect cycles in its reference counted system [24], which
can cope with some untraceable objects. The first concurrent
cycle detector was presented by Bacon et al. [1]. All these
algorithms are for detecting cycles in reference counts of
mutable object graphs. They take the classic lazy approach of
GC of finding the cycles when collection occurs, rather than
calculating the cycles of the graph up front. By restricting
our attention to deeply immutable state, we can calculate
the cycles of the graph up front, and thus avoid the need to
recalculate the cycles as the program evolves.

7.3 Immutability in Functional Languages
Functional languages such as Haskell and ML have a lot of
immutable state, but it is not deeply immutable. ML allows
for reference cells that can be updated, which would alter
the topology of the graph, and thus means the SCCs would
no longer be up-to-date. Haskell uses lazy evaluation, and
thus the connectivity of the object graph can change as
graph is evaluated. It may be possible to create a strict and
freeze operation that would allow the algorithm to be used
in Haskell on fully evaluated object graphs.

There are pure functional languages that are built around
deeply immutable state. It would be interesting to apply our
algorithm to these languages like Idris or Elm. Currently,
Idris compiles to Racket, and Elm compiles to JavaScript, and
thus depend on a classic tracing garbage collector.

7.4 SCC’s in GC
As part of work on automatic parallelisation on the JVM,
Österlund and Löwe [20] developed a modified version of
Tarjan’s algorithm [25] for finding SCC’s that only consist of
immutable objects, piggybacking on tracing GC. The modi-
fied Tarjan’s algorithm includes a purity analysis that detect
objects with only immutable fields. Thus, the SCC’s detected
are just like ours: SCC’s of deeply immutable objects. The
realisation driving this work is that method calls on receivers
in different such SCC’s are guaranteed to not mutate any-
thing and therefore cannot interfere. This means the method
calls are safe to execute in parallel from the perspective of
data races. In contrast, the work in this paper builds SCC’s
at freeze-time knowing that the graph consists of only im-
mutable objects. Österlund’s and Löwe’s work also does not
use SCC’s to collect garbage, only to drive automatic paral-
lelisation of the program.

8 Conclusion
We have presented a new memory management algorithm
for deeply immutable state. The algorithm uses union-find
to calculate the strongly connected components of the graph,
and then uses reference counting at the level of the SCCs to

manage the memory. We have shown that the algorithm is
almost linear in the size of the graph, and empirically shown
that the cost of the freeze operation is close to the cost of
constructing the graph.

We believe the algorithm is applicable to languages that
support deeply immutable state, and are currently building
a new language runtime to take advantage of our algorithm.
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