

S.M.A.C.

(Smart Models for Automated Control)

Wilke Grosche Benoît Gherardi Zhen Wei Project PI: Pascal Fua

10.04.2024

EPFL Computer Assisted Engineering

Machines need to be designed for:

- Performance Durability •
- Ease of control • •

.

Space

Nuclear fusion

Designing a glider to:

- perform a complex task
- be easy to control
- be structurally sound

EPFL Advantages

- Conventional:
 - 1 Operating Point
 - 1 Performance Metric
 - Computationally Expensive
 - Labour Intensive
 - Not Reusable

- Our Approach:
 - Whole Trajectory
 - Adaptable Performance Metric
 - Training is Expensive
 - Inference is
 - Reusable

EPFL Road Map

Given an existing glider:

- 1. Build a dataset and train a Deep Network to predict its dynamics
- 2. Compute optimal trajectories for its current shape
- 3. Optimize the shape to further improve the trajectories

EPFL Deep Control Laws

- Two supervision sources to train this model:
 - Simulation data to predict the response of the aircraft to given control inputs
 - Wind tunnel data for greater accuracy

1 There might be inconsistencies between the two

EPFL Creating the Simulation Data

EPFL Deflecting the Controls

SJRC Workshop

EPFL Wind Tunnel Data

drag coefficient @ 49 mps

University of Washington Aeronautical Laboratory

EPFL Merging Simulation and Wind Tunnel Data

EPFL Freestream Results

Experimental / OpenFOAM

EPFL Training the Networks

i∕Lab

EPFL Dynamics Simulation

EPFL Dynamics Simulation

EPFL Towards Deformation

EPFL 3D Wing Deformation

3D deformation

€Lab

EPFL The Road Forward

We are building a deep geometric learning model to:

- manipulate the aircraft's geometry
- deform the computational meshes accordingly for simulation purposes

.ab

EPFL Questions?

