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Abstract

The tail-recursion modulo cons transformation can rewrite functions that are not quite tail-recursive
into a tail-recursive form that can be executed efficiently. In this article we generalize tail recursion
modulo cons (TRMc) to modulo contexts (TRMC), and calculate a general TRMC algorithm from its
specification. We can instantiate our general algorithm by providing an implementation of application
and composition on abstract contexts, and showing that our context laws hold.We provide some known
instantiations of TRMC, namely modulo evaluation contexts (CPS), and associative operations, and
further instantiations not so commonly associated with TRMC, such as defunctionalized evaluation
contexts, monoids, semirings, exponents, and cons products. We study the modulo cons instantiation
in particular and prove that an instantiation usingMinamide’s hole calculus is sound.We also calculate
a second instantiation in terms of the Perceus heap semantics to precisely reason about the soundness
of in-place update. While all previous approaches to TRMc fail in the presence of non-linear control
(for example induced by call/cc, shift/reset or algebraic effect handlers), we can elegantly extend the
heap semantics to a hybrid approach which dynamically adapts to non-linear control flow. We have
a full implementation of hybrid TRMc in the Koka language and our benchmark shows the TRMc
transformed functions are always as fast or faster than using manual alternatives.

1 Introduction

The tail-recursion modulo cons (TRMc) transformation can rewrite functions that are
not quite tail-recursive into a tail-recursive form that can be executed efficiently. This
transformation was described already in the early 70’s by Risch [1973] and Friedman and
Wise [1975], andmore recently studied by Bour, Clément, and Scherer [2021] in the context
of OCaml. A prototypical example of a function that can be transformed this way is map,
which applies a function to every element of a list:

fun map( xs : list<a>, f : a -> b ) : list<b>
match xs

Cons(x,xx) -> Cons( f(x), map(xx,f) )
Nil -> Nil

We can see that the recursive call to map is behind a constructor, and thus map as written
is not tail-recursive and uses stack space linear in the length of the list. Of course, it is
well known that we can rewrite map by hand into a tail-recursive form by using an extra
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accumulating argument, but this comes at the cost of losing the simplicity of the original
definition.
The TRMc transformation can automatically transform a function like map to a tail-

recursive variant, but also improves on the efficiency of themanual version by using in-place
updates on the accumulation argument. In previous work [Bour et al. 2021; Friedman and
Wise 1975; Risch 1973], TRMc algorithms are given but all fall short of showing why these
are correct, or provide particular insight in what other transformations may be possible. In
this article we generalize tail recursion modulo cons (TRMc) to modulo contexts (TRMC),
and try to bring the general principles out of the shadows of particular implementations
and into the light of equational reasoning.
• Inspired by the elegance of program calculation as pioneered by
Bird [1984], Gibbons [2022], Hutton [2021], Meertens [1986], and many others,
we take an equational approach where we calculate a general tail-recursion modulo
context transformation from its specification and two general context laws. The resulting
generic algorithm is concise and independent of any particular instantiation of the
abstract contexts as long as their operations satisfy the context laws (Section 3).

• We can instantiate the algorithm by providing an implementation of application and
composition on abstract contexts, and show that these satisfy the context laws. In Section 4
we provide known instantiations of TRMC, namely modulo evaluation contexts (CPS),
and modulo associative operations, and show that those instances satisfy the context
laws. We then proceed to show various instantiations not so commonly associated with
TRMC that arise naturally in our generic approach, namely modulo defunctionalized
evaluation contexts, modulo monoids, modulo semirings, and modulo exponents.

• In Section 6 we turn to the most important instance in practice, modulo cons. We show
how we can instantiate our operations to the hole calculus of Minamide [1998], and that
this satisfies the context laws and the imposed linear typing discipline. This gives us an
elegant and sound in-place updating characterization of TRMc where the in-place update
is hidden behind a purely functional (linear) interface.

• This is still somewhat unsatisfying as it does not provide insight in the actual in-place
mutation as such implementation is only alluded to in prose [Minamide 1998]. We
proceed by giving a second instantiation of modulo cons where we target the heap
semantics of Reinking, Xie et al. [2021] to be able to reason explicitly about the heap
and in-place mutation. Just like we could calculate the generic TRMC translation from
its specification, we again calculate the efficient in-place updating versions for context
application and composition from the abstract context laws. These calculated reductions
are exactly the implementation as used in our Koka compiler.

• A well-known problem with the modulo cons transformation is that the efficient in-
place mutating implementation fails if the semantics is extended with non-local control
operations, like call/cc, shift/reset [Danvy and Filinski 1990; Shan 2007; Sitaram
and Felleisen 1990], or general algebraic effect handlers [Plotkin and Power 2003;
Plotkin and Pretnar 2009], where one can resume more than once. This is in partic-
ular troublesome for a language like Koka which relies foundationally on algebraic effect
handlers [Leijen 2017; Xie and Leijen 2021]. In Section 7 we show two novel solutions
to this: The general approach generates two versions for each TRMc translation and
chooses at runtime the appropriate version depending on whether non-linear control is
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possible. This duplicates code though, and may be too pessimistic where the slow version
is used even if no non-linear control actually occurs. Suggested by our heap semantics,
we can do better though – in the hybrid approach we rely on the precise reference counts
[Reinking, Xie et al. 2021], together with runtime support for context paths. This way
we can efficiently detect at runtime if a context is unique, and fall back to copying only
if required due to non-linear control.

• We have fully implemented the hybrid TRMc approach in the Koka compiler, and our
benchmarks show that this approach can be very efficient. We measure various variants
of modulo cons recursive functions and for linear control the TRMc transformed version
is always faster than alternative approaches (Section 9).

This paper is the extended version of Leijen and Lorenzen [2023]. We make the following
contributions over the conference version:
• We extend the TRMC algorithm to ensure that (when instantiated to general evaluation
contexts) it can optimize all recursive calls that are not under a lambda (Section 3). In
contrast, the algorithm presented in the conference paper could only achieve this if the
source programwas in A-normal form [Flanagan et al. 1993]. Our new algorithm extends
the previous algorithm to perform the necessary A-normalizations on-demand.

• We describe a method for composing context instantiations (Section 5). This is especially
useful for programs where fast instantiations (like semiring contexts) are not quite good
enough to make the program tail-recursive. In that case, we can use the fast instantiation
where it applies and use a slower instantiation like defunctionalized contexts for the
rest. We use this insight to derive a tail-recursive evaluator for an arithmetic expression
evaluator on fields.

• We include a detailed description of Koka’s implementation of constructor contexts.
We discuss a snippet of the assembly code generated by the Koka and explain the
optimizations that make the implementation efficient (Section 7.2).

• We report on recent progress on First-Class Constructor Contexts [Lorenzen et al. 2024].
We contrast the general implementation proposed by Lorenzen et al. [2024] against our
implementation based on reference counting. Furthermore, we include several practical
examples of programming with first-class constructor contexts.

The new content in this version supersedes several sections of the conference paper. We no
longer include “Improving Constructor Contexts” (which is now covered by the extended
algorithm in Section 3), “Modulo Cons Products” (which can be achieved more easily using
first-class constructor contexts), and “Fall Back to General Evaluation Contexts” (which is
less efficient than the implementation proposed by Lorenzen et al. [2024]).

2 An Overview of Tail Recursion Modulo Cons

As shown in the introduction, the prototypical example of a function that can be transformed
by TRMc is the map function. One way to rewrite the map function manually to become tail-
recursive is to use continuation passing style (CPS) where we add a continuation parameter
k:
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fun mapk( xs : list<a>, f : a -> e b, k : list<b> -> e list<b> ) : e list<b>
match xs

Cons(x,xx) -> val y = f(x) in mapk(xx, f, compose(k, fn(ys) Cons(y, ys)) )
Nil -> apply(k,Nil)

fun map( xs : list<a>, f : a -> e b ) : e list<b>
mapk(xs, f, id)

where we have to evaluate f(x) before allocating the closure fn(ys) Cons(y,ys) since f may
have an observable (side) effect. The function id is the identity function, and apply and
compose regular function application and composition:

fun compose( f : b -> e c, g : a -> e b ) : (a -> e c) = fn(x) f(g(x))
fun apply( f : a -> e b, x : a ) : e b = f(x)
fun id( x : a ) : a = x

All our examples use the Koka language [Leijen 2021] since it has a full implementation
of TRMc using the design in this paper, including support for non-linear control (which
cannot be handled by previous TRMc techniques). Note that every function arrow in Koka
has three arguments where the type a -> e b denotes a function from type a to b with
potential (side) effects e. The type of map signifies that the polymorphic effect e of the map
function itself is the same as the effect e of the passed in function f.
We would like to stress though that the described techniques are not restricted to Koka as

such, and apply generally to any strict programming language (and particular instances can
already be found in various compilers, including GCC, see Section 4.6). Some techniques,
like the hybrid approach in Section 7.1 may require particular runtime support (like precise
reference counts) but this is again independent of the particular language.

2.1 Continuation Style TRMc

Our new tail-recursive version of map may not consume any extra stack space, but it achieves
this at the cost of allocating many intermediate closures in the heap, that each allocate a
Cons node for the final result list. The TRMc translation is based on the insight that for many
contexts around a tail-recursive call we can often use more efficient implementations than
function composition.
In this paper, we are going to abstract over particular constructor contexts and instead

represent abstract program contexts as ctx<a> with three operations. First, the ctx body

expression creates such contexts which can contain a single hole denoted as �; for example
ctx Cons(1,Cons(2,�)) : ctx<list<int>>. We can see here that the context type ctx<a> is
parameterized by the type of the hole a, which for our purposes must match the result type
as well. Furthermore, we can compose and apply these abstract contexts as:

fun comp( k1 : ctx<a>, k2 : ctx<a> ) : ctx<a>
fun app( k : ctx<a>, x : a ) : a

Our general TRMC translation can convert a function like map automatically to a tail-
recursive version by recognizing that each recursive invocation to map is under a constant
constructor context (Section 6), leading to:
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fun mapk( xs : list<a>, f : a -> e b, k : ctx<list<b>> ) : e list<b>
match xs

Cons(x,xx) -> val y = f(x) in mapk(xx, f, comp(k, ctx Cons(y,�)))
Nil -> app(k, Nil)

fun map( xs : list<a>, f : a -> e b ) : e list<b>
mapk(xs, f, ctx �)

This is essentially equivalent to our manually translated CPS-style map function where
we replaced function application and composition with context application and context
composition, and the identity function with ctx �.
Thus, an obvious way to give semantics to our abstract contexts ctx<a> is to represent

them as functions a -> a, where a context expression is interpreted as a function with a
single parameter for the hole, e.g. ctx Cons(1,Cons(2,�)) = fn(x) Cons(1,Cons(2,x)) (and
therefore ctx � = fn(x) x = id). Context application and composition then map directly
onto function application and composition:

alias ctx<a> = a -> a
fun comp( k1 : ctx<a>, k2 : ctx<a> ) : ctx<a> = compose(k1,k2)
fun app( k : ctx<a>, x : a ) : a = apply(k,x)

Of course, using such semantics is equivalent to our original manual implementation and
does not improve efficiency.

2.2 Linear Continuation Style

The insight of Risch [1973] and Friedman andWise [1975] that leads to increased efficiency
is to observe that the transformation always uses the abstract context k in a linear way, and
we can implement the composition and application by updating the context holes in-place.
Following the implementation strategy of Minamide [1998] for their hole-calculus, we can
represent our abstract contexts as a Minamide tuple with a res field pointing to the final
result object, and a hole field which points directly at the field containing the hole inside the
result object. Assuming an assignment primitive (:=), we can then implement composition
and application efficiently as:

value type ctx<a>
Id
Ctx( res : a, hole : ptr<a> )

fun comp( k1 : ctx<a>, k2 : ctx<a> ) : ctx<a>
Ctx( app(k1,k2.res), k2.hole)

fun app( k : ctx<a>, x : a ) : a
match k

Id -> x
Ctx(res,hole) -> { hole := x; res }

where the empty ctx � is represented as Id (since we do not yet have an address for the Ctx
.hole field). If we inline these definitions in the mapk function, we can see that we end up with
a very efficient implementationwhere each new Cons cell is directly appended to the partially
build final result list. In our actual implementation we optimize a bit more by defining the
ctx type as a value type with only the Ctx constructor where we represent the Id case with
a hole field containing a null pointer. Such a tuple is passed at runtime in two registers and
leads to efficient code where the match in the app function for example just zero-compares
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a register (see App. 7.2 in the supplement). Section 9 shows detailed performance figures
that show that the TRMc transformation always outperforms alternative implementations
(for linear control flow).
In the following sections we formalize our calculus and calculate a general tail-

recursion modulo contexts algorithm (Section 3) that we then instantiate to various use
cases (Section 4), and in particular we study the efficient modulo cons instantiation
(Section 6), its extension to non-linear control (Section 7), and finally conclude with
benchmarks (Section 9) and related work. Proofs and further benchmarks can be found in
the supplementary technical report [Leijen and Lorenzen 2022].

3 Calculating Tail-Recursion-Modulo-Context

In order to reason precisely about our transformation, we define a small calculus in Figure 1.
The calculus is mostly standard with expressions e consisting of values v, application e1 e2,
let-bindings, and pattern matches. We assume well-typed programs that cannot go wrong,
and where pattern matches are always complete and cannot get stuck. Since we reason in
particular over recursive definitions, we add a special environment F of named recursive
functions f . We could have encoded this using a fix combinator but using explicitly named
definitions is more convenient for our purposes.
Following the approach of Wright and Felleisen [1994], we define applicative order

evaluation contexts E. Generally, contexts are expressions with one subexpression denoted
as a hole �. We write E[v] for the substitution E[� := v] (which binds tighter than function
application). The definition of E ensures a single reduction order where we never evaluate
under a lambda. The operational semantics can now be given using small step reduction
rules of the form e1 −→ e2 together with the (step) rule to reduce in any evaluation context
E[e1] ↦−→ E[e2] (and in essence, an E context is an abstraction of the program stack and
registers).Wewrite ↦−→∗ for the reflexive and transitive closure of the ↦−→ reduction relation.
The small step operational rules are standard, except for the (fun) rule that assumes a global
F environment of recursive function definitions.
When e ↦−→∗ v, we call e terminating (also called valuable [Harper 2012]). When an

evaluation does not terminate, we write e⇑ . We write e1 � e2 if e1 and e2 are extensionally
equivalent: either e1 ↦−→∗ v and e2 ↦−→∗ v, or both e1⇑ and e2⇑ . During reasoning, we often
use the rule that when e2 is terminating, then (_x. e1) e2 � e1 [x:=e2].

3.1 Abstract Contexts

Before we start calculating our general TRMC transformation, we first define abstract
contexts as an abstract type ctx 𝜏 in our calculus. There are three context operations:
creation (as ctx), application (as app), and composition (as (•)). These are not available to
the user but instead are only generated as the target calculus of our TRMC translation. We
extend the calculus as follows:
v ::= . . . | ctx E | _ • _ | app
where we assume that the abstract context operations are always terminating. In order to
reason about contexts as an abstract type, we assume two context laws. The first one relates
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Expressions:
e ::= v (value) v ::= x, y (variables)

| e e (application) | f (recursive functions)
| let x = e in e (let binding) | _x. e (functions)
| match e { pi ↦→ ei } (matching, i > 1) | Ck v1 . . . vn (constructor of arity k,

with k > 0 and n 6 k)
p ::= Ck x1 . . . xk (pattern) F ::= { fi = _x. ei } (recursive definitions)

Syntax:
f x1 . . . xn = e � f = _x1 . . . xn . e
_x1 . . . xn . e � _x1 . . . . _xn . e

Evaluation Contexts:
E ::= � | E e | v E | let x = E in e |match E { pi ↦→ ei } (strict, left-to-right)
Tail Contexts:
T ::= � | e T | let x = e in T |match e { pi ↦→ Ti } (tail context)
Expression Contexts (= Tail Context + Evaluation Context):
X ::= � | X e | eX | let x = X in e | let x = e in X |match X { pi ↦→ ei } |match e { pi ↦→Xi }
Operational Semantics:
(let) let x = v in e −→ e[x:=v]
(beta) (_x. e) v −→ e[x:=v]
(fun) f v −→ e[x:=v] with f = _x. e ∈ F
(match) match (Ck v1 . . . vk) { pi ↦→ ei } −→ ei [x1:=v1, . . ., xk:=vk] with pi = Ck x1 . . . xk

e1 −→ e2
E[e1] ↦−→ E[e2]

[step]

Fig. 1. Syntax and operational semantics.

the application with the construction of a context:

(appctx) app (ctx E) e = E[e]
The second law states that composition of contexts is equivalent to a composition of
applications:

(appcomp) app (k1 • k2) e = app k1 (app k2 e)
When we instantiate to a particular implementation context, we need to show the context
laws are satisfied. In such case, we only need to show this for terminating expressions
e, since if e⇑ , the laws hold by definition. In particular, for (appctx) it follows directly
that app k e⇑ and E[e]⇑ . Of particular note is that the latter only holds for E contexts
and that is one reason why evaluation contexts are the maximum context possible for our
TRMC translation. Similarly, for (appcomp) it follows directly that (app (k1 • k2) e)⇑ and
app k1 (app k2 e)⇑ .
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3.2 Calculating a General Tail-Recursion-Modulo-Contexts Algorithm

In this section we are going to calculate a general TRMC translation algorithm from its
specification. The algorithm is calculated assuming an abstract context where the context
laws hold. Eventually, the algorithm needs to be instantiated in the compiler to particular
contexts (like constructor contexts), with a particular implementation of context application
and composition. We show many such instantiations in Sections 4 and 6.
For clarity, we use single parameter functions for proofs and derivations (but of course the

results extend straightforwardly to multiple parameter functions). Now consider a function
f x = ef with its TRMC transformed version denoted as f ′:

f ′ x k = ÈefÉf ,k (k 6∈ fv(ef ))
Our goal is to calculate the static TRMC transformation algorithm È_Éf ,k from its speci-
fication. The first question is then how we should even specify the intended behaviour of
such function?
We can follow the standard approach for reasoning about continuation passing style (CPS)

here. For example, Gibbons [2022] calculates the CPS version of the factorial function,
called fact′, from its specification as: k (fact n) � fact′ n k, and similarly, Hutton [2021] cal-
culates the CPS version of an evaluator from its specification as: exec k (eval e) � eval′ e k.
Following that approach, we use app k (f e) � f ′ e k (a) as our initial specification. This
seems a good start since it implies:

f e
= �[f e] { context }
= app (ctx�) (f e) { (appctx) }
� f ′ e (ctx�) { specification (a) }
and we can thus replace any applications of f e in the program with applications to the
TRMC translated f ′ instead as f ′ e (ctx�).
Unfortunately, the specification is not yet specific enough to calculate with as it does

not include the translation function È_Éf ,k itself which limits what we can derive. Can we
change this? Let’s start by deriving how we can satisfy our initial specification (a):

app k (f e)
� app k ef [x:=e] { (fun), e is terminating }
= (app k ef ) [x:=e] { x 6∈ fv(k) }
= ÈefÉf ,k [x:=e] { define specification (b) below }
� f ′ e k { (fun) }
(and if e⇑ , then app k (f e)⇑ and f ′ e k⇑ follow directly).
This suggests a more general specification as app k e � ÈeÉf ,k (b) (for any e) which

both implies our original specification, but also includes the translation function now. The
improved specification directly gives us a trivial solution for the translation as:

(base) ÈeÉf ,k = app k e

That is not quite what we need for general TRMC though since this does not translate any
tail calls modulo a context. However, we can be more specific by matching on the shape of
e. In particular, we can match on general tail-modulo-context calls as e = E[f e1]. We can
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then calculate:
app k E[f e1]

= app k (app (ctx E) (f e1)) { (appctx) }
= app (k • ctx E) (f e1) { (appcomp) }
� f ′ e1 (k • ctx E) { specification (a) }
= ÈE[f e1]Éf ,k { define }
which leads to the following set of equations:

(tail) ÈE[f e]Éf ,k = f ′ e (k • ctx E) i (★)
(base) ÈeÉf ,k = app k e otherwise

Note that the equations overlap – for a particular instance of the algorithmwe generally con-
strain the (tail) rule to only apply for certain contexts E constrained by some particular (★)
condition (for example, constructor contexts), falling back to (base) otherwise. Similarly,
the (tail) case allows a choice in where to apply the tail call for expressions like f (f e) for
example and a particular instantiation of (★) should disambiguate for an actual algorithm.
By default, we assume that any instantiation matches on the innermost application of f (for
reasons discussed in Section 4.2).
This is still a bit constrained, as these equations do not consider any evaluation contexts

E where the recursive call is under a let ormatch expression. We can again match on these
specific forms of e. For example let x = e0 in e1 where e0 ≠ E[f e′] (so it does not overlap
with E contexts):

app k (let x = e0 in e1)
� app k e1 [x:=e0] { (let), e0 is terminating }
= (app k e1) [x:=e0] { x 6∈ fv(k) }
� let x = e0 in app k e1 { e0 is terminating }
� let x = e0 in Èe1Éf ,k { specification }
= Èlet x = e0 in e1Éf ,k { define }
(and if e0⇑ , then also app k (let x = e0 in e1)⇑ and Èlet x = e0 in e1Éf ,k⇑ ).
Unfortunately, this rule is still too restrictive in general as it does not apply when the

let-statement is itself under a context E. For example, we might encounter an expression
like:

let x = (let y = e0 in f x y) in e1
Here, the recursive call is under the let-binding of x (as E[let y = e0 in f x y]) but the y = e0
binding prevents the recursive call f x y to be the focus of the evaluation context. This
situation occurs whenever an expression is not in A-normal form [Flanagan et al. 1993],
and these cannot be optimized by the rules outlined so far (and neither by the rules as
presented in earlier work [Leijen and Lorenzen 2023]). Instead, we need to consider the
general case where the let-binding appears under a context E. Assuming that the variables
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bound in let-bindings and matches are fresh, we can calculate:

app k E[let x = e0 in e1]
� app k (app (ctx E) (let x = e0 in e1)) { (appctx) }
� app k (app (ctx E) e1 [x:=e0]) { (let), e0 is terminating }
= app k (app (ctx E) e1) [x:=e0] { x 6∈ fv(E) }
= (app k (app (ctx E) e1)) [x:=e0] { x 6∈ fv(k) }
� let x = e0 in app k (app (ctx E) e1) { e0 is terminating }
� let x = e0 in app k E[e1] { (appctx) }
� let x = e0 in È E[e1] Éf ,k { (specification) }
= È E[let x = e0 in e1] Éf ,k { define }
(and if e0⇑ , then also app k E[let x = e0 in e1]⇑ and È E[let x = e0 in e1] É⇑ ). Effectively
we have lifted out the let-binding from the evaluation context. We can do the same for
matches:

app k E[match e0 { pi→ ei }]
� app k (app (ctx E) (match e0 { pi→ ei })) { (appctx) }
� app k (app (ctx E) ei [x1:=v1, . . ., xn:=vn]) { pi = Ci x1 . . . xn, e0 � Ci v1 . . . vn, 1 }
= app k (app (ctx E) ei) [x1:=v1, . . ., xn:=vn] { xj 6∈ fv(E) }
= (app k (app (ctx E) ei)) [x1:=v1, . . ., xn:=vn] { xj 6∈ fv(k) }
� match e0 { pi→ app k (app (ctx E) ei) } { (1), e0 is terminating }
� match e0 { pi→ app k E[ei] } { (appctx) }
� match e0 { pi→È E[ei] Éf ,k } { (specification) }
= È E[match e0 { pi→ ei }] Éf ,k { define }
(and if e0⇑ , then also app k E[match e0 { . . . }]⇑ and È E[match e0 { . . . }] É⇑ ).
This form of specification essentially performs A-normalization whenever necessary to

create further opportunities to match on tail-recursive calls. Our presentation follows the
approach of Maurer et al. [2017], who describe the positions in a term that occur last in
an evaluation order as tail contexts T. They show that A-normalization can be achieved by
commuting the E and T contexts whenever possible. This is exactly the approach taken here,
where we commute single let-bindings and matches under E contexts to the front of the
term. A potential drawback of the match normalization is that it duplicates the evaluation
context E in each of the branches. Maurer et al. [2017] also show how join points can be
used to avoid code duplication in such case.
This leaves one last expression form to consider: the application of a function

to an argument. Using the intuition of commuting tail contexts, we might define
È E[e0 e1] Éf ,k = e0 È E[e1] Éf ,k. However, while e0 can now be evaluated early, the appli-
cation itself depends on the result of our transformation. Thus, we need to be a bit more
careful and instead calculate:

app k E[e0 e1]
� app k (app (ctx E) (e0 e1)) { (appctx) }
� app k (app (ctx E) (let g = e0 in g e1)) { (let), for fresh g }
� let g = e0 in app k (app (ctx E) (g e1)) { 𝛼 before }
� let g = e0 in app k E[g e1] { (appctx) }
� let g = e0 in È E[g e1] Éf ,k { (specification) }
= È E[e0 e1] Éf ,k { define }
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(tlet) È E[let x = e0 in e] Éf ,k = let x = e0 in È E[e] Éf ,k
(tmatch) È E[match e0 { pi→ ei }] Éf ,k = match e0 { pi→È E[ei] Éf ,k }
(tapp) È E[e0 e] Éf ,k = let g = e0 in È E[g e] Éf ,k with g fresh
(tail) È E[f e1 . . . en] Éf ,k = f ′ e1 . . . en (k • (ctx E)) i (★)
(base) ÈeÉf ,k = app k e otherwise

where e0, e1, . . ., en ≠ X[f e′1 . . . e
′
n]

Fig. 2. Calculated algorithm for general selective tail recursion modulo context transformation. It

is parameterized by the (★) condition, and the composition (•) and application (app) operations

(and if e0⇑ , then also app k E[e0 e1]⇑ and È E[e0 e1] É⇑ ).
In this general form, we need to strengthen our requirement that e0 ≠ E[f e′] to ensure

that it does not overlap with our newly calculated rules. We write e0 ≠ X[f e1 . . . en] to
mean that e0 can not have a recursive call under an expression context X. The expression
context X[e] matches all possible expressions that contain e, unless e occurs exclusively
under lambdas in X[e].

3.3 The Tail-Recursion-Modulo-Contexts Algorithm

Figure 2 shows all five of the calculated equations for our generic tail recursion modulo
contexts transformation (extended tomultiple parameters).We can instantiate this algorithm
by defining the context type ctx𝛼 , the context construction (ctx), composition (•), and
application (app) operations, and finally the (★) condition constrains the allowed context E
to fit the particular context type.
Thanks to the changes in this extended version, we can now prove that the TRMC

algorithm exhaustively optimizes recursive calls:

Theorem 1. (Matching all recursive calls)
For any transformed expression e′ = ÈeÉf ,k with (★) unconstrained, we have
e′ ≠ X[f e1 . . . en].
There are two types of recursive calls that can not be optimized by our algorithm: First,
we do not optimize recursive calls inside lambdas. This is a necessary restriction, since it
is impossible in general to push the accumulated context k under a lambda. Second, our
algorithm will only optimize the first recursive call(s) in the evaluation order. If those are
followed by further recursive calls, the evaluation context E stored as ctx E in the (tail) rule
may still contain unoptimized recursive calls. We will revisit this problem in Section 4.2.
To see our algorithm in action, let’s consider the map function again:

map xs f = match xs { Nil→Nil
Cons x xx→Cons (f x) (map xx f ) }

When translating this function, we first use the (tmatch) rule with E = � to descend into
the branches of the match. In the Nil branch, the (base) rule applies. In the Cons branch,
we use the (tapp) rule (again with E = �) to bind the call to f x. We then use the (tail) rule
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to optimize the recursive call to map xx f:

map′ xs f k = match xs { Nil→ app k Nil
Cons x xx→ let c = Cons (f x) inmap′ xx f (k • (ctx (c�))) }

However, for Constructor Contexts (Section 6), it is useful to keep the Cons constructor in
the context passed to map. In our pratical implementation, we therefore modify the (tapp)
rule slightly to extract the arguments instead of the entire partially applied function. Our
final transformation for map is then:

map′ xs f k = match xs { Nil→ app k Nil
Cons x xx→ let y = f x inmap′ xx f (k • (ctx (Cons y�))) }

4 Instantiations of the General TRMC Transformation

With the general TRMC transformation in hand, we discuss various instantiations in this
section. In the next sectionwe look at the update-in-placemodulo cons (TRMc) instantiation
in detail.

4.1 Modulo Evaluation Contexts

If we use true for the (★) condition, we can translate any recursive tail modulo evaluation
context functions. Representing our abstract context directly as an E context is usually
not possible though as E contexts generally contain code. The usual way to represent an
arbitrary evaluation context E is simply as a (continuation) function _x. E[x] with a context
type ctx𝛼 = 𝛼→𝛼 :

(ectx) ctx E = _x. E[x] (x 6∈ fv(E))
(ecomp) k1 • k2 = k1 ◦ k2
(eapp) app k e = k e
This is an intuitive definition where ctx� corresponds to the identity function and context
composition to function composition. If we apply the TRMC translation we are essentially
performing a selectiveCPS translationwhere the context E is represented as the continuation
function.We can verify that the context laws hold for this instantiation (wherewe can assume
e is terminating):
Composition:

app (k1 • k2) e
= app (k1 ◦ k2) e { (ecomp) }
= app (_x. k1 (k2 x)) e { def ◦ }
= (_x. k1 (k2 x)) e { (eapp) }
� k1 (k2 e) { e term., (beta) }
= k1 (app k2 e) { (eapp) }
= app k1 (app k2 e) { (eapp) }

and application:
app (ctx E) e

= app (_x. E[x]) e { (ecomp) }
= (_x. E[x]) e { (eapp) }
� (E[x]) [x:=e] { e term., (beta) }
= E[e] { x 6∈ fv(E) }

As a concrete example, let’s apply the modulo evaluation context to the map function:

map xs f = match xs { Nil→Nil
Cons x xx→ let y = f x inCons y (map xx f ) }
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which translates to:
map′ xs f k = match xs { Nil→ app k Nil

Cons x xx→ let y = f x inmap′ xx f (k • (ctx (Cons y�))) }
and which the compiler can further simplify into:

map′ xs f k = match xs { Nil→ k Nil
Cons x xx→ let y = f x inmap′ xx f (_x. k (Cons y x)) }

where we derived exactly the standard CPS style version of map as shown in Section 2.
A general evaluation context transformation creates more opportunities for tail-recursive
calls, but this also happens at the cost of potentially heap allocating continuation closures.
As such, it is not common for strict languages to use this instantiation. The exception
would be languages like Scheme that always guarantee tail-calls but in that case the modulo
evaluation contexts instantiation is already subsumed by general CPS conversion.

4.2 Nested Translation of Modulo Evaluation Contexts

The current instantiation is already very general as it applies to any E context but we can do
a little better. While the innermost non-tail call E[f e] becomes f ′ e (k • ctx E), the context
E may contain itself further recursive calls to f . Since k is just a variable this allocates a
closure for each composition (•) and invokes every nested call f e with an empty context
as f ′ e (ctx�) before composing with k. This is not ideal, and in the classic CPS translation
this is avoided by passing k itself into the closure for ctx E directly. Fortunately, we can
achieve the same by specialising the compose function using the specification (b):

k • (ctx E)
= _x. k ((ctx E) x) { (ecomp), (•) }
� _x. k E[x] { (ectx), (beta) }
= _x. app k E[x] { (eapp) }
� _x. ÈE[x]Éf ,k { specification (b) }
That is, in the compiler, instead of generating k • (ctx E), we invoke the TRMC translation
recursively in the (tail) case and generate _x. ÈE[x]Éf ,k instead. This avoids the allocation of
function composition closures and directly passes the continuation k to any nested recursive
calls.

4.3 Modulo Defunctionalized Evaluation Contexts

In order to better understand the shapes that evaluation contexts can take, we want to
consider the defunctionalization [Danvy and Nielsen 2001; Reynolds 1972] of the general
evaluation context transformation. It turns out that this yields an interesting context in its
own right. First, we observe that in any recursive function the evaluation context can only
take a finite number of shapes depending on the number of recursive calls. We write this
as:

E : :=� | E1 | . . . | En
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We define an accumulator datatype by creating a constructor H for the � context and for
each Ei a constructor Ai that carries the free variables of Ei. The compiler then generates
an app function where we interpret Ai by evaluating Ei with the stored free variables:

(dctx) ctx Ei = Ai x1 . . . xmH where x1, . . ., xm = fv(Ei)
(dcomp) k1 •H = k1
(dcomp) k1 • (Ai x1 . . . xm k2) = Ai x1 . . . xm (k1 • k2)
(dapp) appH e = e
(dapp) app (Ai x1 . . . xm k) e = ÈEi [e , x1 . . . xm]Éf ,k
Just as we saw in Section 4.2, we need to use the translated evaluation context in the
definition of app translate nested calls. The context laws now follow by induction – see
App. B.1 in the supplement for the derivations. Applying this instantiation to the map

function, we obtain:
type ctx𝛼 = H | A1 𝛼 (ctx𝛼)
map′ xs f k = match xs {Nil→ app k Nil; Cons(x, xx) → let y = f x inmap′ xx f (A1 y k) }
In the Cons branch we have inlined k • (A1 yH). The app function interprets A1 by calling
itself recursively on the stored evaluation context:

app k xs = match k {H→ xs; A1 (y, k′) → app k′ (Cons y xs) }
Aswe can see, using themodulo defunctionalized evaluation context translation, we derived
exactly the accumulator version of the map function that reverses the accumulated list in the
end (where app is reverse)! In particular, for the special case where all evaluation contexts
are constructor contexts Cm x1 . . . (f . . .) . . . xm (as is the case for map), the accumulator
datatype stores a path into the datastructure we are building and thus essentially becomes
a zipper structure [Huet 1997].
This defunctionalized approach might resemble general closure conversion at

first [Appel 1991]: In both approaches, we store the free variables in a datatype. However,
in closure conversion the datatype typically also contains a machine code pointer and one
jumps to the code by calling this pointer, while in our case we match on the specialized
constructors (similar to the approach of Tolmach and Oliva [1998]).

4.3.1 Reuse

As the defunctionalization makes the evaluation context explicit, we can optimize it further.
As Sobel and Friedman [1998] note, the defunctionalized closure is only applied once
and we can reuse its memory for other allocations. This can happen automatically in
languages with reuse analysis such as Koka [Lorenzen and Leijen 2022], Lean [Ullrich
and de Moura 2019], or OPAL [Didrich et al. 1994]. In particular, in the app function, the
match:

A1 y k′→ app k′Cons(y, xs)
can reuse the A1 in-place to allocate the Cons node if the A1 is unique at runtime. In our
case, the context is actually always unique (we show this formally in Section 6.1), and the
A1 nodes are always reused! Even better, if the initial list is unique, we also reuse the initial
Cons cell for the A1 accumulator itself in map′ and no allocation takes place at all – the
program is functional but in-place [Lorenzen et al. 2023; Reinking, Xie et al. 2021].
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4.4 Modulo Associative Operator Contexts

In the previous instantiations we considered general evaluation contexts. However, we
can often derive more efficient instantiations by considering more restricted contexts. A
particularly nice example are monoidal contexts. For any monoid with an associative
operator � : 𝜏→𝜏→𝜏 and a unit value unit : 𝜏 , we can define a restricted operator context
as:

A : :=� | v � A
For a concrete example, consider the length function defined as:

length xs = match xs {Cons x xx→ 1 + length xx; Nil→ 0 }
which applies for integer addition (� = +, unit = 0). The idea is now to define a compile-
time fold function (|_|) over a context A to always reduce the context to a single element of
type 𝜏 :

(|�|) = unit
(|v � A|) = v � (|A|)
We can now instantiate the abstract contexts by defining the (★) condition to constrain the E
context to A, and the context type to ctx 𝜏 = 𝜏 , where we use the fold operation to represent
contexts always as a single element of type 𝜏 :

(lctx) ctx A = (|A|)
(lcomp) k1 • k2 = k1 � k2
(lapp) app k e = k � e
The context laws hold for this definition. For composition we can derive:

app (k1 • k2) e
= app (k1 � k2) e { (lcomp) }
= (k1 � k2) � e { (lapp) }
= k1 � (k2 � e) { assoc. }
= app k1 (app k2 e) { (lapp) }
and for context application we have:

app (ctx A) e
= app (|A|) e { (lctx) }
= (|A|) � e { (lapp) }
We proceed by induction over A.
Case A = �:
= (|�|) � e
= unit � e { fold }
= e { unit }
= �[e] { � }

and the case A = v � A′:
= (|v � A′ |) � e
= (v � (|A′ |)) � e { fold }
= v � ((|A′ |) � e) { assoc. }
= v � A′[e] { induction hyp. }
= A[e] { A context }

Common instantiations include integer addition (� = +, unit = 0) and integer multiplica-
tion (� = ×, unit = 1). The TRMC algorithm with A contexts instantiated with integer
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addition, translates the previous length function to the following tail-recursive version:

length′ xs k = match xs {Cons x xx→ length′ xx (k • (ctx (1 + �))); Nil→ app k 0 }
The intention is that the fold function is performed by the compiler, and the compiler can
simplify this further as:

k • (ctx (1 + �)) = k + (ctx (1 + �)) = k + (|1 + �|) = k + 1
such that we end up with:

length′ xs k = match xs {Cons x xx→ length′ xx (k + 1); Nil→ k }
This time we derived exactly the text book accumulator version of length.

4.4.1 Using Right Biased Contexts

Our defined context only allows the recursive call on the left, but we can also define a right
biased context:

A : :=� | A � v
with the fold defined as:
(|�|) = unit
(|A � v|) = (|A|) � v
We can now compose in the opposite order:

(rctx) ctx A = (|A|)
(rcomp) k1 • k2 = k2 � k1
(rapp) app k e = e � k
We can again show that the context laws hold for this definition (see App. B.2 in the
supplement). As an example, we can instantiate � as list append ++ with the empty list as
the unit element to transform the reverse function:

reverse xs = match xs {Cons x xx→ reverse xx ++ [x]; Nil→ [] }
First, our TRMC algorithm transforms it into:

reverse′ xs k = match xs {Cons x xx→ reverse′ xx (k • (ctx (�++ [x]))); Nil→ app k [] }
and with our instantiated context, this simplifies to:

reverse′ xs k = match xs {Cons x xx→ reverse′ xx ( [x] ++ k); Nil→ [] ++ k }
Using right-biased contexts, we derived the text book accumulator version of reverse.

4.5 Modulo Monoid Contexts

To handle general monoids, we need to consider recursive calls on both sides of the
associative operation:

A : :=� | v � A | A � v
This context A expresses arbitrarily nested applications of �. As monoid operations may
not be commutative we cannot use a single element to represent the context. Instead we
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need to use a product context where we accumulate the left- and right context separately:

(|�|) = (unit, unit)
(|v � A|) = (v � l, r) where (l, r) = (|A|)
(|A � v|) = (l, r � v) where (l, r) = (|A|)
which we compose as:

(actx) ctx A = (|A|)
(acomp) (l1, r1) • (l2, r2) = (l1 � l2, r2 � r1)
(aapp) app (l, r) e = l � e � r
We can again show that the context laws hold for this definition (see App. B.3 in the
supplement).

4.6 Modulo Semiring Contexts

We can also combine the associative operators of two monoids, as long as one distributes
over the other. This is the case for semirings in particular (although we do not need
commutativity of +). Semiring contexts are relatively common in practice. For example,
consider the following hashing function for a list of integers as shown by Bloch [2008]:

hash xs = match xs {Cons x xx→ x + 31 ∗ (hash xx) ; Nil→ 17 }
Implementing modulo semiring contexts in a compiler may be worthwhile as deriving a
tail recursive version manually for such contexts is not always straightforward (and the
interested reader may want to pause here and try to rewrite the hash function in a tail
recursive way before reading on).
We can define a general context for semirings as:

A : :=� | v + A | v ∗ A | A + v | A ∗ v
For simplicity, we assume we have a commutative semiring where both addition and mul-
tiplication commute. This allows us to use again a product representation at runtime where
we accumulate the additions and multiplications separately (and without commutativity
we need a quadruple instead). In the definition of the fold we take into account that the
multiplication distributes over the addition:

(|�|) = (unit+, unit∗)
(|v + A|) = (v + l, r) where (l, r) = (|A|)
(|v ∗ A|) = (v ∗ l, v ∗ r) where (l, r) = (|A|)
(|A + v|) = (|v + A|) (+ commutes)
(|A ∗ v|) = (|v ∗ A|) (∗ commutes)
Finally, to compose the contexts we need to use distributivity again. Note how the (scomp)
rule mirrors the definition of (|A|) above:
(sctx) ctx A = (|A|)
(scomp) (l1, r1) • (l2, r2) = (l1 + (r1 ∗ l2), r1 ∗ r2)
(sapp) app (l, r) e = l + r ∗ e
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We can show the context laws hold for these definitions:
app ((l1, r1) • (l2, r2)) e

= app (l1 + (r1 ∗ l2), r1 ∗ r2) e { (scomp) }
= (l1 + (r1 ∗ l2)) + (r1 ∗ r2) ∗ e { (sapp) }
= l1 + r1 ∗ (l2 + r2 ∗ e) { assoc and distr. }
= app (l1, r1) (app (l2, r2) e) { (sapp) }
and

app (ctx A) e
= app (|A|) e { (sctx) }
= l + r ∗ e { (sapp), for (l, r) = (|A|) }
We proceed by induction over A (where we compress some cases for brevity):
case A = �:
= l + r ∗ e { (|�|) = (l, r) }
= unit+ + unit∗ ∗ e { fold }
= e { unit }
= �[e] { � }

and A = v1 + v2 ∗ A′:
= l + r ∗ e { (|v1 + v2 ∗ A′ |) = (l, r) }
= (v1 + v2 ∗ l′) + (v2 ∗ r′) ∗ e { (|A′ |) = (l′, r′) }
= v1 + v2 ∗ (l′ + r′ ∗ e) { assoc. and distr }
= v1 + v2 ∗ A′[e] { induction hyp. }
= A[e] { A context }

When we apply this to the hash function, we derive the tail recursive version as:

hash′ xs k = match xs {Cons x xx→ hash′ xx (k • (ctx (x + 31 ∗ �))); Nil→ app k 17 }
which further simplifies to:

hash′ xs (l, r) = match xs {Cons x xx→ hash′ xx (l + r ∗ x, r ∗ 31); Nil→ l + r ∗ 17 }
The final definition may not be quite so obvious and we argue that the modulo semiring
instantiation may be a nice addition to any optimizing compiler. Indeed, it turns out that
GCC implements this optimization [Dvořák 2004] for integers and floating point numbers
(if –fast-math is enabled to allow the assumption of associativity). This implementation
specifically creates two local accumulators for addition and multiplication, and uses a
direct while loop to compile the tail recursive calls.

4.7 Modulo Exponent Contexts

As a final example of an efficient representation of contexts we consider exponent contexts
that consist of a sequence of calls to a function g:

E : :=� | g E
If we use a defunctionalized evaluation context from Section 4.3 we derive a datatype that
is isomorphic to the peano-encoded natural numbers: the continuation counts how often we
still have to apply g. As such, we can represent it more efficiently by an integer, where we
fold an evaluation context into a count:
(|�|) = 0
(|gA|) = (|A|) + 1



19

We can define the primitive operations as:

(xctx) ctx A = (|A|)
(xcomp) k1 • k2 = k1 + k2
(xapp) app 0 e = e
(xapp) app (k + 1) e = app k (g e)
where app k e applies the function g to its argument k times. See App. B.4 in the supplement
for the derivations that show the context laws hold for this definition.
Note that if g is the enclosing function f , then the (xapp) specification is not tail-recursive.

In that case, we can again use specification (b) to replace app k (g e) by Èg eÉf ,k at compile
time (as shown in Section 4.2). A nice example of such an exponent context is given
by Wand [1980] who considers McCarthy’s 91-function:

g x = if x > 100 then x − 10 else g (g (x + 11))
Using the exponent context with the recursive (xapp), we obtain a mutually tail-recursive
version:
g′ x k = if x > 100 then app k (x − 10) else g′ (x + 11) (k + 1)
app k e = if k = 0 then e else g′ e (k − 1)

5 Context Composition

While the contexts we have defined so far are useful when they apply, they can fall short if
they only match some of the recursive calls. This makes them fragile when a new recursive
call is added to a function, as the context may no longer apply. In this section, we remove
this restriction by showing how fast but restricted contexts can be composed with slower
more general ones. We have not implemented this feature in Koka, but we hope to do so in
the future.

5.1 A Basic Expression Evaluator

Tomotivate the composition of contexts, we consider a basic arithmetic expression evaluator
in the style of Hutton [2021]:

type expr
Lit(lit : int)
Add(e1 : expr, e2 : expr)

fun eval(e)
match e

Add(e1, e2) -> eval(e1) + eval(e2)
Lit(n) -> n

The + suggests the use of a monoid context. However, this does not apply directly, since we
have two recursive calls to eval instead of just one. The best we can do is to ignore the first
recursive call and treat it as a regular value. Then we would obtain:
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fun eval(e, addacc)
match e

Add(e1, e2) -> eval(e2, eval(e1, addacc))
Lit(n) -> addacc + n

However, we have not quite achieved a tail-recursive version yet. Like Hutton [2021], we
can achieve this by using defunctionalized evaluation contexts:

type accum
Hole
AddL(k : accum, e : expr)
AddR(addacc : int, k : accum)

fun eval(e, acc)
match e

Add(e1, e2) -> eval(e1, AddL(acc, e2))
Lit(n) -> app(acc, n)

fun app(acc, result)
match acc

Hole -> result
AddL(k, e) -> eval(e, AddR(result, k))
AddR(addacc, k) -> app(k, addacc + result)

This version is now tail-recursive, but it is also more complex than the original version
and involves the allocation of AddL and AddR constructors. In particular, the AddR constructor
seems superfluous, as it corresponds to the context app(k,addacc + eval(e2)), which we
optimized using the monoid contexts earlier. In this section, we want to combine the two
approaches to obtain a more efficient version, where we use both an accumulator and a
monoid context:

type accum
Hole
AddL(k : accum, e : expr)

fun eval(e, acc, addacc)
match e

Add(e1, e2) -> eval(e1, AddL(acc, e2), addacc)
Lit(n) -> app(acc, addacc + n)

fun app(acc, result)
match acc

Hole -> result
AddL(k, e) -> eval(e, k, result)

This version has the best of both worlds: it is fully tail-recursive and only needs to allocate a
defunctionalized continuation for the left recursive call (where we need to keep track of the
expression e2), while the right recursive call is efficiently handled by the monoid context.

5.2 Swapping Contexts

To achieve this transformation in general, we need to be able to compose two contexts. For
two contexts E1 and E2, we can define their product context, which consists of tuples of the
two contexts. We can apply a product context to an expression by applying each context in
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turn:

(papp) app (l, r) e = app l (app r e)
But how would we compose two product contexts? We would like to turn a composition
of tuples into a tuple of compositions as (l1, r1) • (l2, r2) = (l1 • l2, r1 • r2). We can try to
calculate this directly:

app ((l1, r1) • (l2, r2)) e
= app (l1, r1) (app (l2, r2) e) { (appcomp) }
= app l1 (app r1 (app l2 (app r2 e))) { (papp) }
. . . but now we are stuck. Here, l1, l2 belong to the context E1 and r1, r2 to E2. In order to
make progress, we have to swap the inner contexts r1 and l2. But this is not always going to
be possible! Instead, we need to parameterize the product context with a swap operation:

(appswap) app l (app r e) = app r′ (app l′ e) where (l′, r′) = swap(l, r)
If the contexts are connected in this sense, we can continue to calculate their composition:

app l1 (app r1 (app l2 (app r2 e)))
= app l1 (app l′2 (app r

′
1 (app r2 e))) { swap(r1, l2) = (l

′
2, r
′
1) }

= app (l1 • l′2) (app (r
′
1 • r2) e) { (appcomp) }

= app (l1 • l′2, r
′
1 • r2) e { (papp) }

This gives us a definition for product contexts: we can fold any context E = E1 | E2 by
composing the folds of E1 and E2:

(|�|) = (ctx�, ctx�)
(|E1 [e] |) = (ctx E1, ctx�) • (|e|)
(|E2 [e] |) = (ctx�, ctx E2) • (|e|)

(pctx) ctx E = ((|E|))
(pcomp) (l1, r1) • (l2, r2) = (l1 • l′2, r

′
1 • r2) where (l′2, r

′
1) = swap(r1, l2)

(papp) app (k1, k2) e = app k1 (app k2 e)
With this definition in hand, we can now derive several contexts from the previous section
from the more basic contexts we defined earlier.

5.2.1 Modulo Monoid Contexts

We motivated the Modulo Monoid Contexts in Section 4.5 as the composition of a left-
biased and a right-biased context. In fact, we can now derive this context as the product
context of a left-biased and right-biased contexts, with swap(l, r) = (r, l). This follows the
swap law since:

app l (app r e)
= l � (e � r)
= (l � e) � r
= app r (app l e)
With this, we get exactly the previous definition of (acomp) of Modulo Monoid Contexts.
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5.2.2 Modulo Semiring Contexts

Similarly, we can derive the semiring context (Section 4.6) as the composition of two left-
biased contexts for its addition (l) and multiplication (r). Here, the swap operation is given
by swap(r, l) = (r ∗ l, r):

app∗ r (app+ l e)
= r ∗ (l + e)
= (r ∗ l) + (r ∗ e)
= app+ (r ∗ l) (app∗ r e)
With this, we get exactly the previous definition of (scomp) and it our new context corre-
sponds to the semiring contexts we defined earlier. For this definition to work, it is important
though that the left-biased context for the addition is in the first component of the tuple
with multiplication in the second. That allows us to define a swap operation that uses the
distributivity of the semiring to swap the contexts. We could not define a swap operation
if multiplication is in the first component, since this would require us to move an addition
under a multiplication, which is only possible if the semiring has multiplicative inverses.

5.3 Composing (Defunctionalized) Evaluation Contexts

(Defunctionalized) evaluation contexts are the only contexts introduced in the last section
that can reliably make all recursive calls tail-recursive. For this reason they are particularly
attractive for composition with other contexts, that lead to faster code in practice but only
apply in more limited cases. Thankfully, this is easily possible, since we can swap an
arbitrary context r with a general evaluation context l by storing it in a closure:

swap (r, l) = ((_x. app r x) • l, ctx�)
We can verify that this definition fulfills the swap law:

app r (app l e)
= (_x. app r x) (app l e) { eta expansion }
= app (_x. app r x) (app l e) { (eapp) }
= app ((_x. app r x) • l) e { (appcomp) }
= app ((_x. app r x) • l) �[e]
= app ((_x. app r x) • l) (app (ctx�) e) { (appctx) }
The same approach can also be used for defunctionalized evaluation contexts. Analogous to
creating a fresh closure, we could create a special constructor to store an application of the
other context. However, to avoid allocations and to enable a nested translation (Section 4.2),
we integrate the restricted context into the constructors.
We define the extended accumulator datatype by creating a constructor H for the �

context and for each Ei a constructor Ai that carries the free variables of Ei and the inner
context k′. The compiler then generates an app function where we interpret Ai by evaluating
Ei with the stored free variables:
(dctx) ctx Ei = Ai x1 . . . xm (ctx�)H where x1, . . ., xm = fv(Ei)
(dcomp) k1 •H = k1
(dcomp) k1 • (Ai x1 . . . xm k′ k2) = Ai x1 . . . xm k′ (k1 • k2)
(dapp) appH e = e
(dapp) app (Ai x1 . . . xm k′ k) e = ÈEi [e , x1 . . . xm]Éf (k,k′)
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Then we can define the swap operation as:

swap (k1, H) = (H, k1)
swap (k1, Ai x1 . . . xm k′ k2) = (Ai x1 . . . xm (k1 • k′) k2, ctx�)
This definition again fulfills the swap law. Case H:

app r (appH e)
= app r e { (dapp) }
= appH (app r e) { (dapp) }
Case Ai x1 . . . xm k′ k2:

app r (app (Ai x1 . . . xm r′ k2) e)
= app r (ÈEi [e, x1 . . . xm]Éf (r′, k2) ) { (dapp) }
= app r (app (r′, k2) (Ei [e, x1 . . . xm])) { specification (b) }
= app r (app r′ (app k2 (Ei [e, x1 . . . xm]))) { (papp) }
= app (r • r′) (app k2 (Ei [e, x1 . . . xm])) { (appcomp) }
= app (r • r′, k2) (Ei [e, x1 . . . xm]) { (papp) }
= ÈEi [e, x1 . . . xm]Éf (k2, r • r′) { specification (b) }
= app (Ai x1 . . . xm (r • r′) k2) e { (dapp) }
= app (Ai x1 . . . xm (r • r′) k2) �[e]
= app (Ai x1 . . . xm (r • r′) k2) (app (ctx�) e) { (appctx) }

5.4 Extending the Expression Evaluator

We can use this insight to derive a tail-recursive expression evaluator which supports
multiplication as well, where we compose a defunctionalized evaluation context with a
semiring context. First, we add a new constructor Mul(e1,e2) to our expression datatype
which encodes themultiplication eval(e1) * eval(e2).We then create a datatype accum which
stores the defunctionalized evaluation contexts when descending into the first expression
e1. These constructors contain both the second expression e2 and the semiring context (a,
m). When descending into e1, we store the current semiring context in the constructor and
continue with the semiring context ctx� = (0, 1):

app (acc, (a, m)) (eval e1 + eval e2)
= eval

′ ((acc, (a, m)) • (AddL 0 1Hole e2, (0, 1))) e1 { (tail) }
= eval

′ (acc •AddL amHole e2, (0, 1) • (0, 1)) e1 { (pcomp) }
= eval

′ (AddL amacc e2, (0, 1)) e1 { (dcomp) }
This calculation directly follows the recipe for composing with defunctionalized evaluation
contexts and can thus be derived algorithmically. Our full implementation becomes:

type expr
Lit(lit : int)
Add(e1 : expr, e2 : expr)
Mul(e1 : expr, e2 : expr)

type accum
Hole
AddL(a : int, m : int, k : accum, e : expr)
MulL(a : int, m : int, k : accum, e : expr)
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fun eval(e, acc, a, m)
match e

Add(e1, e2) -> eval(e1, AddL(a, m, acc, e2), 0, 1)
Mul(e1, e2) -> eval(e1, MulL(a, m, acc, e2), 0, 1)
Lit(n) -> app(acc, a + m * n)

fun app(acc, n)
match acc

Hole -> n
AddL(a, m, k, e) -> eval(e, k, a + m * n, m)
MulL(a, m, k, e) -> eval(e, k, a, m * n)

In contrast, a translation using just defunctionalized evaluation contexts would require two
more constructors AddR and MulR (just as in the basic example). Unfortunately though, now
that we store the semiring context in accum, our constructors carry a few more elements than
the constructors of expr. In a language like Koka, which can reuse constructors of equal
size [Lorenzen and Leijen 2022; Reinking, Xie et al. 2021], it would be preferable to obtain
constructors of the same size as expr, since we could then hope to avoid the allocation of
AddL and MulL by reusing the memory of Add and Mul. This is often possible when using
non-composed defunctionalized evaluation contexts and Lorenzen et al. [2023] show that
it is guaranteed to work if the original function has the shape of a map or fold (like eval

). Alas, the same is not true for composed contexts, since we need to store the additional
semiring context. However, using composed contexts like here can still avoid allocations in
languages that lack reuse analysis.
Finally, we can reduce the number of elements stored in the constructors and obtain a

more natural version of the evaluator by using the distributivity law to push the semiring
context into the expression. For the Add case we calculate:

app (acc, (a, m)) (eval e1 + eval e2)
= app acc (app (a, m) (eval e1 + eval e2)) { (papp) }
= app acc (a + m ∗ (eval e1 + eval e2)) { (sapp) }
= app acc (a + m ∗ eval e1 + m ∗ eval e2) { distributivity }
At this point, the recursive call to eval e1 is under a semiring context (a,m) and an evaluation
context � + m ∗ eval e2. We thus have to store an extra m in our AddL constructor:

eval
′ ((acc, (0, 1)) • (AddL 0 1Holeme2, (a,m))) e1 { (tail) }

= eval
′ (acc •AddL 0 1Holeme2, (0, 1) • (a, m)) e1 { swap }

= eval
′ (AddL 0 1 accm e2, (a, m)) e1 { (dcomp) and (scomp) }

It turns out that in this version, the semiring context stored in the accumulated datatype is
always going to be (0, 1), so we can simplify the definition by omitting it. We thus obtain
the implementation:

type accum
Hole
AddL(m : int, k : accum, e : expr)
MulL(a : int, k : accum, e : expr)

fun eval(e, acc, a, m)
match e

Add(e1, e2) -> eval(e1, AddL(m, acc, e2), a, m)
Mul(e1, e2) -> eval(e1, MulL(a, acc, e2), 0, m)
Lit(n) -> app(acc, a + m * n)
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fun app(acc, n)
match acc

Hole -> n
AddL(m, k, e) -> eval(e, k, n, m)
MulL(a, k, e) -> eval(e, k, a, n)

This version is slightly more efficient than the previous one, but the constructors are still
too big for reuse analysis to apply. Furthermore, it is unclear whether we can derive this
algorithmically as well. Instead, we will stick with the more general version that can be
derived directly from the composition of contexts and extend it to derive an evaluator that
can also handle subtraction and division.
To extend the expression evaluator to support division, we might try to add a new context

for division and show how to compose it with the semiring context. However, this is not
straightforward, since (a + �)−1 can not be simplified to a′ + �−1 for any other a′: the
inverse of the sum depends on the �, which is not yet known, and there is no general rule
for exchanging the inverse operation with addition. Instead, we need to use an idea from
the theory of continued fractions.

5.5 Aside: Continued Fractions

Continued fractions are a representation of the rational (or real) numbers that arises from
the Euclidean algorithm. They consist of a sequence of nested additions and fractions with
numerator 1. For example, we can calculate the continued fraction of 4.24 as:

4.24 = 4 + 24
100 = 4 +

1
100
24

= 4 +
1

4 +
4
24

= 4 +
1

4 +
1
6

= 4 +
1

4 +
1

6
1

= 4 +
1

4 +
1

5 +
1
1

We can write such a (long-form) continued fraction (with the final ‘1’ left implicit) as
[4, 4, 5]. Then we can compute its floating point representation with a simple recursive
algorithm:

fun frac(xs)
match xs

Nil -> 1
Cons a xx -> a + 1 / frac(xx)

This algorithm is not tail-recursive and it might be quite difficult to make tail recursive
without further insight (and without resorting to general evaluation contexts). However,
it is well-known that continued fractions can be calculated by their convergents, which is
a sequence hn, kn with frac( [a0, . . ., an]) = hn / kn. The convergents start with h−2 = 0,
h−1 = 1, k−2 = 1, k−1 = 0 and are further calculated by:
hn
kn

=
an ∗ hn−1 + hn−2
an ∗ kn−1 + kn−2

This gives us a tail-recursive algorithm to calculate the continued fraction (where we write
h1 for hn−1, h2 for hn−2 and equivalent for k1 and k2):
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fun frac’(xs, h1, k1, h2, k2)
match xs

Nil -> (1 * h1 + h2) / (1 * k1 + k2)
Cons a xx -> frac’(xx, a * h1 + h2, h1, a * k1 + k2, k1)

fun frac(xs)
frac’(xs, 1, 0, 0, 1)

It turns out that we can use the same idea to define a general context that applies to arbitrary
sequences of addition, multiplication, and inverses.

5.6 Modulo Fields Context

Using the insight from continued fractions, we can define general field contexts that support
not only addition and multiplication but also additive and multiplicative inverses. We define
the context F as:

F : :=� | a + F | m ∗ F | F−1

It turns out that we use the same convergent representation as for continued fractions, where
we keep four numbers:
x ∗ h1 + h2
x ∗ k1 + k2
and define the fold operation as:

(|�|) =
x ∗ 1 + 0
x ∗ 0 + 1

(|a + F |) =
x ∗ 1 + a
x ∗ 0 + 1 • (|F |)

(|m ∗ F |) =
x ∗ m + 0
x ∗ 0 + 1 • (|F |)

(|F−1 |) =
x ∗ 0 + 1
x ∗ 1 + 0 • (|F |)

We can apply a field context to an expression by substituting the expression for x. Similarly,
we can compose two field contexts by substituting the second context into the first context
and simplifying the expression. Our context is defined as:

(fctx) ctxF = (|F |)

(fcomp) x ∗ h1 + h2
x ∗ k1 + k2

•
y ∗ h′1 + h

′
2

y ∗ k′1 + k
′
2

=
y ∗ (h′1 ∗ h1 + k

′
1 ∗ h2) + (h

′
2 ∗ h1 + k

′
2 ∗ h2)

y ∗ (h′1 ∗ k1 + k
′
1 ∗ k2) + (h

′
2 ∗ k1 + k

′
2 ∗ k2)

(fapp) app

x ∗ h1 + h2
x ∗ k1 + k2

e =
e ∗ h1 + h2
e ∗ k1 + k2

and the context laws hold.

5.7 An Advanced Expression Evaluator

Using the field contexts, we can extend our expression evaluator to support arbitrary field
operations. Our implementation arises directly from the obvious expression evaluator which
folds the expression into a rational number:
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fun eval(e : expr) : rat
match e

Add(e1, e2) -> eval(e1) + eval(e2)
Mul(e1, e2) -> eval(e1) * eval(e2)
Neg(e1) -> from-int(-1) * eval(e1)
Inv(e1) -> from-int(1) / eval(e1)
Lit(n) -> from-int(n)

We can directly define the field context as a datatype, where we define empty(), add(a), mul

(a), inv() to correspond to the fold operations:
type fctx

Fctx( h1 : rat, h2 : rat, k1 : rat, k2 : rat )

fun fctx/app(f : fctx, r : rat) : rat
(f.h1 * r + f.h2) / (f.k1 * r + f.k2)

fun fctx/add(a : rat) : fctx
Fctx( from-int(1), a, from-int(0), from-int(1) )

...

Then we use the TRMC algorithm with the composition of defunctionalized contexts
and field contexts to obtain a tail-recursive version that uses a field context for the field
operations and a defunctionalized context for the recursive calls that leave an expression to
be evaluated:

type accum
Hole
AddL(f : fctx, k : accum, e : expr)
MulL(f : fctx, k : accum, e : expr)

fun fctx/eval(e : expr, acc : accum, f : fctx)
match e

Add(e1, e2) -> eval(e1, AddL(f, acc, e2), empty())
Mul(e1, e2) -> eval(e1, MulL(f, acc, e2), empty())
Neg(e1) -> eval(e1, acc, comp(f, mul(-1)))
Inv(e1) -> eval(e1, acc, comp(f, inv()))
Lit(n) -> app(acc, app(f, from-int(n)))

fun fctx/app(acc : accum, r : rat)
match acc

Hole -> r
AddL(f, k, e) -> eval(e, k, comp(f, add(r)))
MulL(f, k, e) -> eval(e, k, comp(f, mul(r)))

The final derived program is actually quite sophisticated and fully tail-recursive. We believe
that deriving this algorithm manually would be non-trivial. Moreover, it only allocates a
small amount of memory while descending the left-spine. In contrast, a simple application
of defunctionalized contexts without field contexts would require us to allocate a constructor
even in the Neg and Inv cases, which would be less efficient.

6 Modulo Constructor Contexts

As shown in the introduction, the most interesting instantiation is of course the modulo
cons transformation on constructor contexts, since that particular case can be implemented
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using in-place updates which can usually not be replicated by the programmer. We can
define a constant constructor context K as:
K ::= � | Ck v1 . . .K . . . vk
We define the (★) condition in the TRMC translation to restrict the context E to K contexts
only. A possible way to define the contexts is to directly use K as a runtime context:

(kctx) ctx K = K

(kcomp) K1 •K2 = K1 [K2]
(kapp) appK e = K[e]
Similar to general evaluation contexts (Section 4.1), the context laws hold trivially for such
definition (App. B.5 in the supplement) – and just as with general evaluation contexts, the
map function translates to:

map′ xs f k = match xs {
Nil→ app k Nil
Cons x xx→ let y = f x inmap′ xx f (k • (ctx (Cons y�))) }
Even though this is a valid instantiation, it does not yet imply that this can be efficient. In
particular, composition creates a fresh context every time as K1 [K2] and it may be difficult
to implement such substitution efficiently at runtime as it needs to copy K1 along the path
to the hole. What we are looking for instead is an in-place updating instantiation that can
compose in constant time.

6.1 Minamide

Minamide [1998] presents a “hole calculus” that can directly express our contexts in
a functional way, but also allows an efficient in-place updating implementation. Using
the hole calculus as our target calculus, we can instantiate the translation function using
Minamide’s system.
We define the context type as a “hole function” (_̂x. e), where ctx𝛼 ≡ hfun𝛼 𝛼 . and

instantiate the context operations to use the primitives as given by Minamide [1998]:

(hctx) ctx K = _̂x.K[x]
(hcomp) k1 • k2 = hcomp k1 k2
(happ) app k e = happ k e
Satisfyingly, our primitives turn out to map directly to the hole calculus primitives. The
reduction rules for happ and hcomp specialized to our calculus are [Minamide 1998, fig.
5]:

(happly) happ (_̂x.K) v −→ K[x:=v]
(hcompose) hcomp (_̂x.K1) (_̂y.K2) −→ _̂y.K1 [x:=K2]

This means that for any context k, we have k � _̂x.K[x] (1). We can now show that our
context laws are satisfied for this system:
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Composition:
app (k1 • k2) e

= app (hcomp k1 k2) e { (hcomp) }
= happ (hcomp k1 k2) e { (happ) }
� happ (hcomp (_̂x.K1 [x]) (_̂y.K2 [y])) e { (1), 2 }
� happ (_̂y.K1 [x] [x:=K2 [y]]) e { (hcomp) }
� (K1 [x] [x:=K2 [y]]) [y:=e] { (happly) }
= K1 [K2 [e]] { contexts }
� K1 [happ (_̂y.K2 [y]) e] { (happly) }
� happ (_̂x.K1 [x]) (happ (_̂y.K2 [y]) e) { (happly) }
� happ k1 (happ k2 e) { (1), (2) }
= app k1 (app k2 e) { (happ) }

and application:
app (ctx K) e

= app (_̂x.K[x]) e { (hctx) }
= happ (_̂x.K[x]) e { (happ) }
� K[x] [x:=e] { (happly) }
= K[e] { contexts }

The hole calculus is restricted by a linear type discipline where the contexts ctx𝛼 ≡ hfun𝛼 𝛼
have a linear type. This is what enables an efficient in-place update implementation while
still having a pure functional interface. For our needs, we need to check separately that
the translation ensures that all uses of a context k are indeed linear. Type judgements in
Minamide’s system [Minamide 1998, fig. 4] are denoted as Γ ; H m̀ e : 𝜏 where Γ is the
normal type environment, and H for linear bindings containing at most one linear value.
The type environment Γ can itself contain linear values with a linear type (like hfun) but
only pass those linearly to a single premise. The environment restricted to non-linear values
is denoted as Γ |N. We can now show that our translation can indeed be typed under the
linear type discipline:

Theorem 2. (TRMC uses contexts linearly)
If Γ |N ; ∅ m̀ fun f = _x1 . . . xn . e : 𝜏1→ . . .→𝜏n→𝜏 and k fresh
then Γ |N, f ; ∅ m̀ fun f ′ = _x1 . . . xn . _k. ÈeÉf ,k : 𝜏1→ . . .→𝜏n→ ((𝜏, 𝜏) hfun) →𝜏 .

To show this, we need a variant of the general replacement lemma [Hindley and Seldin 1986,
Lemma 11.18; Wright and Felleisen 1994, Lemma 4.2] to reason about linear substitution
in an evaluation context:

Lemma 1. (Linear replacement)
If Γ |N ; ∅ m̀ K[e] : 𝜏 for a constructor context K then there is a sub-deduction
Γ |N ; ∅ m̀ e : 𝜏 ′ at the hole and Γ |N ; x : 𝜏 ′ m̀ K[x] : 𝜏 .
Interestingly, this lemma requires constructor contexts and we would not be able to derive
the Lemma for general contexts as the linear type environment is not propagated through
applications. The proofs can be found in App. B.6 in the supplement, which also contains
the full type rules adapted to our calculus.

6.2 In-place Update

The instantiation with Minamide’s system is using fast in-place updates and proven sound,
but it is still a bit unsatisfactory as how such in-place mutation is done (or why this is
safe) is only described informally. In Minamide’s system, a suggested implementation for
a context is as a tuple 〈K, x@i〉 where K is (a pointer to) a context and x@i is the address of
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the hole as the ith field of object x (in K). The empty tuple 〈〉 is used for an empty context
(�). Composition and application directly update the hole pointed to by x@i by overwriting
the hole with the child context or value.
In contrast, Bour et al. [2021] show a TRMC translation for OCaml that uses destination

passing style which makes it more explicit how the in-place update of the hole works. In
particular, the general construct x.i := v overwrites the ith field of any object x with v. Like
Minamide’s work this is also described informally only.
To gain more insight of why in-place update is possible and correct, we are going to

use the explicit heap semantics of Perceus [Lorenzen and Leijen 2022; Reinking, Xie et
al. 2021]. In such semantics, the heap is explicit and all objects are explicitly reference
counted. Using the Perceus derivation rules, we can soundly translate our current calculus
to the Perceus target calculus where the reference counting instructions (dup and drop)
are derived automatically by the derivation rules [Reinking, Xie et al. 2021, fig. 5]. The
Perceus heap semantics reduces the derived expressions using reduction steps of the form
H | e1 ↦−→r H′ | e2, which reduces a heap H and an expression e to a new heap H′ and
expression e2 [Reinking, Xie et al. 2021, fig. 7]. The heapH maps objects xwith a reference
count n > 1 to values, denoted as x ↦→n v. In this system, we can express in-place updates
directly, and it turns out we can even calculate the in-place updating reduction rules for
comp and app from the context laws. Before we do that though, we first need to establish
some terminology and look carefully at what “in-place update” actually means.

6.2.1 The Essence of In-Place Update

Let’s consider a generic copy function, (x.i as y), that changes the ith field of an object x to
y, for any generic constructor C:

x.i as y = match x {Ck x1 . . . xi . . . xk→Ck x1 . . . y . . . xk }
When we apply the Perceus algorithm [Reinking, Xie et al. 2021] we need to insert a single
drop:

x.i as y = match x {Ck x1 . . . xi . . . xk→ drop xi; Ck x1 . . . y . . . xk }
In the special case that x is unique at runtime (i.e. the reference count of x is 1), we can now
derive the following:

H, x ↦→1 Ck x1 . . . xi . . . xk | x.i as y { x 6∈H, 1 }
= H, x ↦→1 Ck x1 . . . xi . . . xk |

match x {Ck x1 . . . xi . . . xk→ drop xi; Ck x1 . . . y . . . xk } { def . }
−→r H, x ↦→1 C xj | dup(xj); drop(x); drop(xi); Ck x1 . . . y . . . xk { (matchr) }
−→∗

r
H′, x ↦→1 C xj | drop(x); drop(xi); Ck x1 . . . y . . . xk { (dupr), H′ has xj dupped, 2 }

−→r H′ | drop(xj); drop(xi); Ck x1 . . . y . . . xk { (dropr) }
−→r H | drop(xi); Ck x1 . . . y . . . xk { cancel H′ dupped xj (2) }
� H | let z = Ck x1 . . . y . . . xk in drop(xi); z { drop commutes }
−→r H, z ↦→1 C x1 . . . y . . . xk | drop(xi); z { (conr), fresh z, 3 }
= H, x ↦→1 C x1 . . . y . . . xk | drop(xi); x { 𝛼 rename (1), (3) }
And this is the essence of in-place mutation: when an object is unique, an in-place update
corresponds to allocating a fresh copy, discarding the original (due to the uniqueness of x),
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and 𝛼-renaming to reuse the original “address”.
We will write (x.i := z) for (x.i as z) in the special case of updating a field in a unique

constructor, where we can derive the following reduction rule:

(assign) H, x ↦→1 C . . . xi . . . | x.i := y −→∗
r
H, x ↦→1 C . . . y . . . | drop xi; x

and in the case the field is a �, we can further refine this to:

(assignn) H, x ↦→1 C . . . �i . . . | x.i := y −→∗
r
H, x ↦→1 C . . . y . . . | x

For convenience, we will from now on use the notationC . . . xi . . ., andC . . . �i . . . to denote
the ith field in a constructor if there is no ambiguity.

6.2.2 Linear Chains

We need a bit more generality to express hole updates in contexts. In particular, we will
see that all objects along the path from the top of the context to the hole are unique by
construction. We call such unique path a linear chain, denoted as [H]nx :
[H]nx = [x ↦→n v0, x1 ↦→1 v1, . . ., xm ↦→1 vm]nx (m > 0)
where for all xi ∈ (dom(H) − {x}), we have xi ∈ fv(vi−1) (and therefore for all y ∈ dom(H)
we have reachable(H, x)). Since the objects in H besides x are all unique and not reachable
otherwise, we also say that x dominates H. When the dominator is also unique, we call it
a unique linear chain (of the form [H]1x). We can define linear chains inductively as well
since a single object always forms a linear chain:

(linearone) x ↦→n v = [x ↦→n v]nx
and we can always extend with a unique linear chain:

(linearcons) x ↦→n . . . z . . ., [H]1z = [x ↦→n . . . z . . .,H]nx
Using (linearcons) we can derive that we can append a unique linear chain as well:
(linearapp) [H1, y ↦→1 . . . z . . .]nx, [H2]1z = [H1, y ↦→1 . . . z . . .,H2]nx

6.2.3 Contexts as a Linear Chain

To simplify the proofs, we assume in this sub section that all fields in K contexts are
variables:

K : :=� | C x1 . . .K . . . xn
since we can always arrange any K to have this form by let-binding the values v. It turns out
that a constructor context then always evaluates to a unique linear chain:

Lemma 2. (Contexts evaluate to unique linear chains)
For any K, we have H | K[C . . .�i . . .] −→∗r H, [H′, y ↦→1 C . . . �i . . .]1x | x.
We can show this by induction on the shape of K (App. B.7 in the supplement).

6.2.4 Calculating the Fold

Following Minamide’s approach, we are going to denote our contexts as a tuple 〈x, y@i〉
where x is (a pointer to) a constructor context and y@i is the address of the hole as the
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ith field of object y. We define ctx K = (|K|). For an empty context we use an empty tuple
((|�|) = 〈〉), but otherwise we can specify the fold as:
(foldspec) H | (|K[C . . .�i . . .] |) � H | let x = K[C . . . �i . . .] in 〈x, [x]@i〉
where we use the notation [x] do denote the last object of the linear chain formed by K
(Lemma 2). We can now calculate the definition of (|_|) from its specification (see App. B.8
in the supplement), where we get following definition for (|_|):
(|�|) = 〈〉
(|C . . .�i . . .|) = let x = C . . . �i . . . in 〈x, x@i〉
(|C . . .K . . .|) = let 〈z, x@i〉 = (|K|) in 〈C . . . z . . ., x@i〉 (K ≠ �)
This builds up the context using let bindings, while propagating the address of the hole. As
before, the intention is that the compiler expands the fold statically. For example, the map
function translates to:
map′ xs f k = match xs {
Nil→ app k Nil
Cons x xx→ let y = f x inmap′ xx f (k • (let z = Cons y � in 〈z, z@2〉)) }
where z@2 correctly denotes the address of the hole field in the context.

6.2.5 Updating a Context

Before we can define in-place application, we need an in-place substitution operation
subst 〈x, y@i〉 z that substitutes z at the hole (at y@i) in the context x. Note that in our
representation of a context as a tuple 〈x, y@i〉 we treat y@i purely as an address and do not
reference count y as such. The y part is a “weak” pointer and we cannot use it directly
without also having an “real” reference. This means that if we want to define an in-place
substitution we cannot define it directly as y.i := z (since we have no real reference to y).
Instead, we are going to calculate an in-place updating substitution from its specification:

(subspec) H, [H′, y ↦→1 C . . . �i . . .]1x | subst 〈x, y@i〉 z � H, [H′, y ↦→1 C . . . z . . .]1x | x
We do this by induction of the shape of the linear chain. For the singleton case we have:

H, [y ↦→1 C . . . �i . . .]1y | subst 〈y, y@i〉 z
= H, [y ↦→1 C . . . �i . . .]1y | y.i := z { define, (we have a y reference!) }
−→ H, [y ↦→1 C . . . z . . .]1y | y { (assignn) }
and for the extension we have:

H, [x ↦→1 C . . . x′j . . ., [H′, y ↦→1 C . . . �i . . .]1x′]1x | subst 〈x, y@i〉 z
= H, [x ↦→1 C . . . x′j . . ., [H′, y ↦→1 C . . . �i . . .]1x′]1x

| dup x′; x.j := �; x.j := subst 〈x′, y@i〉 z { define }
−→∗ H, [x ↦→1 C . . . �j . . ., [H′, y ↦→1 C . . . �i . . .]1x′]1x

| x.j := subst 〈x′, y〉 z { (dupr), (assign) }
� H, [x ↦→1 C . . . �j . . ., [H′, y ↦→1 C . . . z . . .]1x′]1x | x.j := x′ { induction hyp. }
−→ H, [x ↦→1 C . . . x′j . . ., [H′, y ↦→1 C . . . z . . .]1x′]1x | x { (assignn) }
This leads to the following inductive definition of subst:

H | subst 〈x, x@i〉 z = H | x.i := z
H | subst 〈x, y@i〉 z = H | dup x′; x.j := �; x.j := subst 〈x′, y@i〉 z
where x ≠ y ∧ [x ↦→1 C . . . x′j . . ., [H′]1x′]1x ∈H
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That is, to update the last element of the chain in-place, we need traverse down while
separating the links such that when we reach the final element it has a unique reference
count and can be updated in-place. We then traverse back up fixing up all the links again.
Of course, we would not actually use this implementation in practice – the derivation
here just shows that the substitution specification is sound, and we can thus implement
the (subspec) reduction by instead using the tuple address y@i directly to update the hole
in-place. In essence, due to the uniqueness of the of the elements in the chain, the y is
uniquely reachable through x, and thus it is safe to use it directly in this case.

6.2.6 Calculating Application and Composition

With the specification for fold and in-place substitution, we can use the context laws
to calculate the in-place updating version of application and composition. Starting with
application, we can calculate (for K≠�):

H | app (ctx K) e
= H | app (|K|) e { def . }
� H | app (let x = K[�] in 〈x, [x]@i〉) e { fold specification, K≠� }
� H, [H′, y ↦→1 C . . . �i . . .]1x | app 〈x, [x]@i〉 e { lemma 2, 1 }
= H, [H′, y ↦→1 C . . . �i . . .]1x | app 〈x, y@i〉 e { def . }
� H, z ↦→1 v, [H′, y ↦→1 C . . . �i . . .]1x | app 〈x, y@i〉 z { e is terminating 2 }
= H, z ↦→1 v, [H′, y ↦→1 C . . . �i . . .]1x | subst 〈x, y@i〉 z { define }
� H, z ↦→1 v, [H′, y ↦→1 C . . . z . . .]1x | x { (subspec) }
� H, z ↦→1 v | K[z] { lemma 2, (1) }
� H | K[e] { (2) }
And thus we define application directly in terms of in-place substitution as:

(uapp) H | app 〈x, y@i〉 z −→r H | subst 〈x, y@i〉 z
We arrived exactly at the “obvious” implementation where the hole inside a unique context
is updated in-place in constant time. This also corresponds to the informal implementation
given in Section 2.2. For composition, it turns out we can define it in terms of applications:

(ucomp) H | 〈x1, y1@i〉 • 〈x2, y2@j〉 −→r H | 〈app 〈x1, y1@i〉 x2, y2@j〉
where the derivation is in App. B.9 in the supplement. Again we arrived at the efficient
translation where the hole in the first unique context is updated in-place (and in constant
time) with a pointer to the second context. The full rules for application and composition
are (with the derivations for the empty contexts in App. B.9 in the supplement):

(uapph) H | app 〈〉 x −→r H | x
(uapp) H | app 〈x, y@i〉 z −→r H | subst 〈x, y@i〉 z
(ucomp) H | 〈x1, y1@i〉 • 〈x2, y2@j〉 −→r H | 〈app 〈x1, y1@i〉 x2, y2@j〉
(ucompl) H | 〈〉 • 〈x2, y2@j〉 −→r H | 〈x2, y2@j〉
(ucompr) H | 〈x1, y1@i〉 • 〈〉 −→r H | 〈x1, y1@i〉
Note that (ucompr) is not really needed since by construction our translation never generates
empty contexts for the second argument. The rules also correspond with the informal
implementation given in Section 2.2 where Id was used to represent the empty tuple.
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With these definitions, we still need to show that we can be efficient and that we never
get stuck. For efficiency, we need to show that a context 〈x, y@i〉 is always a linear chain so
we don’t have to check that at runtime in (subspec). This follows by construction since any
initial context ctx K is a linear chain (Lemma 2), and any composition as well (ucomp).
Secondly, the reference count of the dominator should always be 1 or otherwise (subspec)
may not apply – that is, contexts should be used linearly. This follows indirectly from
Lemma 3 where we show that our translation adheres to Minamide’s linear type discipline.
A more direct approach would be to show that Perceus never derives a dup operation for a
context k in our translation. However, we refrain from doing so here, as it turns out that with
general algebraic effect handlers, the linearity of a context may no longer be guaranteed!

7 Modulo Constructor Contexts: Non-Linear Control

A long standing issue in a TRMc transformation is that it is unsound in the presence of
non-local control operations like call/cc, shift/reset [Danvy and Filinski 1990; Shan 2007;
Sitaram and Felleisen 1990], or in general with algebraic effect handlers [Plotkin and
Power 2003; Plotkin and Pretnar 2009], whenever a continuation or handler resumption
can be invoked more than once. Note that if only single-shot continuations or resumptions
are allowed (as in OCaml [Dolan et al. 2015] for example), the control flow is still always
linear and the TRMc transformation still sound. Since the Koka language relies founda-
tionally on general effect handlers [Leijen 2017 2021; Xie and Leijen 2021] we need to
tackle this problem. Algebraic effect handlers extend the syntax with a handle expression,
handle h e, and operations, op, that are handled by a handler h. There are twomore reduction
rules [Leijen 2014]:

(return) handle h v −→ v
(handle) handle h E[op v] −→ e[x:=v, resume:= _y. handle h E[y]]

where (op ↦→ _x. _resume. e) ∈ h ∧ op 6∈ E
That is, when an operation is invoked it yields all the way up to the innermost handler for
that operation and continues from there with the operation clause. Besides the operation
argument, it also receives a resumption resume that allows the operation to return to the
original call site with a result y. The culprit here is that the resumption captures the delimited
evaluation context E in a lambda expression, and this can violate linearity assumptions. In
particular, if we regard a TRMC context k as a linear value (as in Minamide), then such k
may be in the context E of the (handle) rule and captured in a non-linear lambda. Whenever
the operation clause calls the resumption more than once, any captured linear values may
be used more than once!
A nice example in practice of this occurs in the well known Knapsack problem as

described by Wu et al. [2014] where they use multiple resumptions to implement a non-
determinism handler:

effect nondet
ctl flip() : bool // a control operation that may resume more than once
ctl fail() : a // or not at all
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fun select( xs : list<a> ) : nondet a // pick an element from a list
match xs

Nil -> fail()
Cons(x,xx) -> if flip() then x else select(xx)

fun knapsack(w : int, vs : list<int> ) : <nondet,div> list<int>
if w < 0 then fail()
elif w == 0 then []
else val v = select(vs) in Cons(v, knapsack(w - v, vs))

The knapsack function picks items from a list of item weights vs that together do not exceed
the capacity w (of the knapsack). It uses the select function that picks an element from a list
using the nondet effect. We can now provide an effect handler that systematically explores
all solutions using multiple resumptions:

val solutions = handler
return(x) [x]
ctl fail() []
ctl flip() resume(True) ++ resume(False)

fun test() : div list<list<int>>
with solutions
knapsack(3,[3,2,1])

That is, the solutions handler implements the flip function by resuming twice and appending
the results. Even though knapsack returns a single solution as a list, the test function returns
a list of all possible solution lists (as [[3],[2,1],[1,2],[1,1,1]]). The knapsack function is in
the modulo cons fragment, and gets translated to a tail recursive version by our translation
into something like:

fun knapsack’(w : int, vs : list<int>, k : ctx<list<int>> ) : <nondet,div> list<int>
if w < 0 then app(k,fail()) elif w == 0 then app(k,[])
else val v = select(vs)

knapsack’(w - v, vs, val z = Cons(v,�) in comp(k,<z,z@2>))

Instead of having a runtime that captures evaluation contexts E directly, Koka usually uses
an explicit monadic transformation to translate effectful computations into pure lambda
calculus. The effect handling is then implemented explicitly using a generic multi-prompt
control monad eff [Xie and Leijen 2020 2021]. This transforms our knapsack function into
something like:

fun knapsack’(w: int,vs: list<int>,k: ctx<list<int>>) : eff<<nondet,div>,list<int>>
if w < 0 then ... elif w == 0 then Pure( app(k,[]) )
else match select(vs)

Pure(v) -> knapsack’(w - v, vs, val z = Cons(v,�) in comp(k,<z,z@2>))
Yield(yld) ->

Yield( yield-extend(yld,
fn(v) knapsack’(w - v, vs, val z = Cons(v,�) in comp(k,<z,z@2>) ))

Every computation in the effect monad either returns with a result (Pure) or is yielding up
to a handler (Yield). Here we inlined the monadic bind operation where the result of select
(vs) is explicitly matched. We see that in the Yield case, the continuation expression is now
explicitly captured under a lambda expression – including the supposedly linear context k!
This is how we can end up at runtime with a context that is shared (with a reference count
> 1) and where the rule (ucomp) should not be applied.
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7.1 Dynamic Copying via Reference Counting

Our context composition is defined in terms of context application, which in turn relies on
on the in-place substitution (Section 6.2.5):

(subspec) H, [H′, y ↦→1 C . . . �i . . .]1x | subst 〈x, y@i〉 z � H, [H′, y ↦→1 C . . . z . . .]1x | x
This is the operation that eventually fails if the runtime context x is not unique. In
Section 6.2.5, the substitution operation was calculated to recursively visit the full lin-
ear chain of the context. This suggests a solution for any non-unique context: we can
actually traverse the context at runtime and create a fresh copy instead.
It is not immediately clear though how to implement such operation at runtime: the linear

chains up to now are just a proof technique and we cannot actually visit the elements of
the chain at runtime as we do not know which field in a chain element points to the next
element. What we need to do is to explicitly annotate each constructor Ck (of arity k) in a
context also with an index i corresponding to the field that points to the next element, as
Cki . It turns out, we can actually do this efficiently while constructing the context – and we
can do it systematically just by modifying our fold function to keep track of this context
path at construction:

(|�|) = 〈〉
(|C . . .�i . . .|) = let x = Ci . . . �i . . . in 〈x, x@i〉
(|C . . .Ki . . .|) = let 〈z, x@j〉 = (|K|) in 〈Ci . . . z . . ., x@j〉 (K ≠ �)
With such indices present at runtime, we can define non-unique substitution as:

(subapp) H, [H′]n+1x | subst 〈x, y@i〉 z � H, [H′]n+1x | append x z
where append follows the context path at runtime copying each element as we go, and
eventually appending z at the hole:

H, x ↦→n Ci . . . �i . . . | append x z −→r H, x ↦→n Ci . . . �i . . . | x.i as z
H, x ↦→n Ci . . . yi . . . | append x z −→r H, x ↦→n Ci . . . yi . . . | dup yi; x.i as (append yi z)
We can show the context laws still hold for these definitions (see App. B.10 in the supple-
ment). The append operation in particular can be implemented efficiently at runtime using
a fast loop that updates the previous element at each iteration (essentially using manual
TRMC!). In the Koka runtime system, it happens to be the case that there is already an 8-bit
field index in the header of each object which is used for stackless freeing. We can thus use
that field for context paths since if a context is freed it is fine to discard the context path
anyways. The runtime cost of the hybrid technique is mostly due to an extra uniqueness
check needed when doing context composition to see if we can safely substitute in-place
(see also App. 7.2 in the supplement). As we see in the benchmark section, this turns out
to be quite fast in practice. Moreover, the Koka compiler uses static type information when
possible to avoid this check if a function is guaranteed to be used only with a linear effect
type.

7.2 Efficient Code Generation

As an example of the code generation of our TRMC scheme we consider the map function
from our benchmarks in Section 9. The map function is specialized by the compiler for the
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increment function, and after the TRMC transformation we have (something like):
fun map_trmc’( xs : list<int32>, k : ctx<list<int32>> ) : list<int32>

match xs
Nil -> app k Nil
Cons(x,xx) ->

val y = x+1
val c = Cons2(y,�)
map_trmc’(xx, comp(k, Ctx(c,c@2)))

fun map_trmc( xs : list<int32> ) : list<int32>
map_trmc’(xs, Ctx(invalid,null))

Here the Ctx constructor is theMinamide tuple as a value type containing the final result and
hole address (defined in the std/core/types module). For efficiency we represent the empty
tuple with a null address for the hole. Eventually, such value type is passed in registers (x19
and x21), and the generated code for arm64 becomes:

map_trmc’:
... ; setup
mov x21, x2 ; x21 is the hole address of the tuple
mov x19, x1 ; x19 the final result part of the tuple
cmp x0, #5 ; is it Nil?
b.ne LBB3_5 ; if not, goto to Cons branch
...

LBB3_5: ; Cons branch
mov x20, x3 ; set up loop variables in registers
mov x23, #x100000000 ; used for fast int32 arithmetic
mov w24, #x020202 ; Cons header: total fields=2,ctx path index=2,tag=2,rc=0
mov w25, #1

LBB3_6: ; tail call entry
ldp x26, x22, [x0, #8] ; load pair: x = x26 and xx = x22
ldr w8, [x0, #4] ; load ref count in w8
cbnz w8, LBB3_10 ; if not unique, goto slower copying path

LBB3_7:
add x8, x23, x26, lsl #31 ; increment x from/to a boxed int32 representation
asr x8, x8, #31
orr x8, x8, #0x1
stp x24, x8, [x0] ; store pair in-place: the header and the incremented x
mov x8, x0
str x25, [x8, #16]! ; set the tail to invalid (1) for now (not really needed)
cbz x21, LBB3_16 ; if this an empty tuple (hole==NULL), goto slow path
str x0, [x21] ; else store our Cons result into the current hole

LBB3_9:
mov x0, x22 ; continue with the tail (x22)
mov x21, x8 ; and set x21 to the new hole
cmp x22, #5 ; is it a Nil?
b.ne LBB3_6 ; if not, make a tail call
b LBB3_2 ; otherwise return
...

map_trmc:
mov x3, x1 ; set up the empty Minamide tuple
mov w1, #1 ; final result is invalid for now (1)
mov x2, #0 ; with the initial hole==NULL
b map_trmc’ ; and jump

Note in particular how the header for the Cons node in the context is set as mov w24, #x020202

where, from left-to-right, we initialize the tag (0x02), the context path field (0x02) and
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the total number of fields (also 0x02). As such, maintaining context paths comes for free
since it is done as part of header initialization. Also we see the reuse of Perceus reference
counting [Lorenzen and Leijen 2022; Reinking, Xie et al. 2021] in action, where the Cons
node that is matched (in x0) is reused for the context Cons node (also in x0). Since the effect
inferred for the specialized map function is total the check for uniqueness of the context is
removed as it the context is guaranteed to be used lineraly.

7.3 First-class Constructor Contexts

Now that we can dynamically copy constructor contexts along the context paths efficiently
at runtime (Section 7.1), it actually allows us to expose constructor contexts as first-class
values in the language [Lorenzen et al. 2024]. This abstraction can safely encapsulate the
limited form of mutation necessary to implement a minamide tuple, while still having a
purely functional interface.
In the Koka language, it is now possible to define a constructor context manually using the

ctx K expression with a single hole denoted by an underscore _. For example, we can write
a list constructor context as ctx Cons(1,_) or a binary tree constructor context as ctx Node

(Node(Leaf,1,Leaf),2,_). The composition operation (• ) is written as (++)while application
is written as (++.). For example, the expression (ctx Cons(1,_)) ++ (ctx Cons(2,_)) ++. Nil

evaluates to (ctx Cons(1,Cons(2,_))) ++. Nil and then to [1,2]. Using first-class constructor
contexts, we can implement the TRMC transformation of the map function directly in Koka
as well:

fun map-trmc’( xs : list<a>, f : a -> b, acc : ctx<list<b>> ) : list<b>
match xs

Cons(x,xx) -> map-trmc’( xx, f, acc ++ ctx Cons(f(x),_) )
Nil -> acc ++. Nil

fun map-trmc( xs : list<a>, f : a -> b ) : list<b>
map-trmc’( xs, ctx _ )

(and the TRMc transformation becomes a source-to-source transformation). A ctxK expres-
sion is compiled using the fold function (|K|) as shown in Section 7.1 such that each
constructor context has a context path at runtime. As shown in Section 7.2, the Koka com-
piler compiles a context like ctx Node(Node(Node(Leaf,1,Leaf),2,_),5,Leaf) internally into a
Minamide tuple:

val x = Node3(Node(Leaf,1,Leaf),2,hole) in Ctx(Node1(x,5,Leaf), x@3)

where each constructor along the context path is annotated with a child index (1 and 3).
When we compose or apply a context we can now copy shared contexts only when

needed. If the contexts happen to be used linearly, then all operations execute in constant
time, just as in Minamide’s approach; but we now have full functional semantics and any
subsequent substitutions on the same context work correctly (but will take linear time in
the length of the context path). The expression val c = ctx Cons(1,_) in (c ++. [2] , c ++.

[3]), where the context c is shared, evaluates correctly to ([1,2],[1,3]).



39

7.4 Dynamic Copying without Reference Counting

Lorenzen et al. [2024] show that it is possible to support first-class constructor contexts
even in languages without precise reference counts. Their proposed implementation (also
suggested by Gabriel Scherer) uses a special distinguished value for a runtime hole � that is
never used by any other object. A substitution now first checks the value at the hole: if it is
a � value, the hole is substituted for the first time and we just overwrite the hole in-place (in
constant time). However, any subsequent substitution on the same context will find some
object instead of �. At this point, we first dynamically copy the context path (in linear time)
and then update the copy in-place.

( { , } ++. 3 ) , ( { , } ++. 4 )

5
2
1

= , ( { , } ++. 4 )

5
2
1 3

= ,

5
2
1 3

5
2
4

The illustration above (due to Lorenzen et al. [2024]) shows a more complex example of
a shared tree context that is applied to two separate nodes. The runtime context path is
denoted here by bold edges. The intermediate state is interesting as it is both a valid tree,
but also a part of the tree is shared with the remaining context, where the hole points to
a regular node now. When that context is applied, only the context path (node 5 and 2) is
copied first where all other nodes stay shared (in this case, only node 1).
However, it turns out that this simple approach is not sound without further restrictions.

For general first-class contexts, the second context can be arbitrary (instead of always a
constant ctx in the TRMC case), the context composition operation c1 ++ c2 needs an extra
check in order to avoid creating cycles: we check if c2 has an already overwritten hole or if
the hole in c2 is at the same address as in c1. In either case, c2 is copied along the context
path.
Figure 3 shows a partial implemention in C code of how one can implement constructor

contexts in a runtime for languages without precise reference counting. We assume that
HOLE is the distinguished value for unfilled holes (�). When we compose two contexts we
need to ensure we can handle shared contexts as well where we copy a context along the
context path if needed (using ctx_copy).
In the application and composition functions, the check (A) sees if the hole in c1 is

already overwritten (where *c1.hole != HOLE). In that case we copy c1 along the context
path as shown in Section 7.1 to maintain referential transparency.
However, in the composition operation we also need to do a similar check for c2 as well

in order to avoid cycles: the second check (B) checks if c2 has an already overwritten hole,
but also if the hole in c2 is the same as in c1. In either case, c2 is copied along the context
path. Effectively, both checks ensure that the new context that is returned always ends with
a single fresh HOLE. Let’s consider some examples of shared contexts. A basic example is
a simple shared context, as in:

val c = ctx Cons(1,_) in (c ++. [2], c ++. [3])

which evaluates to ([1,2],[1,3]). Here, during the second application, check (A) ensures
the shared context c is copied such that the list [1,2] stays unaffected.
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struct ctx_t { // a Minamide context
heap_block_t* root;
heap_block_t** hole;

};

struct ctx_t ctx_copy( struct ctx_t c ) {
struct ctx_t d = { .root = c.root, .hole = c.hole };
if( c.root == NULL ) return d;
heap_block_t** prev = &(c.root);
heap_block_t** next = &(d.root);

while( prev != c.hole ) {
*next = heap_block_copy( *prev );
prev = (*prev)->children + ((*prev)->ctx_path);
next = (*next)->children + ((*next)->ctx_path);

}
d.hole = next;
return d;

}

// (++.) : cctx<a,b> -> b -> a
heap_block_t* ctx_apply( struct ctx_t c1, heap_block_t* x )
{

// is c1 an empty context?
if (c1.root == NULL) return x;

// copy c1 ?
struct ctx_t d1 = (*c1.hole != HOLE ? ctx_copy(c1) : c1); // (A)

*d1.hole = x;
return d1.root;

}

// (++) : cctx<a,b> -> cctx<b,c> -> cctx<a,c>
struct ctx_t ctx_compose( struct ctx_t c1, struct ctx_t c2 )
{

// is c1 or c2 an empty context?
if (c1.root == NULL) return c2;
if (c2.root == NULL) return c1;

// copy c1 ?
struct ctx_t d1 = (*c1.hole != HOLE ? ctx_copy(c1) : c1 ); // (A)

// copy c2 ? (needed to avoid cycles)
struct ctx_t d2 = ((*c2.hole != HOLE || c1.hole == c2.hole)

? ctx_copy(c2) : c2 ); // (B)

*d1.hole = d2.root;
d1.hole = d2.hole;
return d1;

}

Fig. 3. Implementing constructor composition and application in the runtime system (for lan-

guages without precise reference counts).



41

A more tricky example is composing a context with itself:
val c = ctx Cons(1,_) in (c ++ c) ++. [2]

which evaluates to [1,1,2]. The check (B) here copies the appended c (since c1.hole ==

c2.hole). In this example the potential for a cycle is immediate, but generally it can be
obscured with a shared context inside another. Consider:

val c1 = ctx Cons(1,_)
val c2 = ctx Cons(2,_)
val c3 = ctx Cons(3,_)
val c = c1 ++ c2 ++ c3 in (c ++ c2) ++. [4]

which evaluates to [1,2,3,2,4]. The check (B) again copies the appended c2 in c ++ c2 (since
*c2.hole != HOLE).
Note that the (B) check in composition is sufficient to avoid cycles. In order to create a

cycle in the context path, either c1 must be in the context path of c2 (I), or the c2 in the
context path of c1 (II). For case (I), if c1 is at the end of c2, then their holes are at the same
address where c1.hole == c2.hole. Otherwise, if c1 is not at the end, then *c1.hole !=

HOLE and we have copied c1 already due to check (A). For case (II) the argument is similar:
if c2 is at the end of c1 we again have c1.hole == c2.hole, and otherwise *c2.hole !=

HOLE.
The implementation using precise reference counting is not very different from the one

without reference counting. Themain difference is in the checks (A) and (B), which become:
// copy c1 ?
struct ctx_t d1 = (!is_unique(c1.root) ? ctx_copy(c1) : c1 ); // (A)

// copy c2 ? (needed to maintain ctx paths where each node beside the root is unique)
struct ctx_t d2 = (!is_unique(c2.root) ? ctx_copy(c2) : c2 ); // (B)

This is the implementation that is used in the Koka runtime system. The (B) check here is
required tomaintain the invariant that context paths always form unique chains (Section 7.1).
From this property it follows directly that no cycles can occur in the context path.

7.5 Runtime Behaviour

Interestingly, the two implementations, with or without precise reference counting,do differ
in their runtime performance characteristics, which are dual to each other in terms of space
and time.

7.5.1 Time

The implementation without reference counting only copies on demand when the hole is
already filled, whereas our earlier implementation with reference counts copies whenever
the context is found to be not unique upon filling the hole. This can be a problem, if the
context is later discarded without being used. Consider the knapsack program, which in its
last iteration may call itself on a one-element list [x] with x = w. For this special case, the
code reduces to:

fun knapsack’(x : int, k : ctx<list<int>>) : <nondet,div> list<int>
val v = if flip() then x else fail() in k ++. Cons(v, [])
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This computation is run twice, where the first run successfully returns k ++. (Cons(x, []))

but the second run fails. The reference counting-based implementation has to copy k in the
first run, since its reference count is not one (due to k being captured for the second run).
In contrast, assuming that the hole in k is not yet filled, the new implementation can simply
fill the hole of k with Cons(x, []) in the first run without copying. Since k is discarded in
the second run, no copying is needed at all. We will come back to this point in Section 9,
where we see that the reference counting implementation in Koka does not perform well in
a backtracking search, presumably due to this issue.

7.5.2 Space

The implementation without precise reference counts can use more space though than the
one based on reference counting. This can occur when a context accidentally holds on
to values that have been written into its hole. Consider an earlier state of the knapsack
program, where it may process a list vs = Cons(v, vv) with v > w. Then we can simplify the
code to:

if flip()
then knapsack(w - v, Cons(v, vv), k ++ Cons(v, _))
else val v’ = select(vv) in knapsack(w - v’, Cons(v, vv), k ++ Cons(v, _))

Following the flip(), we first try to use v as our element. But since v > w, this computation
fails and we backtrack. However, our new algorithm may have written Cons(v, _) into the
hole of k. This value is now garbage, but this may not be obvious to a garbage collector or
reference counting scheme, since k is still live. Only when backtracking to the second run
do we copy k and discard the old value.
In contrast, the implementation based on reference counting would have copied (and

discarded) k in the first run already. Unlike the new implementation, it is garbage-
free [Reinking, Xie et al. 2021] and guarantees that no space is used for values that
are no longer needed. For this reason, we prefer the implementation via reference counting
in Koka, using the other implementation for GC-based languages.

8 Programming with First-class Constructor Contexts

First-class constructor contexts turn out to be a powerful feature, and they allow us to
write many programs by hand that would be hard to generate automatically from a general
TRMC transformation. In this section we explore some of these programs, all of which can
be written in Koka.

8.1 Modulo Cons Products

The partition function calls a predicate on each element of a list and appends it to one of
two piles depending on the result:
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fun partition(p, xs)
match xs

Nil -> (Nil, Nil)
Cons(x, xx) ->

val (yes, no) = partition(p, xx)
if p(x)

then (Cons(x, yes), no)
else (yes, Cons(x, no))

The recursive call to partition is followed by a pattern match on the resulting tuple, an if-
statement and finally the constructor application. This does not fit the TRMc transformation
directly, but it also might not seem too different – and indeed this function was suggested
as fruitful target for an expanded TRMC translation both by Bour et al. [2021] and the
conference version of this paper.
However, in order to make this function tail recursive, the p(x) call would have to be

moved before the recursive call. That can be done by a compiler if p is pure, but what if p
may perform side-effects? Thus, even an extended TRMc transformation could only apply
if the user first rewrote their code to:

fun partition(p, xs)
match xs

Nil -> (Nil, Nil)
Cons(x, xx) ->

val ok = p(x)
val (yes, no) = partition(p, xx)
if ok

then (Cons(x, yes), no)
else (yes, Cons(x, no))

The conference version of this paper describes a transformation that recognizes that the
pattern-match on the returned tuple is mirrored in the creation of a new tuple and looks for
constructor contexts inside the created tuple.
However, it may not be worth implementing such specific transformation as we can easily

rewrite it manually using two explicit first-class constructor contexts for yes and no:
fun partition(p, xs, yes, no)

match xs
Nil -> (yes ++. Nil, no ++. Nil)
Cons(x, xx) ->

if p(x)
then partition(p, xx, yes ++ ctx Cons(x, _), no)
else partition(p, xx, yes, no ++ ctx Cons(x, _))

The resulting code is clearer than the version with an explicit ok variable, and arguably even
clearer than the original version. . . and even being more efficient. For this reason, we now
recommend that programmers use first-class constructor contexts directly for examples like
this.

8.2 Difference Lists

Another example of future work described by Bour et al. [2021] is the flatten function.
This function calls itself recursively and passes the result to the append function on lists:
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fun append(xs : list<a>, ys : list<a>) : list<a>
match xs

Nil -> ys
Cons(x, xx) -> Cons(x, append(xx, ys))

fun flatten(xss : list<list<a>>) : list<a>
match xss

Nil -> Nil
Cons(xs, xss) -> append(xs, flatten(xss))

While append is tail recursive modulo cons, flatten is not. However, append is just a sequence
of constructor applications ending in the second argument, andwe can easily rewrite it using
a first-class constructor context returned from append (i.e. a difference list):

fun append(acc : ctx<list<a>>, xs : list<a>) : ctx<list<a>>
match xs

Nil -> acc
Cons(x, xs) -> append(acc ++ ctx Cons(x, _), xs)

fun flatten-acc(acc : ctx<list<a>>, xss : list<list<a>>) : list<a>
match xss

Nil -> acc ++. Nil
Cons(xs, xss) -> flatten-acc(append(acc, xs), xss)

fun flatten( xss : list<list<a>> ) : list<a>
flatten-acc(ctx _, xss)

8.3 Composing Constructor Contexts

Another examplewhich illustrates the usefulness of first-class conntexts that can be stored in
data structures, is the composition of constructor contexts with defunctionalized evaluation
contexts. While constructor contexts naturally apply to the map over a list, they do not apply
directly to a map over trees:

type tree<a>
Leaf
Bin(l : tree<a>, a : a, r : tree<a>)

fun tmap(t, f)
match t

Bin(l, x, r) -> Bin(tmap(l, f), f(x), tmap(r, f))
Leaf -> Leaf

Here, the first recursive call to tmap is not in a constructor context and thus the TRMc
transformation alone is not enough to make this tail recursive. However, instead of resorting
to full defunctionalized evaluation contexts, we can use them only for descending into the
left child and keep using constructor contexts to descend into the right branch:

type accum<a,b>
Hole
Accum(acc : accum<a,b>, top : ctx<tree<b>>, x : a, r : tree<a>)

fun tmap-acc(t, f, acc, top)
match t

Bin(l, x, r) -> tmap-acc(l, f, Accum(acc, top, x, r), ctx _)
Leaf -> tmap-app(f, top ++. Leaf, acc)
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fun tmap-app(f, l, acc)
match acc

Hole -> l
Accum(acc, top, x, r) -> tmap-acc(r, f, acc, top ++ ctx Bin(l, f(x), _))

This function immediately follows from the technique described in Section 5.3. It extends
the acc accumulator whenever it goes into the left subtree, and extends the top accumulator
whenever it goes into the right subtree. While a version using only defunctionalized evalua-
tion contexts corresponds to pointer reversal [Schorr and Waite 1967], this version reverses
only the pointers going to the right child, but leaves the pointers to the left child intact.

8.4 Polymorphic Recursion

In this paper we have limited ourselves to recursive functions where each recursive call has
the same return type. However, there are some functions where the recursive call might
have a different return type due to polymorphic recursion. For example, Okasaki [1999]
presents the following random access list:

type seq<a>
Empty
Zero( s : seq<(a, a)> )
One ( x : a, s : seq<(a, a)> )

fun cons(x : a, s : seq<a>) : seq<a>
match s

Empty -> One(x, Empty)
Zero(ps) -> One(x, ps)
One(y, ps) -> Zero(cons((x, y), ps))

Here the recursive call instantiates a with (a,a), and the hole in Zero(�) has type seq<(a,a)>.
It turns out that for polymorphically recursive code, performing the translation can lead to
code that is not typeable is System F. This issue is well-known for defunctionalized evalu-
ation contexts, where GADTs are required to regain typability [Pottier and Gauthier 2004].
Analogously, we give two type parameters to first-class constructor contexts cctx<a,b>

where a corresponds to the type of the root and b to the type of the hole. Our primitive
operations have the general types:

alias ctx<a> = cctx<a,a>

fun (++)( c1 : cctx<a,b>, c2 : cctx<b,c> ) : cctx<a,c>
fun (++.)( c : cctx<a,b>, x : b) : a

It turns out that this encapsulates the necessary type information to type the result of
the translation for polymorphic recursion. Even though Koka has an intermediate core
representation based on System F, the application and composition functions are primitives
and Koka transforms the above function without problems. Our cons function is translated
to:

fun cons(x : a, s : seq<a>, acc : cctx<seq<b>, seq<a>>) : seq<b>
match s

Empty -> acc ++. One(x, Empty)
Zero(ps) -> acc ++. One(x, ps)
One(y, ps) -> cons((x, y), ps, acc ++ ctx Zero(_))
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9 Benchmarks

The Koka compiler has a full implementation the TRMC algorithm as described in this
paper for constructor contexts (since v2.0.3, Aug 2020). We measure the impact of TRMC
relative to other variants on various tests: the standard map function over a list (map),
mapping over a balanced binary tree (tmap), balanced insertion in a red-black tree (rbtree),
and finally the knapsack problem as shown in Section 7. Each test program scales the
repetitions to process the same number of total elements (100 000 000) for each test size.
The map test repeatedly maps the increment function over a shared list of numbers from

1 to N, and sums the result list. This means that the map function repeatedly copies the
original list and Perceus cannot apply reuse here [Lorenzen and Leijen 2022]. For example,
the test for the standard (and TRMC) map function in Koka is written as:

fun map-std( xs : list<a>, f : a -> e b ) : e list<b>
match xs

Cons(x,xx) -> Cons(f(x),xx.map-std(f))
Nil -> Nil

fun test(n : int)
val xs = list(1,n)
val x = fold-int(0, 100_000_000/max(n,1), 0) fn(i,acc)

acc + xs.map-std(fn(x) x + 1).sum
println("total: " ++ x.show)

For each test, we measured five different variants:
• trmc: the TRMC version which is exactly like the standard (std) version.
• std: the standard non tail recursive version. This is the same source as the trmc version
but compiled with the –fno-trmc flag.

• acc: this is the accumulator style definition where the accumulated result list- or tree-
visitor is reversed in the end.

• acc (no reuse): this is the accumulator style version but with Perceus reuse disabled for
the accumulator. The performance of this variant may be more indicative for systems
without reuse. Accumulator reuse is important as it allows the accumulated result to be
reversed “in place”.

• cps: the CPS style version with an explicit continuation function. This allocates a closure
for every element that eventually allocates the result element for the final result.

The benchmark results are shown in Figure 4. For the map function we see that our TRMC
translation is always faster than the alternatives for any size list. For a tree map (tmap) this is
also the case, except for one-element trees where the standard tmap is slightly faster (6%).
However, when we consider a slightly more realistic example of balanced insertion into a
tree, TRMC is again as fast or faster in all cases. The rbtree benchmark is interesting as
during traversal down to the insertion point, there a 2 recursive cases where TRMC applies,
but also 2 recursive cases where TRMC does not apply. Here we see that it still helps to
apply TRMC where possible as looping is apparently faster than a recursive call in this
benchmark.
Finally, knapsack implements the example from 7 with a backtracking effect.

Unfortunately, the TRMC variant, which uses the hybrid approach to copy the context
on demand, is less fast than the alternatives. It is not that much slower though – about 25%
at worst. The reason for this is that there is less sharing. For the accumulator version, at
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Fig. 4. Benchmarks on Ubuntu 20.04 (AMD 5950x), Koka v2.4.1-dev. The benchmarks are map over

a list (map), map over a tree (tmap), balanced red-black tree insertion (rbtree), and the knapsack

program that use non-linear control flow. Each workload is scaled to process the same number

of total elements (usually 100 000 000). The tested variants are TRMC (trmc), the standard non

tail recursive style (std), accumulator style (acc), accumulator style without Perceus reuse (acc (no

reuse)), and finally CPS style (cps).
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each choice point the current accumulated result is shared between each choice, building
a tree of choices. At the end, many of these choices are just discarded (as the knapsack is
too full), and only for valid solutions a result list is constructed (as a copy). However, for
the hybrid trmc approach, we copy the context on demand at each choice point, and when
we reach a point where the knapsack is too full the entire result is discarded, keeping only
valid solutions. As such, the trmc variant copies more than the other approaches depending
on how many of the generated solutions are eventually kept. Still, in Koka we prefer the
hybrid approach to avoid code duplication.

10 Related Work

Tail recursion modulo cons was a known technique in the LISP community as early as
the 1970’s. Risch [1973] describes the TRMc transformation in the context of REMREC
system which also implemented the modulo associative operators instantiation described in
Section 4.4. Amore precise description of the TRMc transformation was given by Friedman
and Wise [1975].
More recently, Bour et al. [2021] describe an implementation for OCaml which also

explores various language design issues with TRMc. The implementation is based on
destination passing style where the result is always directly written into the destination
hole. This entails generating an initial unrolling of each function. For example, the map

function is translated (in pseudo code) as:
fun map( xs, f )

match xs
Nil -> Nil
Cons(x,xx) ->

val y = f(x)
val dst = Cons(y,�)
map_dps( xx, f, dst@2 )
dst

fun map_dps( xs, f, dst@i ) : ()
match xs

Nil -> dst.i := Nil
Cons(x,xx) ->

val y = f(x)
val dst’ = Cons(y,�)
dst.i := dst’
map_dps( xx, f, dst’@2 )

This can potentially be more efficient since there is only one extra argument for the desti-
nation address (instead of our representation as a Minamide tuple of the final result with
the hole address) but it comes at the price of duplicating code. Note that the map_dps func-
tion returns just a unit value and is only called for its side effect. As such it seems quite
different from our general TRMC based on context composition and application. However,
the destination passing style may still be reconciled with our approach: with a Minamide
tuple the first iteration always uses an “empty” tuple, while every subsequent iteration has
a tuple with the fixed final result as its first element, where only the hole address (i.e. the
destination) changes. Destination passing style uses this observation to specialize for each
case, doing one unrolling for the first iteration (with the empty tuple), and then iterating
with only the second hole address as the destination.
The algorithm rules by Bour et al. [2021] directly generate a destination passing style

program. For example, the core translation rule for a constructor with a hole is:
n′ = |I | + 1 d′.n′←�[U]  dps T[dl .nl←Kl]l

d.n←K[C((ei)i∈I, �, (ej)j)] [U]  dps let d′ = C((ei)i∈I,Hole, (ej)j) in
d.n←K[d′];
T[dl .nl←Kl]l

[dps-reify]
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Here a single rule does various transformations that we treat as orthogonal, such as folding,
extraction, instantiation of composition, and the actual TRMc transformation.
In logic languages, difference lists [Clark and Tärnlund 1977] can be used to encode a

form of TRMc: difference lists are usually presented as a pair (L, X) where X is a logic
variable which is the last element of the list L. With in-place update of the unification
variable X, one can thus append to L in constant time – quite similar to our constructor
contexts. Engels [2022] describes an implemention of TRMC for the Elm language, that
can also tail-optimize calls to the right of a list append by keeping the last cell of the right-
appended list as a context. Pottier and Protzenko [2013] implement a type system inspired
by separation logic, which allows the user to implement a safe version of in place updating
TRMc through a mutable intermediate datatype. Lazyness works similar to TRMc for the
functions we consider: recursive calls guarded by a constructor are thunked and incremental
forcing can happenwithout using the stack. The listless machine [Wadler 1984] is an elegant
model for this behaviour.
Hughes [1986] considers the function reverse and shows how the fast version can be

derived from the naive version by defining a new representation of lists as a composi-
tion of partially applied append functions (which are sometimes also called difference
lists). His function rep(xs) (defined as fn(ys) xs ++ ys) creates such abstract list, and is
equal to our ctx when instantiated to append functions and list contexts (Section 4.1).
Similarly, his abs(f) function (defined as f []) corresponds to our app k [] in that case,
and finally, the correctness condition would correspond to our (appctx) law. The idea of
calculating programs from a specification has a long history and we refer the reader to
early work by Bird [1984], Wand [1980], and Meertens [1986], and more recent work
by Gibbons [2022] and Hutton [2021].
Defunctionalization [Danvy and Nielsen 2001; Reynolds 1972] has often been used

to eliminate all higher-order calls and obtain a first-order version of a program. Wand
and Friedman [1978] describes a defunctionalization algorithm in the context of LISP.
Minamide et al. [1996] introduce special primitives pack and open (that correspond roughly
to our ctx and app) and describe a type system for correct usage. Bell et al. [1997]
and Tolmach and Oliva [1998] perform the conversion automatically at compile-time.
Danvy and Nielsen [2001] propose to apply defunctionalization only to the closures of
self-recursive calls, which should produce equal results as our approach in Section 4.3.
However, they do not give an algorithm for this and the technique has so far mainly been
used manually [Danvy and Goldberg 2002; Gibbons 2022].
An early implementation of TRMc in a typed language was in the OPAL com-

piler [Didrich et al. 1994]. Similar to Bour et al. [2021] they also used destination passing
style compilation with an extra destination argument where the final result is written to. Like
Koka and Lean, OPAL also managed memory using reference counting and could reuse
matched constructors [Schulte and Grieskamp 1992]. Reuse combines well with TRMc
and in recent work Lorenzen and Leijen [2022] show how this can be used to speed up
balanced insertion into red-black trees using the functional but in-place (FBIP) technique.
Sobel and Friedman [1998] propose to reuse the closures of a CPS transformed program for
newly allocated constructors and show that this approach succeeds for all anamorphisms.
However, reuse based on dynamic reference counts can improve upon this by for example
also reusing the original data for the accumulator (and generalize to non-linear control).
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We are using the linearity of the Perceus heap semantics [Lorenzen and Leijen 2022;
Reinking, Xie et al. 2021] to reason about linear chains and the essence of in-place updates.
In our case, these linear chains are used to reason about the shape of a separate part of the
heap. This suggest that separation logic [Reynolds 2002] could also be used effectively for
such proofs. For example, Moine et al. [2023] use separation logic to reason about space
usage under garbage collection.

11 Conclusion and Future Work

In this paper we explored tail recursion modulo context and tried to bring the general prin-
ciples out of the shadows of specific algorithms and into the light of equational reasoning.
We have a full implementation of the modulo cons instantiation and look forward to explore
future extensions to other instantiations as described in this paper.

Conflicts of Interest. None

References

Andrew W. Appel. 1991. Compiling with Continuations. Cambridge University Press. doi:https://doi.
org/10.1017/CBO9780511609619.

Jeffrey M. Bell, Françoise Bellegarde, and James Hook. 1997. Type-Driven Defunctionalization, ICFP
’97, . Association for Computing Machinery, New York, NY, USA, 25–37. doi:https://doi.org/10.
1145/258948.258953.

Richard S. Bird. Oct. 1984. The Promotion and Accumulation Strategies in Transformational
Programming. ACM Transactions on Programming Languages and Systems 6 (4): 487–504.
doi:https://doi.org/10.1145/1780.1781.

Joshua Bloch. 2008. Effective Java (2nd Edition) (The Java Series). 2nd edition. Prentice Hall PTR,
USA. doi:https://doi.org/10.5555/1377533.

Frédéric Bour, Basile Clément, and Gabriel Scherer. Apr. 2021. Tail Modulo Cons. Journeées
Francophones Des Langages Applicatifs (JFLA), April. Saint Médard d’Excideuil, France.
https://hal.inria.fr/hal-03146495/document. hal-03146495.

Keith L Clark, and Sten-ke Tärnlund. 1977. A First Order Theory of Data and Programs. In IFIP
Congress, 939–944.

Olivier Danvy, and Andrzej Filinski. 1990. Abstracting Control. In Proceedings of the 1990 ACM
Conference on LISP and Functional Programming, 151–160. LFP ’90. Nice, France. doi:https://
doi.org/10.1145/91556.91622.

Olivier Danvy, and Mayer Goldberg. 2002. There and Back Again. In Proceedings of the Seventh ACM
SIGPLAN International Conference on Functional Programming, 230–234. ICFP ’02. Pittsburgh,
PA, USA. doi:https://doi.org/10.1145/581478.581500.

Olivier Danvy, and Lasse R. Nielsen. 2001. Defunctionalization at Work. In Proceedings of the 3rd
ACM SIGPLAN International Conference on Principles and Practice of Declarative Programming,
162–174. PPDP ’01. Florence, Italy. doi:https://doi.org/10.1145/773184.773202.

Klaus Didrich, Andreas Fett, Carola Gerke, Wolfgang Grieskamp, and Peter Pepper. 1994. OPAL:
Design and Implementation of an Algebraic Programming Language. In Programming Languages
and System Architectures, 228–244. Springer. doi:https://doi.org/10.1007/3-540-57840-4_34.

Stephen Dolan, Leo White, KC Sivaramakrishnan, Jeremy Yallop, and Anil Madhavapeddy. Sep. 2015.
Effective Concurrency through Algebraic Effects. In OCaml Workshop.

Damien Doligez, and Xavier Leroy. 1993. A Concurrent, Generational Garbage Collector for a
Multithreaded Implementation of ML. In Proceedings of the 20th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, 113–123. POPL ’93. Association for

https://doi.org/10.1017/CBO9780511609619
https://doi.org/10.1017/CBO9780511609619
https://doi.org/10.1145/258948.258953
https://doi.org/10.1145/258948.258953
https://doi.org/10.1145/1780.1781
https://doi.org/10.5555/1377533
https://hal.inria.fr/hal-03146495/document
https://doi.org/10.1145/91556.91622
https://doi.org/10.1145/91556.91622
https://doi.org/10.1145/581478.581500
https://doi.org/10.1145/773184.773202
https://doi.org/10.1007/3-540-57840-4_34


51

Computing Machinery, New York, NY, USA. doi:https://doi.org/10.1145/158511.158611.
Zdeněk Dvořák. 2004. Declarative World Inspiration. In GCC Developers’ Summit, 25. See also

https://github.com/gcc-mirror/gcc/blob/master/gcc/tree-tailcall.cc.
Jeroen Engels. 2022. Tail Recursion, but modulo Cons. https://jfmengels.net/modulo-cons/.

Accessed: 2022-06-06.
Cormac Flanagan, Amr Sabry, Bruce F. Duba, and Matthias Felleisen. 1993. The Essence of

Compiling with Continuations. In Proceedings of the ACM SIGPLAN 1993 Conference on
Programming Language Design and Implementation, 237–247. PLDI ’93. Albuquerque, New
Mexico, USA. doi:https://doi.org/10.1145/155090.155113.

Daniel P. Friedman, and David S. Wise. Dec. 1975. Unwinding Stylized Recursion into Iterations. 19.
Computer Science Department Indiana University, Bloomingdale, Indiana. https://legacy.cs.
indiana.edu/ftp/techreports/TR19.pdf.

Jeremy Gibbons. Nov. 2022. Continuation-Passing Style, Defunctionalization, Accumulations, and
Associativity. The Art, Science, and Engineering of Programming 6 (November). Article 7.

Robert Harper. 2012. 15-150 Equational Reasoning Guide. https://www.cs.cmu.edu/~15150/
previous-semesters/2012-spring/resources/handouts/equational.pdf. Notes for the 15-
150 CMU Functional Programming course.

J. Hindley, and Jonathan Seldin. Sep. 1986. Introduction to Combinators and Lambda-Calculus.
Lambda-Calculus and Combinators, an Introduction. Cambridge University Press. doi:https://
doi.org/10.1017/CBO9780511809835.

Gérard P. Huet. 1997. The Zipper. Journal of Functional Programming 7 (5): 549–554. doi:https://doi.
org/10.1017/S0956796897002864.

R John Muir Hughes. 1986. A Novel Representation of Lists and Its Application to the Function
“reverse.” Information Processing Letters 22 (3). Elsevier: 141–144. doi:https://doi.org/10.1016/
0020-0190(86)90059-1.

Graham Hutton. Jan. 2021. It’s as Easy as 1, 2, 3. https://www.cs.nott.ac.uk/~pszgmh/123.pdf.
Unpublished draft.

DaanLeijen. 2014.Koka: ProgrammingwithRowPolymorphic Effect Types. InMSFP’14, 5thWorkshop
on Mathematically Structured Functional Programming. doi:https://doi.org/10.4204/EPTCS.153.
8.

Daan Leijen. Jan. 2017. Type Directed Compilation of Row-Typed Algebraic Effects. In Proc. of the
44th ACM SIGPLAN Symp. on Principles of Programming Languages (POPL’17), 486–499. Paris,
France. doi:https://doi.org/10.1145/3009837.3009872.

Daan Leijen. 2021. The Koka Language. https://koka-lang.github.io.
Daan Leijen, and Anton Lorenzen. Jul. 2022. Tail RecursionModulo Context – An Equational Approach.

MSR-TR-2022-18. Microsoft Research.
Daan Leijen, and Anton Lorenzen. 2023. Tail Recursion Modulo Context: An Equational Approach.

Proceedings of the ACM on Programming Languages 7 (POPL). ACM New York, NY, USA:
1152–1181. doi:https://doi.org/10.1145/3571233.

Anton Lorenzen, and Daan Leijen. Aug. 2022. Reference Counting with Frame Limited Reuse. In Proc.
ACM Program. Lang., volume 6. ICFP. Association for Computing Machinery, New York, NY,
USA. doi:https://doi.org/10.1145/3547634.

Anton Lorenzen, Daan Leijen, and Wouter Swierstra. 2023. FP2: Fully in-Place Functional
Programming. Proceedings of the ACM on Programming Languages 7 (ICFP). ACM New York,
NY, USA: 275–304. doi:https://doi.org/10.1145/3607840.

Anton Lorenzen, Daan Leijen, Wouter Swierstra, and Sam Lindley. 2024. The Functional Essence of
Imperative Binary Search Trees. Proceedings of the ACM on Programming Languages, number
PLDI. ACM New York, NY, USA.

Luke Maurer, Paul Downen, Zena M Ariola, and Simon Peyton Jones. 2017. Compiling without
Continuations. In Proceedings of the 38th ACM SIGPLAN Conference on Programming Language
Design and Implementation, 482–494.

Lambert Meertens. Jan. 1986. Algorithmics: Towards Programming as a Mathematical Activity. In
Mathematics and Computer Science, 289–334.

https://doi.org/10.1145/158511.158611
https://github.com/gcc-mirror/gcc/blob/master/gcc/tree-tailcall.cc
https://jfmengels.net/modulo-cons/
https://doi.org/10.1145/155090.155113
https://legacy.cs.indiana.edu/ftp/techreports/TR19.pdf
https://legacy.cs.indiana.edu/ftp/techreports/TR19.pdf
https://www.cs.cmu.edu/~15150/previous-semesters/2012-spring/resources/handouts/equational.pdf
https://www.cs.cmu.edu/~15150/previous-semesters/2012-spring/resources/handouts/equational.pdf
https://doi.org/10.1017/CBO9780511809835
https://doi.org/10.1017/CBO9780511809835
https://doi.org/10.1017/S0956796897002864
https://doi.org/10.1017/S0956796897002864
https://doi.org/10.1016/0020-0190%252886%252990059-1
https://doi.org/10.1016/0020-0190%252886%252990059-1
https://www.cs.nott.ac.uk/~pszgmh/123.pdf
https://doi.org/10.4204/EPTCS.153.8
https://doi.org/10.4204/EPTCS.153.8
https://doi.org/10.1145/3009837.3009872
https://koka-lang.github.io
https://doi.org/10.1145/3571233
https://doi.org/10.1145/3547634
https://doi.org/10.1145/3607840


52 Tail Recursion Modulo Context: An Equational Approach

Yasuhiko Minamide. 1998. A Functional Representation of Data Structures with a Hole. In Proceedings
of the 25th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, 75–84.
POPL ’98. San Diego, California, USA. doi:https://doi.org/10.1145/268946.268953.

Yasuhiko Minamide, Greg Morrisett, and Robert Harper. 1996. Typed Closure Conversion. In
Proceedings of the 23rd ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, 271–283. POPL ’96. Association for Computing Machinery, New York, NY,
USA. doi:https://doi.org/10.1145/237721.237791.

Alexandre Moine, Arthur Charguéraud, and François Pottier. Jan. 2023. A High-Level Separation Logic
for Heap Space under Garbage Collection (Extended Version). In Proceedings of the 50th ACM
SIGACT-SIGPLAN Symposium on Principles of Programming Languages, 1–27. POPL ’23.

Chris Okasaki. Jun. 1999. Purely Functional Data Structures. Colombia University, New York.
Gordon D. Plotkin, and John Power. 2003. Algebraic Operations and Generic Effects. Applied

Categorical Structures 11 (1): 69–94. doi:https://doi.org/10.1023/A:1023064908962.
Gordon D. Plotkin, and Matija Pretnar. Mar. 2009. Handlers of Algebraic Effects. In 18th European

Symposium on Programming Languages and Systems, 80–94. ESOP’09. York, UK. doi:https://doi.
org/10.1007/978-3-642-00590-9_7.

François Pottier, and Nadji Gauthier. 2004. Polymorphic Typed Defunctionalization, POPL ’04, .
Association for Computing Machinery, New York, NY, USA, 89–98. doi:https://doi.org/10.1145/
964001.964009.

François Pottier, and Jonathan Protzenko. 2013. Programming with Permissions in Mezzo. In
Proceedings of the 18th ACM SIGPLAN International Conference on Functional Programming,
173–184. ICFP ’13. ACM, Boston, Massachusetts, USA. doi:https://doi.org/10.1145/2500365.
2500598.

Reinking, Xie, de Moura, and Leijen. 2021. Perceus: Garbage Free Reference Counting with Reuse.
In Proceedings of the 42nd ACM SIGPLAN International Conference on Programming Language
Design and Implementation, 96–111. PLDI 2021. ACM, New York, NY, USA. doi:https://doi.org/
10.1145/3453483.3454032.

John C. Reynolds. 1972. Definitional Interpreters for Higher-Order Programming Languages. In
Proceedings of the ACM Annual Conference - Volume 2, 717–740. ACM, Boston, Massachusetts,
USA. doi:https://doi.org/10.1145/800194.805852.

John C. Reynolds. 2002. Separation Logic: A Logic for Shared Mutable Data Structures. In Proceedings
of the 17th Annual IEEE Symposium on Logic in Computer Science, 55–74. LICS ’02. IEEE
Computer Society, USA.

Tore Risch. Nov. 1973. REMREC - A Program for Automatic Recursion Removal. Inst. för
Informationsbehandling, Uppsala Universitet. https://user.it.uu.se/~torer/publ/remrec.
pdf.

Herbert Schorr, and William MWaite. 1967. An Efficient Machine-Independent Procedure for Garbage
Collection in Various List Structures. Communications of the ACM 10 (8). ACM New York, NY,
USA: 501–506.

Wolfram Schulte, and Wolfgang Grieskamp. 1992. Generating Efficient Portable Code for a Strict
Applicative Language. In Declarative Programming, Sasbachwalden 1991, 239–252. Springer.
doi:https://doi.org/10.1007/978-1-4471-3794-8_16.

Chung-chieh Shan. 2007. A Static Simulation of Dynamic Delimited Control. Higher-Order and
Symbolic Computation 20 (4): 371–401. doi:https://doi.org/10.1007/s10990-007-9010-4.

Dorai Sitaram, and Matthias Felleisen. 1990. Control Delimiters and Their Hierarchies. LISP and
Symbolic Computation 3 (1): 67–99. doi:https://doi.org/10.1007/BF01806126.

Jonathan Sobel, and Daniel P. Friedman. 1998. Recycling Continuations. In Proc. of the Third ACM
SIGPLAN Int. Conf. on Functional Programming, 251–260. ICFP ’98. Baltimore, Maryland,
USA. doi:https://doi.org/10.1145/289423.289452.

Andrew Tolmach, and Dino P Oliva. 1998. FromML to Ada: Strongly-Typed Language Interoperability
via Source Translation. Journal of Functional Programming 8 (4). Cambridge University Press:
367–412. doi:https://doi.org/10.1017/S0956796898003086.

https://doi.org/10.1145/268946.268953
https://doi.org/10.1145/237721.237791
https://doi.org/10.1023/A:1023064908962
https://doi.org/10.1007/978-3-642-00590-9_7
https://doi.org/10.1007/978-3-642-00590-9_7
https://doi.org/10.1145/964001.964009
https://doi.org/10.1145/964001.964009
https://doi.org/10.1145/2500365.2500598
https://doi.org/10.1145/2500365.2500598
https://doi.org/10.1145/3453483.3454032
https://doi.org/10.1145/3453483.3454032
https://doi.org/10.1145/800194.805852
https://user.it.uu.se/~torer/publ/remrec.pdf
https://user.it.uu.se/~torer/publ/remrec.pdf
https://doi.org/10.1007/978-1-4471-3794-8_16
https://doi.org/10.1007/s10990-007-9010-4
https://doi.org/10.1007/BF01806126
https://doi.org/10.1145/289423.289452
https://doi.org/10.1017/S0956796898003086


53

Sebastian Ullrich, and Leonardo de Moura. Sep. 2019. Counting Immutable Beans – Reference
Counting Optimized for Purely Functional Programming. In Proceedings of the 31st Symposium
on Implementation and Application of Functional Languages (IFL’19). Singapore.

Philip Wadler. 1984. Listlessness Is Better than Laziness: Lazy Evaluation and Garbage Collection at
Compile-Time. InProceedings of the 1984 ACMSymposium on LISP andFunctional Programming,
45–52. LFP ’84. Association for Computing Machinery, New York, NY, USA. doi:https://doi.org/
10.1145/800055.802020.

Mitchell Wand. Jan. 1980. Continuation-Based Program Transformation Strategies. Journal of the ACM
27 (1): 164–180. doi:https://doi.org/10.1145/322169.322183.

MitchellWand, andDaniel P. Friedman. Jan. 1978.CompilingLambda-ExpressionsUsingContinuations
and Factorizations. Comput. Lang. 3 (4). Pergamon Press, Inc., USA: 241–263. doi:https://doi.org/
10.1016/0096-0551(78)90042-5.

Andrew K. Wright, and Matthias Felleisen. Nov. 1994. A Syntactic Approach to Type Soundness. Inf.
Comput. 115 (1): 38–94. doi:https://doi.org/10.1006/inco.1994.1093.

Nicolas Wu, Tom Schrijvers, and Ralf Hinze. 2014. Effect Handlers in Scope. In Proceedings of the
2014 ACM SIGPLAN Symposium on Haskell, 1–12. Haskell ’14. Göthenburg, Sweden. doi:https://
doi.org/10.1145/2633357.2633358.

Ningning Xie, and Daan Leijen. 2020. Effect Handlers in Haskell, Evidently. In Proceedings of the
13th ACM SIGPLAN International Symposium on Haskell, 95–108. Haskell 2020. Association for
Computing Machinery, New York, NY, USA. doi:https://doi.org/10.1145/3406088.3409022.

Ningning Xie, and Daan Leijen. Aug. 2021. Generalized Evidence Passing for Effect Handlers: Efficient
Compilation of Effect Handlers to C. In Proc. ACM Program. Lang., volume 5. ICFP. Association
for Computing Machinery, New York, NY, USA. doi:https://doi.org/10.1145/3473576.

https://doi.org/10.1145/800055.802020
https://doi.org/10.1145/800055.802020
https://doi.org/10.1145/322169.322183
https://doi.org/10.1016/0096-0551%252878%252990042-5
https://doi.org/10.1016/0096-0551%252878%252990042-5
https://doi.org/10.1006/inco.1994.1093
https://doi.org/10.1145/2633357.2633358
https://doi.org/10.1145/2633357.2633358
https://doi.org/10.1145/3406088.3409022
https://doi.org/10.1145/3473576


54 Tail Recursion Modulo Context: An Equational Approach

map 1 map 10 map 100 map 1000 map 10000 map 100000 map 1000000

0x

1x

2x

3x

(
0
.6
8
s
)

(
0
.4
0
s
)

(
0
.3
7
s
)

(
0
.3
7
s
)

(
0
.4
1
s
)

(
0
.4
2
s
)

(
0
.4
9
s
)

1
.1
0
x

1
.1
8
x

1
.2
2
x

1
.1
9
x

1
.2
0
x

1
.1
7
x

1
.1
2
x

1
.0
6
x

1
.3
5
x

1
.6
5
x

1
.6
8
x

1
.9
3
x 2
.1
0
x

o
u
t
o
f
s
t
a
c
k

1
.7
8
x

2
.3
8
x

2
.4
3
x

2
.3
2
x

2
.2
9
x

2
.3
1
x

2
.1
2
x

1
.1
2
x

0
.9
5
x

1
.0
3
x

1
.0
5
x

1
.3
9
x

4
.8
8
x

4
.5
3
x

0
.9
4
x

0
.7
5
x

0
.9
7
x

1
.0
3
x

1
.5
6
x

5
.4
3
x

8
.3
9
x

0
.9
4
x

0
.7
5
x

1
.0
0
x

1
.0
0
x

1
.4
4
x

4
.4
3
x

o
u
t
o
f
s
t
a
c
k

1
.0
6
x

1
.2
0
x

1
.5
9
x

1
.8
6
x

3
.9
8
x

1
1
.7
6
x

1
5
.4
7
x

r
e
l
a
t
i
v
e
t
i
m
e
(
l
o
w
e
r
i
s
b
e

e
r
)

koka trmc koka acc koka std koka cps

ocaml trmc ocaml acc ocaml std ocaml cps

Fig. 5. Benchmarks on Ubuntu 20.04 (AMD 5950x), Koka v2.4.1-dev, OCaml 4.14.0. The benchmark

repeatedly maps the increment function over a list of a given size and sums the result list. Each

workload is scaled to process the same number of total elements (100 000 000). The tested variants

of map are TRMC (trmc), accumulator style (acc), the standard non tail recursive style (std), and

finally CPS style (cps).

1 Further Benchmarks

Figure 5 shows benchmark results of the map benchmark. This time we included the results
for OCaml 4.14.0 which has support for TRMc [Bour et al. 2021] using the [@tail_mod_cons
] attribute. For example, the TRMc map function is expressed as:

let[@tail_mod_cons] rec map_trmc xs f =
match xs with
| [] -> []
| x :: xx -> let y = f x in y :: map_trmc xx f

Comparing across systems is always difficult since there are many different aspects, in
particular the different memory management of both systems where Koka uses Perceus
style reference counting [Reinking, Xie et al. 2021] and OCaml uses generational garbage
collection, with a copying collector for the minor generation, and a mark-sweep collector
for the major heap [Doligez and Leroy 1993].
The results at least indicate that our approach, using Minamide style tuples of the final

result object and a hole address, is competitive with the OCaml approach based on direct
destination passing style. For our translation, the trmc translation is always as fast or faster
as the alternatives, but unfortunately this is not the case in OCaml (yet) where it requires
larger lists to become faster then the standard recursion.
OCaml is also faster for lists of size 10 where std is about 25% faster than Koka’s trmc.

We believe this is in particular due to memory management. For the micro benchmark,
such small lists always fit in the minor heap with very fast bump allocation. Since in the
benchmark the result is always immediately discarded no live data needs to be traced in



55

the minor heap for GC – perfect! In contrast, Koka uses regular malloc/free with reference
counting with the associated overheads. However, once the workload increases with larger
lists, the overhead of garbage collection and copying to the major heap becomes larger, and
in such situation Koka becomes (significantly) faster. Also, the time to process the 100M
elements stays relatively stable for Koka (around 0.45s) no matter the sizes of the lists,
while with GC we see that processing on larger lists takes much longer.

2 Proofs

2.1 Context Laws for Defunctionalized Contexts

app (k1 • k2) e
= app (k1 •Hole) e { assumption }
= app k1 e { def • }
= app k1 (appHole e) { def app }
= app k1 (app k2 e) { def k2 }
and case k2 = Ai x1 . . . xm k3

app (k1 • k2) e
= app (k1 •Ai x1 . . . xm k3) e { assumption }
= app (Ai x1 . . . xm (k1 • k3)) e { def ◦ }
= È Ei [e | x1, . . ., xm] Éf ,k { def app, k = k1 • k3 }
= app (k1 • k3) (Ei [e | x1, . . ., xm]) { spec (b) }
= app k1 (app k3 (Ei [e | x1, . . ., xm])) { inductive hypothesis }
= app k1 (app (Ai x1 . . . xm k3) e) { def app }
= app k1 (app k2 e) { def app }
For application we have:

app (ctx Ei) e
= app (Ai x1, . . . xm Hole) e { def ctx }
= È Ei [e | x1, . . ., xm] Éf ,k { def app, k = Hole }
= appHole (Ei [e | x1, . . . xm]) { spec (b) }
= Ei [e | x1, . . . xm] { def app }
= Ei [e]

�

2.2 Context Laws for Right-biased-contexts

app (k1 • k2) e
= app (k2 � k1) e { (rcomp) }
= e � (k2 � k1) { (rapp) }
= (e � k2) � k1 { assoc. }
= app k1 (app k2 e) { (rapp) }
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and for context application we have:

app (ctx A) e
= app (|A|) e { (rctx) }
= e � (|A|) { (rapp) }
We proceed by induction over A.
Case A = �:
= e � (|�|)
= e � unit { fold }
= e { unit }
= �[e] { � }

and the case A = A
′ � v:

= e � (|A′ � v|)
= e � ((|A′ |) � v) { fold }
= (e � (|A′ |)) � v { assoc. }
= A

′[e] � v { induction hyp. }
= A[e] { A context }

2.3 General Monoid Contexts

app ((l1, r1) • (l2, r2)) e
= app (l1 � l2, r2 � r1) e { (acomp) }
= (l1 � l2) � e � (r2 � r1) { (aapp) }
= (l1 � (l2 � e � r2) � r1) { assoc. }
= app (l1, r1) (app (l2, r2) e) { (aapp) }
and

app (ctx A) e
= app (|A|) e { (actx) }
= l � e � r { (aapp), for (l, r) = (|A|) }
We proceed by induction over A: case A = �:

= l � e � r { for (l, r) = (|�|) }
= unit � e � unit { fold }
= e { unit }
= �[e] { � }
and A = v � A′:
= l � e � r { for (l, r) = (|v � A′ |) }
= (v � l) � e � r { fold, for (l, r) = (|A′ |) }
= v � (l � e � r) { assoc., for (l, r) = (|A′ |) }
= v � A′[e] { induction hyp., for (l, r) = (|A′ |) }
= A[e] { A context }
and A = A

′ � v:
= l � e � r { for (l, r) = (|A′ � v|) }
= l � e � (r � v) { fold, for (l, r) = (|A′ |) }
= (l � e � r) � v { assoc., for (l, r) = (|A′ |) }
= A

′[e] � v { induction hyp., for (l, r) = (|A′ |) }
= A[e] { A context }

�
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2.4 Context Laws for Exponent Contexts

We prove the composition law by induction on k2:

app (k1 • k2) e
= app (k1 + k2) e
= app k1 e { case k2 = 0 }
= app k1 (app 0 e) { (xapp) }
= app k1 (app k2 e) { k2 = 0 }
and

app (k1 • k2) e
= app (k1 + (k′ + 1)) e { case k2 = k′ + 1 }
= app ((k1 + k′) + 1) e { assoc. }
= app (k1 + k′) (g e) { (xapp) }
= app k1 (app k′ (g e)) { inductive hyp. }
= app k1 (app (k′ + 1) e) { (xapp) }
= app k1 (app k2 e) { k2 = k′ + 1 }
Appliction can be derived as:

app (ctx A) e
= app (|A|) e { (xctx) }
We proceed by induction over A: case A = �:

= app (|�|) e
= app 0 e { fold }
= e { (xapp) }
= �[e] { � }
and A = gA′:

= app (|gA′ |) e
= app ((|A′ |) + 1) e { fold }
= app (|A′ |) (g e) { (xapp) }
= A

′[g e] { induction hyp. }
= A[e] { A context }

�

2.5 Constructor Contexts

Composition:

app (k1 • k2) e
= app (k1 [k2]) e { (kcomp) }
= (k1 [k2]) [e] { (kapp) }
= k1 [k2 [e]] { contexts }
= k1 [app k2 e] { (kapp) }
= app k1 (app k2 e) { (kapp) }
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x : 𝜏 ∈ Γ
Γ ; ∅ m̀ x : 𝜏

[var]

Γ ; x : 𝜏 m̀ x : 𝜏
[hle]

Γ |N ] {x : 𝜏1} ; ∅ m̀ M : 𝜏2
Γ ; ∅ m̀ _x : 𝜏1.M : 𝜏1→𝜏2

[abs]

Γ ; x : 𝜏1 m̀ M : 𝜏2
Γ ; ∅ m̀ _̂x : 𝜏1 .M : (𝜏1, 𝜏2) hfun

[hfun]

Γ1 ; ∅ m̀ M1 : 𝜏1→𝜏2 Γ2 ; ∅ m̀ M2 : 𝜏1
Γ1 ] Γ2 ; ∅ m̀ M1M2 : 𝜏2

[app]

Γ1 ; ∅ m̀ M1 : (𝜏1, 𝜏2) hfun Γ2 ; H m̀ M2 : 𝜏1
Γ1 ] Γ2 ; H m̀ happM1M2 : 𝜏2

[happ]

Γi ; Hi m̀ Mi : 𝜏 i Ck : 𝜏1→ . . .→𝜏k→𝜏

]i Γi ; ⊕i Hi m̀ CkM1 . . .Mk : 𝜏
[cons]

Γ1 ; ∅ m̀ M : 𝜏1 Γ2 ; ∅ p̀at pi : 𝜏1 ↦→Mi : 𝜏2
Γ1 ] Γ2 ; ∅ m̀ matchM { pi ↦→Mi } : 𝜏2

[match]

Γ, f : 𝜏 ; ∅ m̀ _x. e : 𝜏

Γ ; ∅ m̀ fun f = _x. e : 𝜏
[fundecl]

Γ1 ; ∅ m̀ M1 : 𝜏1 Γ2, x : 𝜏1 ; ∅ m̀ M2 : 𝜏1
Γ1 ] Γ2 ; ∅ m̀ let x = M1 inM2 : 𝜏2

[let]

Ck : 𝜏 ∈ Γ
Γ m̀ Ck : 𝜏

[con]

f : 𝜏 ∈ Γ
Γ m̀ f : 𝜏

[fun]

Γ ; ∅ m̀ Ck : 𝜏1→ . . .→𝜏k→𝜏

Γ, x1 : 𝜏1, . . ., xk : 𝜏k ; ∅`Mi : 𝜏 ′

Γ ; ∅ p̀at Ck x1 . . . xk : 𝜏 ↦→ ei : 𝜏 ′
[pat]

Fig. 6. Minamide’s type system adapted to our language

and application:

app (ctx K) e
= appK e { (kctx) }
= K[e] { (kapp) }

�

2.6 Constructor Contexts and Minamide

The hole calculus is restricted by a linear type discipline where the contexts ctx𝛼 ≡ hfun𝛼 𝛼
have a linear type. This is what enables an efficient in-place update implementation while
still having a pure functional interface. For our needs, we need to check separately that
the translation ensures that all uses of a context k are indeed linear. Type judgements in
Minamide’s system [Minamide 1998, fig. 4] are denoted as Γ ; H m̀ e : 𝜏 where Γ is the
normal type environment, and H the linear one containing at most one linear value. The
type environment Γ can still contain linear values with a linear type but only pass those to
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one of the premises. The environment restricted to non-linear values is denoted at Γ |N. We
can now show that our translation can be typed in Minamide’s system:

Lemma 3. (TRMC uses contexts linearly)
If Γ |N ; ∅ m̀ fun f = _xs. e : 𝜏1→ . . .→𝜏n→𝜏 and k fresh
then Γ |N, f ; ∅ m̀ fun f ′ = _xs. _k. ÈeÉf ,k : 𝜏1→ . . .→𝜏n→ ((𝜏, 𝜏) hfun) →𝜏 .

To show this, we need a variant of the general replacement lemma [Hindley and Seldin 1986,
Lemma 11.18; Wright and Felleisen 1994, Lemma 4.2] to reason about linear substitution
in an evaluation context:

Lemma 4. (Linear replacement)
If Γ |N ; ∅ m̀ K[e] : 𝜏 for a constructor context K then there is a sub-deduction
Γ |N ; ∅ m̀ e : 𝜏 ′ at the hole and Γ |N ; x : 𝜏 ′ m̀ K[x] : 𝜏 .

Proof. By induction over the constructor context K.
Case �.
Γ |N ; ∅ m̀ �[e] : 𝜏 { assumption }
Γ |N ; ∅ m̀ e : 𝜏 { subject reduction }
Γ |N ; x : 𝜏 m̀ x : 𝜏 { [hle] }
Γ |N ; x : 𝜏 m̀ �[x] : 𝜏 ′ { definition }
Γ |N ; x : 𝜏 m̀ E[x] : 𝜏 ′ { definition }

Case Ck w1 . . .K′ . . .wk.

Γ |N ; ∅ m̀ Ck w1 . . .K′[e] . . .wk : 𝜏 { assumption }
Γ |N ; ∅ m̀ wi : 𝜏 i for i ≠ j { [cons] and nonlinearity }
Γ |N ; ∅ m̀ K

′[e] : 𝜏 j { [cons] }
Γ |N ; x : 𝜏 ′ m̀ K

′[x] : 𝜏 j { inductive hypothesis }
Γ |N ; x : 𝜏 ′ m̀ Ck w1 . . .K′[x] . . .wk : 𝜏 { [cons] }

Again we see that our maximal context is an evaluation context as we would not be able to
derive the Lemma for contexts under lambda’s for example (as the linear type environment
is not propagated under lambda’s).

Proof. (Of Theorem 3) By the fundecl and abs rules we obtain:
Γ1 = Γ |N, f : 𝜏1→ . . .→𝜏n→𝜏, x1 : 𝜏1, . . ., xn : 𝜏n
Γ1 ; ∅ m̀ e : 𝜏 { inductive property }
By the fundecl and abs rules, we need to derive:

Γ2 = Γ |N, f : 𝜏1→ . . .→𝜏n→𝜏, f ′ : 𝜏1→ . . .→𝜏n→ ((𝜏, 𝜏) hfun) →𝜏, x1 : 𝜏1, . . ., xn : 𝜏n
Γ2, k : ((𝜏, 𝜏) hfun) ; ∅ m̀ ÈeÉf ,k : 𝜏
In particular, we have Γ1 ⊆ Γ2. We proceed by induction over the translation function while
maintaining the inductive property.
Case (base).
ÈeÉf ,k = app k e = happ k e
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k : (𝜏, 𝜏) hfun ; ∅ m̀ k : (𝜏, 𝜏) hfun { [hle] }
Γ1 ; ∅ m̀ e : 𝜏 { assumption }
Γ2 ; ∅ m̀ e : 𝜏 { weakening }
Γ2, k : (𝜏, 𝜏) hfun ; ∅ m̀ happ k e { [happ] }

Case (tail), e = K[f e1 . . . en].
ÈeÉf ,k = f ′ e1 . . . en (k • ctx K) = f ′ e1 . . . en (hcomp k (_̂x.K[x]))

Γ1 ; ∅ m̀ K[f e1 . . . en] : 𝜏 { assumption }
Γ2 ; ∅ m̀ K[f e1 . . . en] : 𝜏 { weakening }
Γ2 ; x : 𝜏 ′ m̀ K[x] : 𝜏 { linear replacement with nonlinearity of Γ2 }
Γ2 ; ∅ m̀ _̂x.K[x] : (𝜏, 𝜏) hfun { [hfun] }
Γ2, k : (𝜏, 𝜏) hfun ; ∅ m̀ hcomp k (_̂x.K[x]) : (𝜏, 𝜏) hfun { hcomp, [happ], [hfun] }
Γ2 ; ∅ m̀ f e1 . . . en : 𝜏 ′ { linear replacement with nonlinearity of Γ2 }
Γ2 ; ∅ m̀ ei : 𝜏 i { [app] }
Γ2, k : (𝜏, 𝜏) hfun ; ∅ m̀ f ′ e1 . . . en (hcomp k (_̂x.K[x])) { [app] }

Case (let), e = let x = e1 in e2.

ÈeÉf ,k = let x = e1 in Èe2Éf ,k

Γ1 ; ∅ m̀ let x = e1 in e2 : 𝜏 { assumption }
Γ1 ; ∅ m̀ e1 : 𝜏1 { [let] }
Γ2 ; ∅ m̀ e1 : 𝜏1 { weakening }
Γ1, x : 𝜏1 ; ∅ m̀ e2 : 𝜏 { [let] }
Γ2, k : (𝜏, 𝜏) hfun, x : 𝜏1 ; ∅ m̀ Èe2Éf ,k : 𝜏 { inductive hypothesis }
Γ2, k : (𝜏, 𝜏) hfun, ; ∅ m̀ let x = e1 in Èe2Éf ,k : 𝜏 { [let] }

Case (match), e = match e1 { pi ↦→ ei }.
ÈeÉf ,k = match e1 { pi ↦→ ÈeiÉf ,k }

Γ1 ; ∅ m̀ match e1 { pi ↦→ ei } : 𝜏 { assumption }
Γ1 ; ∅ m̀ e1 : 𝜏 ′ { [match] }
Γ2 ; ∅ m̀ e1 : 𝜏 ′ { weakening }
Γ1 ; ∅ p̀at pi ↦→ ei : 𝜏 { [match] }
Γ1 ; ∅ m̀ Ck : 𝜏1→ . . .→𝜏k→𝜏 ′ { [pat] }
Γ1, x1 : 𝜏1, . . ., xk : 𝜏k ; ∅ m̀ ei : 𝜏 { [pat] }
Γ2, k : (𝜏, 𝜏) hfun, x1 : 𝜏1, . . ., xk : 𝜏k ; ∅ m̀ ÈeiÉf ,k : 𝜏 { inductive hypothesis }
Γ2, k : (𝜏, 𝜏) hfun ; ∅ p̀at pi ↦→ ÈeiÉf ,k : 𝜏 { [pat] }
Γ2, k : (𝜏, 𝜏) hfun ; ∅ m̀ match e1 { pi ↦→ ÈeiÉf ,k } : 𝜏 { [match] }

�

2.7 Contexts Form Linear Chains

Proof. (Of Lemma 2) By induction on the shape of K:
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Case C . . .�i . . .:
H | C . . .�i . . .

−→∗
r
H, x ↦→1 C . . . �i . . . | x { (conr) }

= H, [x ↦→1 C . . . �i . . .]1x | x { linear chain }

Case C . . .K′[C′ . . .�i . . .] . . .
H | (|C . . .K′[C′ . . .�i . . .] . . .|)

−→∗
r
H, [H′, y ↦→1 C′ . . . �i . . .]1x′ | 〈C . . . x′ . . .〉 { induction hyp. }

−→r H, x ↦→1 C . . . x′ . . ., [H′, y ↦→1 C′ . . . �i . . .]1x′ | x { (conr) }
= H, [x ↦→1 C . . . x′ . . ., H′, y ↦→1 C′ . . . �i . . .]1x | x { linear chain }

�

2.8 Deriving Constructor Context Fold

Given the specification:

(foldspec) H | (|K[C . . .�i . . .] |) � H | let x = K[C . . . �i . . .] in 〈x, [x]@i〉
we can calculate the fold using induction over the shape of K. In the case that K = �, we
derive:
H | (|C . . .�i . . .|)

� H | let x = C . . . �i . . . in 〈x, [x]@i〉 { specification }
� H, x ↦→1 C . . . �i . . . | 〈x, [x]@i〉 { (letr), (conr), 1 }
= H, [x ↦→1 C . . . �i . . .]1x | 〈x, [x]@i〉 { linear chain }
= H, [x ↦→1 C . . . �i . . .]1x | 〈x, x@i〉 { def . }
� H | let x = C . . . �i . . . in 〈x, x@i〉 { (letr), (conr), 1 }
and otherwise, K has the form C′ . . .K′ . . . where
(|K′[C . . .�i . . .] |) = let x = K

′[C . . . �i . . .] in 〈x, [x]@i〉 (by induction):
H | (|C′ . . .K′[C . . .�i . . .] . . .|)

� H | let x = C′ . . .K′[C . . . �i . . .] . . . in 〈x, [x]@i〉 { specification }
� H | let z = K

′[C . . . �i . . .] in let x = C . . . z . . . in 〈x, [x]@i〉 { (letr) }
� H | let 〈z, [z]@i〉 = (|K′[C . . . �i . . .] |) in let x = C . . . z . . . in 〈x, [x]@i〉 { calculate }
� H, [H′, y ↦→1 C . . . �i . . .]1z , x ↦→1 C . . . z . . . | 〈x, [x.i] 〉 { (letr), lemma 2, 1 }
= H, [x ↦→1 C . . . z . . ., [H′, y ↦→1 C . . . �i . . .]1z ]1x, | 〈x, [x]@i〉 { linear chain }
= H, [x ↦→1 C . . . z . . ., [H′, y ↦→1 C . . . �i . . .]1z ]1x, | 〈x, y@i〉 { def . }
� H | let 〈z, y@i〉 = (|K′[C . . .�i . . .] |) in 〈C . . . z . . ., y@i〉 { (letr), (conr) (1) }
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2.9 Deriving Constructor Context Composition

We can calculate for a K1, K2 ≠�:
H | app (ctx K1 • ctx K2) e

� H | app (let x1 = K1 [�] in 〈x1, [x1]@i〉) • (ctx K2) e { fold specification, K1 ≠� }
� H, [H1, y1 ↦→1 C1 . . . �i . . .]1x1 | app (〈x1, [x1]@i〉 • ctx K2) e { lemma 2, 1 }
� H, [H1, y1 ↦→1 C1 . . . �i . . .]1x1 , [H2, y2 ↦→

1 C2 . . . �j . . .]1x2
| app (〈x1, [x1]@i〉 • 〈x2, [x2]@j〉) e { fold specification, K2 ≠�, lemma 2, 2 }

= H, [H1, y1 ↦→1 C1 . . . �i . . .]1x1 , [H2, y2 ↦→
1 C2 . . . �j . . .]1x2

| app (〈x1, y1@i〉 • 〈x2, y2@j〉) e { def . }
= H, [H1, y1 ↦→1 C1 . . . �i . . .]1x1 , [H2, y2 ↦→

1 C2 . . . �j . . .]1x2
| app 〈app 〈x1, y1@i〉, y2@j〉 e { calculate }

= H, [H1, y1 ↦→1 C1 . . . x2 . . .]1x1 , [H2, y2 ↦→
1 C2 . . . �j . . .]1x2

| app 〈x1, y2@j〉) e { (uapp) }
= H, [H1, y1 ↦→1 C1 . . . x2 . . .]1x1 , [H2, y2 ↦→

1 C2 . . . �j . . .]1x2 , z ↦→
1 v

| app 〈x1, y2@j〉 z { e terminating, 3 }
� H, [H1, y1 ↦→1 C1 . . . �i . . .]1x1 , [H2, y2 ↦→

1 C2 . . . z . . .]1x2 , z ↦→
1 v

| app 〈x1, y1@i〉 x2 { (app) }
� H, [H1, y1 ↦→1 C1 . . . �i . . .]1x1 , [H2, y2 ↦→

1 C2 . . . �j . . .]1x2 , z ↦→
1 v

| app 〈x1, y1@i〉 (app 〈x2, y2@j〉 z) { (app) }
� H, [H1, y1 ↦→1 C1 . . . �i . . .]1x1 , [H2, y2 ↦→

1 C2 . . . z . . .]1x2
| app 〈x1, y1@i〉 (app 〈x2, y2 .j) e { (3) }

� H, [H1, y1 ↦→1 C1 . . . �i . . .]1x1 | app 〈x1, y1@i〉 (app ctx K2) e { (2) }
� H | app (ctx K1) (app (ctx K2) e) { (1) }
and thus define composition as:

(ucomp) H | 〈x1, y1@i〉 • 〈x2, y2@j〉 −→r H | 〈app 〈x1, y1@i〉 x2, y2@j〉
In case the context is empty, we can calculate immediately:

H | app (ctx�) e
= H | app (|�|) e { def . }
� H | app 〈〉 e { fold specification }
� H | e { calculate }
= H | �[e] { contex }
For the empty contexts we can calculate for application:

app (ctx� • ctx K2) e
= app ((|�|) • ctx K2) e { def . }
� app (〈〉 • ctx K2) e { fold specification }
� app (ctx K2) e { calculate }
� K[e] { (appctx) }
� �[K[e]] { contexts }
and similarly for K2 = � (but note that in our translation we never have k • ctx�).
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2.10 Soundness of the Hybrid Approach

We need to show the context laws still hold for the hybrid approach.
At runtime, a context K is always a linear chain resulting from the fold or composi-

tion. We write H | K̂ for a non-empty context [H′, y ↦→m C . . . �i . . .]nx | 〈x, y@i〉 if we have
H0 | (|K|) � H0, [H′, y ↦→m C . . . �i . . .]1x | 〈x, y@i〉.
Application:

H | app K̂ e
= H, [H′, y ↦→m C . . . �i . . .]n+1x | app 〈x, y@i〉 e { (A), 1 }
� H, z ↦→1 v, [H′, y ↦→m Ci . . . �i . . .]n+1x | app 〈x, y@i〉 z { e is terminating 2 }
= H, z ↦→1 v, [H′, y ↦→m Ci . . . �i . . .]n+1x | append x z { calculate }
Now proceed by induction on H′. H′ = �:

H, z ↦→1 v, [y ↦→n+1 Ci . . . �i . . .]n+1y | append y z { singleton }
� H, z ↦→1 v, [y ↦→n+1 Ci . . . �i . . .]n+1y | y.i as z { calculate }
� H, z ↦→1 v, [y ↦→n Ci . . . �i . . .]ny, [x′ ↦→1 Ci . . . z . . .]1x′ | x′ { (as) }
� H, z ↦→1 v, [y ↦→n Ci . . . �i . . .]ny | K̂[z] { (1) }
� H, [y ↦→n Ci . . . �i . . .]ny | K̂[e] { (2) }
and
H, z ↦→1 v, [x ↦→n+1 C′ . . . yi . . ., [H1]1y]n+1x
| append x z

� H, z ↦→1 v, [x ↦→n+1 C′ . . . yi . . ., [H1]1y]n+1x
| dup yi; x.i as (append yi z) { (append) }

� H, z ↦→1 v, [x ↦→n+1 C′ . . . yi . . ., [H1]2y]n+1x
| x.i as (append y z)

� H, z ↦→1 v, [x ↦→n+1 C′ . . . yi . . ., [H1]1y]n+1x , [H2]1y′
| x.i as y′ { induction hyp. }

� H, z ↦→1 v, [x ↦→n C′ . . . yi . . ., [H1]1y]nx, [x′ ↦→1 C′ . . . y′i . . ., [H′′]1y′]1x′
| x′ { (as) }

� H, z ↦→1 v, [x ↦→n C′ . . . yi . . ., [H1]1y]nx
| C′ . . . K̂′[z] . . .

� H, z ↦→1 v, [x ↦→n C′ . . . yi . . ., [H1]1y]nx
| K̂[z]

� H, [x ↦→n C′ . . . yi . . ., [H1]1y]nx
| K̂[e] { (2) }
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