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Abstract

Radiology reporting is a complex task that requires detailed image understanding, integration
of multiple inputs, including comparison with prior imaging, and precise language generation.
This makes it ideal for the development and use of generative multimodal models. Here, we
extend report generation to include the localisation of individual findings on the image – a
task we call grounded report generation. Prior work indicates that grounding is important
for clarifying image understanding and interpreting AI-generated text. Therefore, grounded
reporting stands to improve the utility and transparency of automated report drafting.
To enable evaluation of grounded reporting, we propose a novel evaluation framework –
RadFact– leveraging the reasoning capabilities of large language models (LLMs). RadFact
assesses the factuality of individual generated sentences, as well as correctness of generated
spatial localisations when present.
We introduce MAIRA-2, a large multimodal model combining a radiology-specific image
encoder with a LLM, and trained for the new task of grounded report generation on chest
X-rays. MAIRA-2 uses more comprehensive inputs than explored previously: the current
frontal image, the current lateral image, the prior frontal image and prior report, as well as the
Indication, Technique and Comparison sections of the current report. We demonstrate that
these additions significantly improve report quality and reduce hallucinations, establishing
a new state of the art on findings generation (without grounding) on MIMIC-CXR while
demonstrating the feasibility of grounded reporting as a novel and richer task.

1 Introduction

Medical imaging is central to the safe and effective delivery of modern medicine (UK HSA, 2022). It is integral
to numerous treatment pathways, providing the necessary insights for precise diagnoses and therapeutic
decisions. Nonetheless, the escalating demand for imaging services is surpassing the capacity of radiologists to
maintain a high level of proficiency in image reporting (Fischetti et al., 2022; Kalidindi & Gandhi, 2023). The
increasing shortage of radiology professionals, exacerbated by the growing volume of imaging, is leading to
critical levels of stress and burnout among staff (RCR, 2022) and causing delays and disparities in the delivery
of critical care (Rimmer, 2017). All this necessitates a greater dependence on trainees and non-radiology
physicians as well as teleradiology services who often lack access to the full clinical records to fill the gaps in
image interpretation (Huang et al., 2023; Limb, 2022).
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A pivotal task in radiology practice is the automated generation of a free-text report based on medical
images (Liu et al., 2019). Research and development into the use of artificial intelligence (AI) to automatically
generate such narrative-style radiology reports from images suggest significant potential for enhancing
operational efficiency, reducing radiologist workloads, and improving the quality and standardisation of
patient care (Huang et al., 2023; Liu et al., 2019; Yildirim et al., 2024; Yu et al., 2023b). AI capabilities in
automatically generating draft radiology reports within seconds of image acquisition may support radiologists
in better managing high case volumes, mitigating exhaustion and circumventing the constraints of human
resources (Huang et al., 2023). Furthermore, rapid image interpretation by AI could reduce unnecessary
variations in treatment, decrease the number of patients needing to be recalled after discharge, and support
the prioritisation of urgent cases by highlighting critical conditions that require immediate clinical attention
(Huang et al., 2023).

Consequently, the ability to generate free-text, narrative-style reports from radiology images has become
subject to increasing research interest (Sloan et al., 2024; Zhou et al., 2024; Yang et al., 2024; Tu et al., 2024;
Hyland et al., 2023; Jeong et al., 2023; Tanida et al., 2023; Chen et al., 2024; Müller et al., 2024; Wang et al.,
2023; Li et al., 2023). The open-ended nature of the report generation task requires the model to describe
not simply the presence or absence of findings, but more subtle aspects such as severity and extent, location,
texture or other qualities, and whether the finding has progressed or resolved. Thus, report generation is a
challenging task for multimodal AI models in terms of both image understanding and language generation.

For a draft radiology report to be useful, it must: (i) replicate what the radiologist would have written,
without hallucinations or omissions, and (ii) be easy to verify as such. We draw on work outlining the role
of reporting context in the generation of reports (Nguyen et al., 2023; Bannur et al., 2023) – namely that
additional inputs to the AI model, such as the Indication and the prior study, are required to faithfully
reproduce a report. We then extend the task of report generation to additionally require the model to ground
each described finding in the image by generating image-level localisation annotations, such as bounding
boxes. We call this task grounded report generation, inspired by Moor et al. (2023). The ability to
ground report findings or phrases within the relevant region in medical images has been described to play a
significant role: (i) in assisting image understanding and radiological diagnosis (Chen et al., 2023; Yildirim
et al., 2024; Zou et al., 2024); and (ii) for verifying the correctness of AI text outputs (Bernstein et al., 2023)
– a key property to support the integration of automated report drafting systems in radiology workflows.

User research with radiologists and clinicians (Yildirim et al., 2024) demonstrates that although radiologists
are capable of identifying relevant findings on an image via text location description alone (e.g., left lung
consolidation), this can be more difficult when findings are small or overlapping (e.g., small pneumothorax,
mass behind the heart); with more complex imaging; and when assessing images outside the reporter’s
core area of expertise. Grounded reporting may also have utility for non-radiology clinicians, where image
grounding can support comprehension and a deeper engagement with the image beyond the text report
(Yildirim et al., 2024); and to improve communication with patients when reviewing image findings (Zou
et al., 2024).

Grounded reporting differs from the existing task of medical phrase grounding (MPG) (Müller et al., 2024;
Ichinose et al., 2023; Zou et al., 2024; Boecking et al., 2022) in that MPG aims to ground a specified finding
or phrase, typically assumed present within the image. A grounded report is a description of all findings
in an image with accompanying localisation. A variant of this task was explored in Tanida et al. (2023),
where the model first located anatomical regions before generating region-level descriptions. To overcome
the many-to-many challenge faced by Tanida et al. (2023), where a single sentence in a report can describe
multiple findings and hence several regions, we design a dataset such that each sentence describes at most a
single finding, enabling precise localisation.

Context beyond a single image plays a significant role in the contents of a radiology report, influencing both
the interpretation of the image and communicative choices in the reporting itself. Hence, in this work we
generate chest X-ray (CXR) reports using: the current frontal image, the current lateral image, the prior
frontal image and prior report, and the Indication, Technique, and Comparison sections of the current study.

Selective reporting of findings is mediated by the Indication (Nguyen et al., 2023) for the study – a report
should ‘answer’ any question it poses – which further provides health context on the patient (Yapp et al., 2022).
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Empirically, providing the Indication to the model improves the quality of generated reports (Dalla Serra
et al., 2022; Hyland et al., 2023) and has become more commonplace (Tu et al., 2024; Chaves et al., 2024;
Yang et al., 2024). Similarly, comparison to previous imaging studies is crucial for tracking the development
of disease or impact of treatment, and references to prior studies are frequent in radiology reporting (Aideyan
et al., 1995; Bannur et al., 2023). Such references can be removed to reduce hallucinations when prior studies
are not available (Ramesh et al., 2022; Chaves et al., 2024; Nguyen et al., 2023), or used in conjunction with
prior images to enable descriptions of change (Bannur et al., 2023; Dalla Serra et al., 2023; Zhu et al., 2023).

The lateral view in a CXR study provides complementary information to frontal (AP/PA) views. It is required
to identify findings like vertebral compression fractures or small pleural effusions behind the diaphragm,
and can assist in the detection and differentiation of conditions such as lung nodules, masses, and certain
types of pneumonia. Incorporating the lateral view has been demonstrated to improve automated report
generation (Liu et al., 2024; Lee et al., 2023; Mondal et al., 2023; Yang et al., 2020; Yuan et al., 2019).

The Technique and Comparison sections provide additional context for the circumstances of the study the
contents of the report: Technique can include indicators of patient positioning (e.g. supine, upright) and
Comparison is informative for whether the radiologist consulted prior studies. We show these factors can
make a significant impact on the accuracy of the generated report.

The new task of grounded report generation needs a novel evaluation approach. Inspired by factuality-based
methods (Min et al., 2023; Schumacher et al., 2023; Xie et al., 2023), we propose an evaluation framework
named RadFact. Radiology-specific metrics typically provide complementary information to n-gram based
approaches such as BLEU or ROUGE by prioritising radiology-specific information, extracted via specialised
models such as CheXbert (Smit et al., 2020; Irvin et al., 2019) or RadGraph (Jain et al., 2021; Yu et al.,
2023b; Delbrouck et al., 2022). The CheXpert findings classes (Irvin et al., 2019) are biased towards intensive
care settings and confound radiological findings (e.g., consolidation) with clinical diagnoses (e.g., pneumonia).
Further, the use of specialised models limits their application to ‘in-distribution’ datasets where model
behaviour is more stable (Yang et al., 2024). More recently, approaches leveraging LLMs have been proposed.
Owing to their broad pre-training, LLMs are expected to generalise well to novel reporting styles. Leveraging
the ReXVal dataset (Yu et al., 2023a), methods such as CheXprompt and LLM-RadJudge use LLMs to
estimate the number of errors per report (Chaves et al., 2024; Wang et al., 2024).

Building on the observation that GPT-4 exhibits strong logical reasoning capabilities in radiology (Liu et al.,
2023c), RadFact leverages LLMs to ascertain the factuality of each sentence in a generated report, given
the reference ground truth. This provides sentence-level information on errors, allowing us to estimate the
review and editing burden of the report in a draft-then-review setting. Further, RadFact handles evaluation
of grounded reports by using logical evidence to match generated and ground-truth annotations.

In summary, the contributions of this work are:

1. We extend the report generation task with more useful outputs – grounded report generation –
and more comprehensive inputs (lateral view, prior frontal, prior report, Indication, Technique,
Comparison sections), and demonstrate their utility.

2. We propose a novel metric suite leveraging the logical inference capabilities of LLMs, RadFact, for
report generation both with and without grounding.

3. We construct and analyse MAIRA-2, a CXR-specialised multimodal model capable of generating
grounded and non-grounded reports. MAIRA-2 establishes a new state of the art on MIMIC-CXR
findings generation.
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2 Methods

2.1 Grounded radiology reporting

We define a grounded report as a list of sentences, (1) each associated with zero or more spatial image
annotations and (2) describing at most a single finding from an image, as shown in Figure 1.

Spatial annotations indicate the region of the image pertaining to the described finding, and should be as
specific as possible while containing the finding. Sentences describing non-findings (‘No pneumothorax’),
regions of normality (‘Lungs are clear’), or abnormal findings without specific location (‘Diffuse disease’) do
not require such annotations. In this work, we use bounding boxes as spatial annotations. Bounding boxes
are commonly used to localise findings on CXRs (Nguyen et al., 2022; Wang et al., 2017; Boecking et al.,
2022; Müller et al., 2024) and are easier to annotate than full segmentation masks.

Reports frequently include sentences with multiple radiological findings, or mentions of extrinsic information
that cannot be objectively inferred by a model from the data available at reporting time (e.g., differential
diagnoses, recommendations for follow-up examinations, communications with other healthcare staff). To
make grounded reporting a well-defined task and enable precise association of spatial annotations with
individual findings, we generate reports as lists of sentences describing individual positive or negative findings.
Then, each sentence with a finding can be associated with spatial annotations.

2.2 Data

Table 1: Datasets used in the training and evaluation of MAIRA-2. For report generation tasks (findings
generation and grounded reporting), a sample consists of at least one image, a findings section, and other
report sections. For phrase grounding, a sample is an image with a corresponding single phrase and one
or more bounding boxes. FindGen = findings generation, GroundRep = grounded reporting, PhraseGround
= phrase grounding. ‘All’ means all studies with a Findings section. Statistics on laterals and priors are
percentages of samples. Having a prior means having a prior study, including a report and a frontal image.
MIMIC-CXR: Johnson et al. (2019a). MS-CXR: Boecking et al. (2022). PadChest: Bustos et al. (2020).
USMix is private, with a mix of in-patient and out-patient facilities in the US. IU-Xray: Demner-Fushman
et al. (2016). Datasets not used in evaluation have ‘–’ for test set numbers. * IU-Xray has no patient
information so we report study information.

Data source Subset Task # Patients # Samples % Has Lateral % Has Prior

Train Test Train (%) Test Train Test Train Test

MIMIC-CXR All FindGen 55 218 285 158 555 (32%) 2461 60.6 45.3 64.2 88.6
MS-CXR PhraseGround 595 128 817 (0.2%) 176 0 0 0 0

PadChest All FindGen 49 029 6162 79 758 (16%) 6313 45.9 47.1 38.5 31.9

USMix All FindGen 118 031 – 193 652 (39%) – 51.7 – 0 –
GR-1 GroundRep 45 155 – 60 463 (12%) – 48.0 – 0 –
GR-Bench GroundRep 8458 1199 8580 (1.7%) 1231 81.2 79.8 0 0

IU-Xray All FindGen – 3198* – – 3306 – 92.1 – 0

Total Multi-task 222 278 – 501 825 (100%) – 54.0 – 26.7 –

There are not yet public datasets suitable for developing a grounded reporting model1. For this study,
we obtained a private CXR dataset (USMix) from which we derived grounded reports. We processed the
narrative report text into individual sentences, as detailed in Section 2.1 and Appendix A.2, and then obtained
bounding-box annotations from radiologist annotators. USMix is described in more detail below.

To enable comparison with prior work, we additionally used a set of public datasets. MIMIC-CXR (Johnson
et al., 2019a) and PadChest (Bustos et al., 2020) are CXR datasets containing multiple views (frontal, lateral),

1We will release MAIRA-2 performance on a public grounded reporting benchmark dataset based on PadChest in a future
version of this work.
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and temporal linking enabling the use of prior study information. IU-Xray (Demner-Fushman et al., 2016) is
a CXR dataset containing frontal and lateral views, without patient-level metadata, hence no prior study
information. Each dataset supports possible tasks of FindGen: generating the Findings section of the report,
GroundRep: grounded reporting as described in Section 2.1, and PhraseGround: generation of bounding boxes
given an input phrase. The full set of datasets used in both training and evaluation is outlined in Table 1.

MIMIC-CXR (Johnson et al., 2019a) For MIMIC-CXR we extract each report’s Findings, Indication,
Technique, and Comparison sections following Johnson et al. (2019a). We also use the MIMIC-CXR-derived
phrase grounding dataset MS-CXR (Boecking et al., 2022), which contains individual phrases from reports and
associated bounding boxes for a fixed set of pathologies. We follow the official MIMIC-CXR split (Johnson
et al., 2019b), with the exception of studies in MS-CXR, which are not well-distributed across the official
MIMIC-CXR splits. For MS-CXR, we define a patient-level split stratified by pathology, age, and sex
2. Studies in the MS-CXR test and validation folds are not used in training - otherwise we follow the
official MIMIC-CXR split. We note that the official MIMIC-CXR test split is highly enriched for abnormal
cases (Johnson et al., 2019a), hence prior studies are more common (Table 1).

PadChest (Bustos et al., 2020) The reports in the PadChest dataset are originally in abbreviated
Spanish. We use the GPT-4-translated English version from the Interpret-CXR collection used in the RRG24
competition (Xu et al., 2024), which included only the Findings and Impression sections. PadChest does not
have an official split, so we construct a patient-level pathology-stratified split.

USMix Our private dataset, USMix, is sourced from a set of US hospitals with a mix of in- and outpatient
studies. We extract section text using GPT-4. No temporal study linkage is possible for this data source, so
while we do not use prior study information, reports can contain references to prior studies. Two subsets of
this dataset have been additionally annotated for grounded reporting (Section 2.1), using slightly different
protocols: GR-1 and GR-Bench. Protocol differences produced, for example, fewer but larger boxes per finding
in GR-1 compared to GR-Bench, especially for bilateral findings. We consider GR-Bench our benchmark and
report test results on a held-out portion of it.

IU-Xray (Demner-Fushman et al., 2016) We use the entire IU-Xray dataset for external validation for
the task of Findings generation. Reports in this dataset are stored in XML format with sections pre-extracted.
The Technique section was taken from each image caption. We also process the dataset to use the same
indicator for deidentified information as used in MIMIC-CXR (“_”).

For all datasets, we drop studies missing the Findings section. Each frontal view in a study is treated
independently. If there are multiple laterals available, we select one randomly. At training time, for MIMIC-
CXR if there are multiple frontal images in the prior study, all pairings of current and prior frontal images
are used as individual samples. For PadChest we select a prior frontal randomly.

We resized the original DICOM files isotropically with B-spline interpolation so that their shorter side was
518, min-max scaled intensities to [0, 255], and stored them as PNG files. At training time, we centre-crop
images to 518 × 518 pixels before applying z-score normalisation with statistics (mean and variance) derived
from MIMIC-CXR. We used SimpleITK for all image preprocessing operations (McCormick et al., 2014).

2.3 MAIRA-2

MAIRA-2 is built with a similar architecture to MAIRA-1 (Hyland et al., 2023), based on the LLaVA
framework (Liu et al., 2023b;a). We use a re-trained version of Rad-DINO (Pérez-García et al., 2024) as the
frozen image encoder, which is an 87M-parameter ViT-B (Dosovitskiy et al., 2020); the language model is
initialised to the weights of Vicuna 7B v1.5 (Chiang et al., 2023), itself finetuned from Llama 2 (Touvron
et al., 2023); and the adapter is a randomly initialised multilayer perceptron (MLP) with four layers. Since
Rad-DINO processes images of size 518×518 into patches of size 14×14, each image produces a sequence
of 1369 visual tokens. We do not use the ⟨CLS⟩ token. We additionally train a variant of MAIRA-2 using
Vicuna 13B v1.5, which we call MAIRA-2 13B.

2We will release the stratified MS-CXR split on PhysioNet as a follow-up.
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Figure 1: MAIRA-2 architecture, illustrating (a) encoding of model inputs and (b) grounded report generation.
Based on the LLaVA framework (Liu et al., 2023b), the model can handle arbitrarily interleaved text and
images, using a frozen vision encoder and training an adapter and an autoregressive language model (see
architecture details in Section 2.3). For a given radiological study, the model can be presented with all
or some of the following: the current study’s frontal and lateral X-ray images; indication, technique, and
comparison; prior study’s image and report; along with a task-specific instruction.

Tokenisation for grounding Inspired by Pix2Seq (Chen et al., 2022), UniTAB (Yang et al., 2022),
and Kosmos-2 (Peng et al., 2023), MAIRA-2 represents a bounding box in terms of discretised coordi-
nates representing the top-left and bottom-right corners on a uniform N × N grid (N is set to 100 in
all our experiments). Kosmos-2 encodes each corner using a flat vocabulary with N2 unique tokens for
every possible grid location (e.g. “⟨loc1234⟩⟨loc5678⟩” for a box with corners (0.12, 0.34) and (0.56, 0.78)),
and UniTAB uses a shared vocabulary of N tokens for both horizontal and vertical coordinates (e.g.
“⟨coord12⟩⟨coord34⟩⟨coord56⟩⟨coord78⟩” for the same example box). Because these encoding schemes offer
no inductive bias for the model to learn true 2D representations, we instead choose to separately encode
horizontal and vertical coordinates as disjoint sets of N + N tokens, as e.g. “⟨x12⟩⟨y34⟩⟨x56⟩⟨y78⟩”.

Sentences with spatial annotations are represented by a combination of text, box, and delimiter tokens. Each
4-tuple of box coordinate tokens is surrounded by ⟨box⟩ and ⟨/box⟩ tokens and concatenated. These are
appended to the phrase text tokens, and the entire group is delimited by ⟨obj⟩ and ⟨/obj⟩. Examples of the
full sequence structure can be seen in Fig. 1.

All non-text tokens are appended to the pretrained language model’s vocabulary, with corresponding
embeddings initialised to the mean embedding of the existing tokens, following LLaVA (Liu et al., 2023b).

Incorporating prior and lateral images In typical CXR datasets, each radiological study contains at
least one frontal image (posteroanterior or anteroposterior view), and optionally a lateral projection image,
depending on local healthcare guidelines and purpose of the study. When it is possible to identify the most
recent prior study, we additionally retrieve a prior frontal image and its corresponding report. More details
on how the images were selected are provided in Section 2.2. All input images are fed through the same
encoder and adapter module to obtain image tokens. These are then interleaved with the text tokens at
specified placeholder locations. The full prompt structure is shown in Table 2.

Training We train MAIRA-2 with a conventional autoregressive cross-entropy loss in a multitask setting on
the dataset mix shown in Table 1. Each sample in a batch has a task and input-specific prompt as outlined in
Table 2. Following Hyland et al. (2023), we do a single stage of training with a frozen image encoder, training
the adapter and all the parameters of the LLM. We train for three epochs and use the final checkpoint in
evaluations. We use the AdamW optimiser (Loshchilov & Hutter, 2019) with a global batch size of 128 across
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Table 2: Prompt structure. As shown in Fig. 1, the language model receives a sequence of tokens obtained
by concatenating the following messages, replacing placeholders indicated by {brackets}. Each image
placeholder is replaced with 1369 image tokens encoded by Rad-DINO. Report section placeholders are
replaced by the corresponding section from the sample, if available, otherwise ‘N/A’. For samples missing the
lateral view or prior study, we entirely remove that part of the prompt, avoiding references to nonexistent
image views. We show here the instruction for GroundRep. For FindGen, the instruction is simply “provide a
description of the findings in the radiology study.”

Message type Message

System You are an expert radiology assistant tasked with interpreting a chest X-ray study.
Current frontal Given the current frontal image {frontal_image_tokens}
Current lateral the current lateral image {lateral_image_tokens}

Prior frontal and the prior frontal image {prior_image_tokens}
Prior report PRIOR_REPORT: {prior_report}
Instruction provide a description of the findings in the radiology study. Each finding should be described as a self-contained

plain-text sentence. If the finding is groundable, locate the finding in the current frontal chest X-ray image,
with bounding boxes indicating all locations where it can be seen in the current frontal image. Otherwise,
generate just the ungrounded finding without bounding boxes

Indication INDICATION: {indication}
Technique TECHNIQUE: {technique}

Comparison COMPARISON: {comparison}

16 NVIDIA A100 GPUs, a cosine scheduler with a warm-up of 0.03, and a learning rate of 2 × 10−5. In
addition, we use a linear RoPE scaling factor of 1.5 in order to extend the context length of the LLM to
handle up to 3 view images and additional inputs.

We retrained the image encoder, Rad-DINO (Pérez-García et al., 2024), for 106 000 iterations starting from
the public ViT-B weights (Oquab et al., 2024), using a global batch size of 1280 across 32 A100 GPUs. The
source datasets are the same as in Pérez-García et al. (2024), though we excluded from the training set all
images used for evaluation in this manuscript. Table A.1 provides the number of images from each dataset.

2.4 RadFact: An evaluation suite for (grounded) reports

Grounded report evaluation requires an assessment of both textual quality and grounding correctness. A
good report should be complete and concise, correctly describing the findings in the ground-truth report
without extraneous detail or hallucinatory observations. The grounded regions should be specific to the
finding in their associated sentence, and neither too large nor too small.3

To this end, we developed a framework called RadFact for the evaluation of model-generated radiology reports
given a ground-truth report, which naturally enables evaluation of grounding annotations if present. RadFact
provides a fine-grained suite of metrics, capturing aspects of precision and recall at both text-only and
text-and-grounding levels.

Logical entailment Inspired by approaches such as FActScore (Min et al., 2023), we leverage a model that
can perform entailment verification (Sanyal et al., 2024) to classify whether a candidate sentence (‘hypothesis’)
is logically true given a reference text (‘premise’). A class of models suitable for entailment verification
are LLMs (Liu et al., 2023c). In this work, we use Llama3-70B-Instruct4 (AI@Meta, 2024) for entailment
verification with ten in-context examples – we refer to this version as RadFact-Llama3 in tables, noting that
different backend LLMs can produce different behaviour.

3We define this evaluation generically in terms of “regions” to encompass diverse forms of grounding, including single or
multiple bounding boxes, polygons, segmentation masks, etc.

4From: https://huggingface.co/meta-llama/Meta-Llama-3-70B-Instruct
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Figure 2: Illustration of RadFact. Zoomed panel (bottom) shows a single direction of evaluation, taking the
model generations as logical hypotheses and the original report as premises. Here, logical precision measures
the fraction of generated sentences which are entailed according to the original report. We use a LLM with
task-specific prompting to classify hypotheses as entailed or not, given premises. Grounding precision is the
fraction of logically entailed, grounded sentences whose spatial annotations are also entailed. Spatial precision
is the fraction of all grounded sentences whose spatial annotations are also entailed, hence it is upper-bounded
by grounding precision. Analogously, in the opposite direction recall can be computed by taking the original
sentences as hypotheses and using the model generations as premises (top right). Here, spatial annotations
are bounding boxes. A sentence can have multiple boxes (see sentence B). Spatial entailment requires a pixel
precision above 0.5, e.g. at least 50% of the pixels associated with the sentence fall into a matched evidence
box. In the above, sentence B’s evidence comes from premises 4 and 5, hence its boxes are compared with
the boxes from 4 and 5.

The task is illustrated in Fig. 2. The generated and ground-truth reports are assumed to consist of lists of
sentences, each describing a single finding. In a conventional findings-generation scenario, free-text reports
can first be converted into this format as described in Section 2.1 and Appendix A.2.

RadFact computes entailment in both directions, defining the following text-level metrics:

1. RadFact logical precision: the fraction of generated sentences that are entailed by the ground-truth
report. This measures how truthful the model generations are, as it penalises hallucinations.

2. RadFact logical recall: the fraction of ground-truth sentences that are entailed by the generated
report. This measures how complete the generated report is, as it penalises omissions.

This bidirectional approach differs from traditional factual verification approaches such as FActScore that
assume a ‘single’ source of truth (e.g., Wikipedia), but has precedents in medical summarisation where both
completeness and conciseness are important (Xie et al., 2023).
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We further require the entailment verification model to provide evidence for its classification: this is the set
of premise sentences from the reference report that support the determination of entailment (or not) for
each hypothesis5. Evidence may be empty for logically neutral statements, which are considered not-entailed
by definition. Evidence enables us to match the grounding regions from generated sentences with their
(supposed) ground-truth regions.

Spatial and grounding entailment We can then define a notion of spatial entailment based on pixel
overlap: a region is spatially entailed by its evidence region(s) if at least a given fraction of its pixel mask
is contained in the evidence pixel mask.6 This definition interprets a larger region as more specific than a
smaller region contained within it, as the former makes stronger claims about where a finding is located. This
provides for metrics on the text-and-grounding quality, analogously defining precision based on sentences
from the generated report, and recall based on sentences from the ground-truth report:

1. RadFact grounding {precision, recall}: the fraction of logically entailed grounded sentences that are
also spatially entailed. This tells us: which of the correctly described findings were also correctly
grounded?

2. RadFact spatial {precision, recall}: the fraction of all grounded sentences that are logically and
spatially entailed. This metric additionally penalises grounding incorrect sentences.

Figure 2 further illustrates how these metrics are defined. The fractions are calculated once in each direction:
‘precision’ scores describing the correctness of generated findings with respect to the ground-truth report, and
conversely ‘recall’ scores indicating their completeness.

Appendix A.3 provides more detail about RadFact-Llama3, such as the system prompt and few-shot examples.

2.5 Evaluation and metrics

We supplement RadFact, and enable comparison with prior work by computing a set of commonly-reported
metrics. Since MAIRA-2 generates both text and boxes, we distinguish here between evaluation of text
outputs, and evaluation of boxes (grounding). To quantify variance in the model’s test set performance, we
perform bootstrapping and report median and 95% confidence intervals over 500 replicates.

Text-only evaluation. We employ a combination of traditional natural language generation (NLG)
(‘lexical’) metrics and radiology-specific (‘clinical’) metrics. For lexical metrics, we use ROUGE-L (Lin, 2004),
BLEU-{1,4} (Papineni et al., 2002), and METEOR (Banerjee & Lavie, 2005). For clinical metrics, we use
RadGraph-F1 (Jain et al., 2021), RGER (Delbrouck et al., 2022)7, RadCliQ version 0 (Yu et al., 2022), and
CheXbert vector similarity (Smit et al., 2020; Yu et al., 2023b)8, as well as macro- and micro-averaged F1
scores for CheXpert classes (Irvin et al., 2019) based on the CheXbert classifier (Smit et al., 2020). We
further report CheXprompt scores, which uses GPT-4 to estimate the number of errors in a generated report.
Following Chaves et al. (2024) we report the mean errors per report, as well as the percentage of error-free
reports, distinguishing between any errors, and significant errors.

Grounding-only evaluation. To evaluate bounding boxes independently of text generation, we employ a
box-completion approach similar to Peng et al. (2023). The model is conditioned on the prompt and the
grounded report up to and including the target phrase and the first ⟨box⟩ token, and is allowed to generate
boxes until a closing ⟨/obj⟩ token is produced. We do this for every grounded phrase over all reports in the
dataset, then compute spatial overlap metrics between the pixel masks of the completed boxes and of the

5RadFact does not require a one-to-one mapping between generated and reference sentences, and there can be several pieces of
evidence to support a logical inference. For example, the sentence ‘bilateral pleural effusions’ implies both ‘left pleural effusion’
and ‘right pleural effusion’ simultaneously, hence it can be used as evidence for either. Conversely, both ‘left plerual effusion’ and
‘right pleural effusion’ are required to support the conclusion of ‘bilateral pleural effusions’.

6This pixel-precision threshold is set to 0.5 in our implementation with multiple boxes as the form of grounding, but could be
adjusted, e.g., for finer-grained segmentation masks.

7RGER is implemented as F1RadGraph with reward=partial by https://pypi.org/project/radgraph/.
8For RadGraph-F1, RadCliQ and CheXbert vector similarity, we use https://github.com/rajpurkarlab/CXR-Report-Metric.
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Table 3: Grounded reporting performance on the test fold of GR-Bench. We report median and 95%
confidence intervals based on 500 bootstrap samples. ‘↓’ indicates that lower is better. CheXpert F1 metrics
are computed based on CheXbert labeller outputs. RadFact uses RadFact-Llama3.

Metric MAIRA-2 7B MAIRA-2 13B

Lexical: ROUGE-L 58.2 [56.7, 59.8] 59.4 [57.8, 61.0]

RadFact: Precision Recall Precision Recall
Logical 73.5 [72.2, 74.9] 72.4 [71.0, 73.8] 74.8 [73.5, 76.3] 73.3 [72.0, 74.7]
Spatial 32.1 [29.4, 34.5] 33.7 [31.2, 36.2] 35.0 [32.4, 37.8] 36.9 [34.5, 39.5]
Grounding 68.2 [64.7, 71.7] 92.2 [89.8, 94.4] 68.8 [65.3, 71.9] 91.1 [89.1, 93.1]

Clinical:
RadGraph-F1 54.2 [52.5, 55.9] 55.9 [54.1, 57.6]
RGER 56.9 [55.3, 58.5] 58.4 [56.7, 60.1]
RadCliQ (↓) 1.63 [1.55, 1.70] 1.56 [1.49, 1.64]
CheXbert Macro F1-14 40.9 [35.9, 47.1] 45.9 [40.1, 52.4]
CheXbert Micro F1-14 60.2 [57.5, 62.5] 61.4 [59.0, 63.8]

Phrase grounding: Precision Recall Precision Recall
Box-completion 68.4 [67.2, 69.7] 84.6 [83.7, 85.5] 70.2 [68.8, 71.7] 86.2 [85.4, 87.1]

respective ground-truth boxes. Note that RadFact quantifies grounding on the sentence level in a binary
fashion, whereas this complementary pixel-level evaluation measures the quality of the boxes in isolation.

3 Results

3.1 MAIRA-2 can generate grounded reports

To the best of our knowledge, MAIRA-2 is the first model that both generates full report sections and
grounds each detected finding in the image, and thus serves as a baseline for future work on this task.
We report the test performance of MAIRA-2 for grounded report generation on the GR-Bench dataset in
Table 3. RadFact logical scores are consistently above 70%, indicating a low rate of both omissions and
hallucinations. Conditional on the model first generating a correct sentence (RadFact grounding precision and
box-completion precision), 68%-70% of such sentences are correctly grounded. The drop in RadFact spatial
however demonstrates that the model generates boxes that are either 1) incorrect, or 2) associated with
incorrect sentences. The high RadFact grounding recall indicates that the model is reliably generating boxes
which contain ground truth boxes. Scaling to 13B provides modest improvements in text quality (via RadFact
logical scores, and other clinical metrics) and a more significant improvement on localisation-based metrics.

To better understand and demonstrate the behaviour of MAIRA-2 in grounded reporting, we selected examples
for qualitative review with a radiologist, shown in Figure 3 and Appendix C.

Phrase grounding on MS-CXR Because there are no previously published results for grounded reporting,
MAIRA-2 was also evaluated on the related task of phrase grounding, for which public baselines exist. Phrase
grounding here means generating a set of bounding boxes given an image and an input phrase, such as
‘left retrocardiac opacity’. We compare against MedRPG (Chen et al., 2023), ChEX (Müller et al., 2024),
and TransVG (Deng et al., 2021). Compared to MAIRA-2, these baselines directly regress bounding box
coordinates using MLP heads. MedRPG additionally employs a combination of contrastive and attention
losses to better align image- and text-features. Similarly, the phrase grounding in ChEX benefits from the
synergies of multitask training, combining report generation and localisation tasks.

Table 4 presents the mean intersection over union (mIoU) of pixel masks from generated vs ground-truth boxes
on our test split of the MS-CXR dataset (Boecking et al., 2022). Note that Chen et al. (2023) and Müller et al.
(2024) used different custom splits of MS-CXR. To enable fair comparison, we therefore report comparative
results on the intersections of our test set with their respective test subsets. The 95% confidence intervals for
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MAIRA-2 model inputs:

Frontal

RadFact logical precision: 1.0
RadFact logical recall: 0.75

INDICATION: Z79.899 Long term or current drug therapy 
(includes chemotherapy) I49.9 atrial fibrillation I50.0 CHF.

TECHNIQUE: PA and lateral. 

COMPARISON: None.

MAIRA-2 model outputs:
 

Grounded FINDINGS Box alignment

FINDINGS not entailed in predicted phrases

3. A slight compression 
fracture of t1 is noted.

7. There is a calcified 
granuloma in the right 
lower lung.

FINDINGS entailed (uni- or bi-directionally)

A. The bony structures are demineralized.
B. There are degenerative changes of the spine.

C. The lungs show no acute infiltrate or mass.
D. There is no effusion.
E. The pulmonary interstitial markings are mildly accentuated.

F. The diaphragm is smooth.
G. The cardiac size is mildly enlarged.
H. There is uncoiling of the aorta with calcification.
 
I. There is no hilar or mediastinal adenopathy.

Reference text

RadFact spatial precision: 1.0
RadFact spatial recall: 0.63

RadFact grounding precision: 1.0
RadFact grounding recall: 1.0

FINDINGS phrases

A./ 1. The bony 
structures are 
demineralized.

B./ 2. There are 
degenerative changes 
of the spine.

E./ 6. The pulmonary 
interstitial markings are 
mildly accentuated.

G./ 9. The cardiac size 
is mildly enlarged. 

H. There is uncoiling of the aorta with 
calcification. <-- 10. Uncoiling the aorta. 11. 
There is calcification within the knob.

10. Uncoiling the aorta. <-- 
H. There is uncoiling of the 
aorta with calcification.

11. There is 
calcification within the 
knob.

Reference box

MAIRA-2 box

Lateral (flipped horizontally for display)

1. The bony structures are demineralized.
2. There are degenerative changes of the spine. 
3. A slight compression fracture of t1 is noted.
4. The lungs show no acute infiltrate or mass.
5.  There is no effusion.
6. The pulmonary interstitial markings are mildly accentuated.
7. There is a calcified granuloma in the right lower lung.
8. The diaphragm is smooth.
9. The cardiac size is mildly enlarged. 
10. Uncoiling the aorta.
11. There is calcification within the knob. 
12. There is no hilar or mediastinal adenopathy.

Text variances

Figure 3: A manually-selected qualitative example of MAIRA-2 output on GR-Bench. This 3-part
figure shows MAIRA-2 model inputs (top); the MAIRA-2 phrase outputs vis-à-vis the reference text (middle);
and grounding boxes for the MAIRA-2 phrases on the current frontal image alongside their alignment with
reference boxes (bottom). In this example, all generated MAIRA-2 phrases were evidenced by the reference
text (RadFact logical precision: 1.0). In a radiologist review, we find two missed findings: “There is a calcified
granuloma in the right lower lung.” and “A slight compression fracture of t1 is noted.”, which can only be seen
on the lateral view. RadFact further counts finding 11 as missed, bringing logical recall to 0.75. Reviewing
the reference findings, radiologists pointed out that the compression fracture is on L1 vertebra in the image,
suggesting a potential typo in the reference text. Concerns were also raised that small fracture cases may
not always be reported and could be missed in training data. Although the compression fracture was not
detected, MAIRA-2 correctly outputs the “degenerative changes of the spine” that are always better seen on
the lateral view. For image grounding, no boxes were generated for missed findings 2 and 7. While finding 11
(“There is calcification within the knob”) was also not logically entailed according to RadFact, the model did
correctly generate a separate box around the aortic knob when grounding finding H (“There is uncoiling of
the aorta with calcification”).
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Table 4: Phrase grounding performance (mIoU) on MS-CXR. MedRPG (Chen et al., 2023) reports
performance on 20% of the single-box cases from MS-CXR (approx. 178 phrases, 162 images), whereas ChEX
(Müller et al., 2024) included only samples in the official MIMIC-CXR validation and test splits (196 phrases,
169 images). Because the final MAIRA-2 model was trained with a part of MS-CXR, we report results on the
intersections of our new held-out test split (176 phrases, 155 images) and each of the splits from MedRPG
(138 phrases, 124 images) and ChEX (30 samples, 24 images), respectively. Results for TransVG (Deng et al.,
2021) are quoted here from the comparisons originally reported for MedRPG and ChEX.

Model Single-box only In MIMIC-CXR val./test Test split

(n ≈ 178) (n = 196) –
MedRPG 59.37 – –
ChEX – 46.51 [44.68, 50.36] –
TransVG 58.91 53.51 [50.51, 56.51] –

(n = 138) (n = 30) (n = 176)
MAIRA-2 57.78 [54.00, 61.40] 57.56 [49.44, 65.17] 54.70 [51.35, 58.21]
MAIRA-2 13B 61.88 [58.46, 65.32] 60.88 [53.41, 67.71] 59.29 [56.34, 62.31]

ChEX and TransVG were approximated assuming a normal distribution based on the bootstrapped standard
deviation reported by Müller et al. (2024).

On the phrase grounding task, MAIRA-2 achieves competitive performance against baselines developed
specifically for phrase grounding (MedRPG and TransVG) and appears to strongly outperform the multi-task
ChEX model. Moreover, the larger MAIRA-2 13B version further improves grounding results.

3.2 MAIRA-2 is state-of-the-art on findings generation

MAIRA-2 is designed and trained to handle both grounded or non-grounded report generation. Table 5
shows its performance on the MIMIC-CXR test set using both RadFact and a range of commonly reported
metrics outlined in Section 2.5. We compare to the closest prior state of the art, restricted to models
evaluated for Findings generation, namely Med-PaLM M (Tu et al., 2024), LLaVA-Rad (Chaves et al., 2024),
MedVersa (Zhou et al., 2024), and MAIRA-1 (Hyland et al., 2023). Since many of these models are not
publicly available, we present their evaluation results as originally reported, noting that the test sets are
slightly different. For MAIRA-1, we obtained the model generations on the MIMIC-CXR test set in order to
run RadFact and CheXprompt.

Table 5 shows that MAIRA-2 outperforms or matches all prior approaches across all metrics, with MAIRA-
2 13B providing further improvements. The impact on lexical metrics is most significant, where MAIRA-2
improves on existing scores by 14% to 27%. On existing clinical metrics, significant improvement is observed on
the RadGraph-derived RadGraph-F1 and RGER, on the CheXbert vector score, and on CheXbert 14-class F1,
using both micro and macro averaging. For RadCliQ, MAIRA-2 and MedVersa have overlapping confidence
intervals, but a significant improvement is seen with MAIRA-2 13B. In the following sections, we explore the
features of MAIRA-2 which result in these improvements.

With RadFact, we see again an improvement from MAIRA-1 to MAIRA-2 and its 13B variant, in agreement
with other metrics. What RadFact additionally reveals is that in absolute terms, models continue to make
errors, with only 55.6% of sentences generated by MAIRA-2 13B confirmed (as per the reference report) to
be true. We show qualitative examples of MAIRA-2 generations on MIMIC-CXR in Appendix C.3.

Although there is no prior work demonstrating findings generation performance on PadChest in English,
in Table 6 we show the performance on MAIRA-2 to enable future comparison. External performance
on IU-Xray, shown in Appendix B.1 and Table B.1, demonstrates that MAIRA-2 can generalise to novel
reporting scenarios, achieving RadFact logical precision and recall of 71% and 68% respectively.
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Table 5: Findings generation performance on the official MIMIC-CXR test split. † means numbers
were taken from prior work, except for RadFact and CheXprompt for MAIRA-1(Hyland et al., 2023). Med-
PaLM M: Tu et al. (2024). LLaVA-Rad: Chaves et al. (2024). MedVersa: Zhou et al. (2024). We report
median and 95% confidence intervals based on 500 bootstrap samples. Bold indicates best performance
for that metric, or overlapping CIs with best. ‘↓’ indicates that lower is better. CheXpert F1 metrics are
computed based on CheXbert labeller outputs. RadFact uses RadFact-Llama3.

Metric MAIRA-1 Med-PaLM M† LLaVA-Rad† MedVersa† MAIRA-2 MAIRA-2 13B

Lexical:
ROUGE-L 28.9 [28.4, 29.4] 27.29 30.6 – 38.4 [37.8, 39.1] 39.1 [38.5, 39.7]
BLEU-1 39.2 [38.7, 39.8] 32.41 38.1 – 46.5 [45.8, 47.2] 47.9 [47.2, 48.7]
BLEU-4 14.2 [13.7, 14.7] 11.31 15.4 17.8 [17.2, 18.4] 23.4 [22.9, 24.0] 24.3 [23.7, 24.9]
METEOR 33.3 [32.8, 33.8] – – – 41.9 [41.3, 42.6] 43.0 [42.4, 43.6]

RadFact:
Logical precision 48.3 [47.3, 49.4] – – – 52.5 [51.6, 53.5] 55.6 [54.6, 56.7]
Logical recall 47.2 [46.3, 48.2] – – – 48.6 [47.7, 49.6] 51.5 [50.6, 52.5]

Clinical:
RadGraph-F1 24.3 [23.7, 24.8] 26.71 29.4 28.0 [27.3, 28.7] 34.6 [33.9, 35.4] 35.9 [35.6, 36.6]
RGER 29.6 [29.0, 30.2] – – – 39.7 [38.9, 40.4] 40.9 [40.3, 41.6]
RadCliQ (↓) 3.10 [3.07, 3.14] – – 2.71 [2.66, 2.75] 2.64 [2.61, 2.68] 2.59 [2.56, 2.63]
CheXbert vector 44.0 [43.1, 44.9] – – 46.4 [45.5, 47.4] 50.6 [49.7, 51.5] 51.3 [51.0, 52.1]
CheXprompt

Mean significant errors (↓) 2.41 [2.35, 2.46] – 2.25 – 2.22 [2.16, 2.27] 2.07 [2.02, 2.12]
Mean errors (↓) 2.49 [2.44, 2.54] – 2.95 – 2.31 [2.26, 2.36] 2.16 [2.12, 2.22]
% Significant error free 4.65 [3.88, 5.55] – 6.79 – 7.23 [6.14, 8.33] 8.70 [7.72, 9.87]
% Error free 3.13 [2.43, 3.86] – 2.58 – 5.00 [4.16, 5.87] 5.99 [5.08, 7.01]

CheXpert F1, uncertain as negative:
Macro-F1-14 38.6 [37.1, 40.1] 39.83 39.5 – 42.7 [40.9, 44.4] 43.9 [42.2, 45.7]
Micro-F1-14 55.7 [54.7, 56.8] 53.56 57.3 – 58.5 [57.3, 59.6] 59.0 [57.8, 60.2]
Macro-F1-5 47.7 [45.6, 49.5] 51.60 47.7 – 51.5 [49.3, 53.5] 51.7 [49.5, 53.8]
Micro-F1-5 56.0 [54.5, 57.5] 57.88 57.4 – 58.9 [57.4, 60.5] 59.1 [57.5, 60.7]

Table 6: Findings generation performance on PadChest test split. We use a version of the dataset
which has been translated to English, and defined our own test split. We report median and 95% confidence
intervals based on 500 bootstrap samples. ‘↓’ indicates that lower is better. CheXpert F1 metrics are
computed based on CheXbert labeller outputs. RadFact uses RadFact-Llama3.

Model ROUGE-L BLEU-4 CheXbert RadCliQ (↓) RadFact Logical
Macro F1-14 Precision Recall

MAIRA-2 28.2 [27.5, 29.0] 7.7 [7.3, 8.1] 34.8 [32.5, 37.1] 2.76 [2.73, 2.78] 57.2 [56.1, 58.4] 46.3 [45.3, 47.4]
MAIRA-2 13B 29.4 [28.6, 30.1] 9.3 [8.9, 9.8] 35.9 [32.5, 37.1] 2.72 [2.69, 2.74] 57.5 [56.4, 58.6] 48.9 [47.8, 49.8]
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3.3 Synergy between findings generation and grounded reporting training

MAIRA-2 is a multitask model optimised for both FindGen and GroundRep tasks. Since GroundRep is based
on FindGen, we expect positive transfer between these tasks. Here we compare the performance of MAIRA-2
(7B) to models trained only on the task of interest, dropping either FindGen and evaluating on GroundRep
(Figure 4 and Table B.2), or dropping GroundRep9 and evaluating on FindGen (Figure 5 and Table B.3).

0 20 40 60
No FindGen

MAIRA-2
ROUGE-L

0 20 40

Chexbert Macro F1-14

0 1 2

RadCliQ ( )

0 20 40 60

RadFact: logical precision

0 20 40 60

RadFact: logical recall

0 25 50 75
No FindGen

MAIRA-2
RadFact: grounding precision

0 25 50 75

RadFact: grounding recall

0 20 40 60

Masked box: precision

0 25 50 75

Masked box: recall

0 20 40 60

Masked box: IoU

Figure 4: Impact of dropping the FindGen task (MIMIC-CXR, PadChest, USMix) on GR-Bench grounded
reporting. First row: impact on the text-only metrics; second row: impact on grounding metrics. We report
median and 95% confidence intervals based on 500 bootstrap samples. ‘↓’ indicates that lower is better.
Tabular representation of this plot is available in Table B.2.
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No GroundRep

MAIRA-2
ROUGE-L
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CheXbert Macro F1-14

0 1 2

RadCliQ ( )

0 20 40

RadFact logical precision

0 20 40

RadFact logical recall

Figure 5: Impact of dropping the grounding task (GR-1, GR-Bench, and MS-CXR) on MIMIC-CXR Findings
generation test set. We report median and 95% confidence intervals based on 500 bootstrap samples. ‘↓’
indicates that lower is better. Tabular representation of this plot is available in Table B.3.

Figure 4 shows the impact of omitting FindGen task from MAIRA-2 training in terms of text (top row) and
box (bottom row) metrics. We find that dropping FindGen task results in a significant drop in all text metrics,
suggesting a positive transfer between FindGen and GroundRep on the quality and clinical factuality of the
generated grounded report phrases. In particular, we notice a very large decrease (-52.07%) in Macro F1-14
when dropping FindGen, indicating that MAIRA-2 grounded reports identify the presence or absence of the
14 CheXpert findings more accurately when the model is trained jointly on FindGen. Additionally, we see a
substantial decrease in RadFact logical precision (-6.25%) and recall (-10.36%), indicating that the model
trained without FindGen is generating more hallucinations and omissions. This may also explain the increase
in RadFact grounding precision (+8.94%) when we drop FindGen– the model is generating fewer logically
entailed sentences, but those which it generates are grounded correctly more often.

While training on FindGen seems to improve GroundRep performance, we do not observe the reverse: training
with GroundRep does not appear to benefit the FindGen task. Figure 5 indicates limited impact with most
metrics showing overlapping confidence intervals.

3.4 Additional inputs reduce hallucinations and increase clinical accuracy for report generation

In this section, we study the impact of additional inputs used by MAIRA-2, namely the lateral view, the
prior study (prior frontal and prior report), the Technique section, and the Comparison section. We do not
explore dropping the Indication section here as its importance is already well-established (Nguyen et al., 2023;
Hyland et al., 2023). We categorise these inputs along two dimensions: (i) inputs that are related to the

9We also drop PhraseGround when we drop GroundRep, to remove all grounding information during training.
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temporal nature of reporting, namely the prior image and report (collectively referred to as the prior study)
and the Comparison section; and (ii) inputs relating to multiple view types collected in a single imaging
study, namely the lateral image and Technique section.

We perform two types of ablations on the MAIRA-2 model (7B): training ablations, wherein a model is
trained and evaluated without a subset of inputs, referred to as ‘Train:No <view> No <section>’; and
inference ablations, dropping those inputs at inference time only ‘Infer:No <view> No <section>’. For
inference-time ablations, when dropping any subset of views from a sample, its prompt is constructed as if
the input view was missing, and the content of dropped sections is replaced by the string ‘N/A’. Further
ablation experiments are discussed in Appendix B.3.

These analyses are performed on the MIMIC-CXR findings generation task, as this is a public benchmark
containing linkable prior images and reports, laterals, and all the relevant report sections.
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Infer:No Prior No Comp
Train:No Prior No Comp

MAIRA-2
ROUGE-L

0 20 40

CheXbert Macro F1-14
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RadCliQ ( )
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Infer:No Prior No Comp
Train:No Prior No Comp

MAIRA-2
RadFact logical precision
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RadFact logical recall
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Figure 6: Impact of dropping the prior study and comparison at training and inference times ‘Train:’ and
during inference only ‘Infer:’ on MIMIC FindGen for the 88.6% test subset that have a Prior (n = 2181).
%Comparison mentions is estimated using Llama3-70B. The dashed line indicates the frequency of comparison
mentions (91.84%) in the ground-truth reports in the same data subset, for reference. We report median
and 95% confidence intervals based on 500 bootstrap samples. ‘↓’ indicates that lower is better. Tabular
representation of this plot is available in Table B.4.

Inputs containing temporal information Figure 6 shows training- and inference-time ablations dropping
both the prior study and the comparison section, on the subset of the MIMIC-CXR test set with prior
images (n=2,181). As an additional metric, we use Llama3-70B-Instruct to determine whether a given report
mentions temporal comparisons (see details in Appendix B.3), referred to as %Comparison mentions. In
the absence of a prior study, %Comparison mentions should be close to zero. Dropping the prior study and
comparison information during training ‘Train:No Prior No Comp’ produces a significant drop across all
metrics compared to MAIRA-2 baseline, with ROUGE-L dropping by 11.7%, Macro F1-14 by 10.1%, RadFact
logical precision by 3.8%, RadFact logical recall by 8.0% and RadCliQ getting worse by 9.5% . The effect is
larger when this information is dropped only at inference time ‘Infer:No Prior No Comp’, indicating that
MAIRA-2 is effectively learning to use these inputs. Specifically, dropping the prior study and comparison
section at inference time causes ROUGE-L to drop by 28.9%, Macro F1-14 by 18.1%, RadFact logical precision
by 13.5%, RadFact logical recall by 16.7% and RadCliQ to increase by 20.4%. The model trained without the
prior study or comparison section hallucinates mentions of comparisons approximately 75% of the time, close
to the background rate in this dataset (dashed line). Having trained with the prior study and comparison
section significantly reduces such hallucinations, dropping by 49%. This further indicates the utility of
training on more inputs to prevent model hallucination, since both the comparison section and the prior study
contribute to the model’s ability to infer whether comparison text should be generated. Additional piece-wise
ablations in Appendix B.3 show that dropping the prior study has a larger effect on clinical metrics such as
Macro F1-14 and dropping the comparison has a large effect on lexical metrics as well as on clinical metrics.
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Figure 7: Impact of dropping the lateral view and the technique section at training and inference times
‘Train:’ and during inference only ‘Infer:’ on MIMIC Findings generation for the 30.6% test subset that
have a Lateral view (n=1,116). The dashed line indicates the frequency of lateral mentions (35.57%) in the
ground-truth reports in the same data subset, for reference. We report median and 95% confidence intervals
based on 500 bootstrap samples. ‘↓’ indicates that lower is better. Tabular representation of this plot is
available in Table B.5.

Inputs related to multi-view studies Figure 7 shows the result of training- and inference-time ablations
when dropping both the lateral view and the technique section, on the subset of MIMIC-CXR test studies
that have a lateral view (n=1116, 30.6%). Analogously to our study on temporal information, we quantify
mentions of the lateral view in the Findings section, to measure whether the model is sensitive to the presence
of the lateral view10. %Lateral mentions is estimated using regular expressions (cf. Listing 6 in Appendix) to
identify any explicit (e.g., AP and lateral views of the chest) or implicit (e.g., Chest two views) mentions of
the lateral view. Among the 1,116 multi-view studies, 35.57% reports have at least one lateral mention in the
ground truth. We analyse the impact of the lateral and the technique section separately in Appendix B.3.

When we drop the lateral and the technique section during training ‘Train:No Lat No Tech’, we only notice
significant changes in RadCliQ (+6.4%) and ROUGE-L (-8.91%) suggesting that dropping the technique and
the lateral view at training time mostly hurts lexical performance in this subset since RadFact and Macro
F1-14 are unchanged. This ablated model generates hallucinatory lateral mentions 36.1% of the time, while
having no access to the lateral view or Technique section – approximately equal to the rate of lateral mentions
in this subset (dashed line). On the other hand, MAIRA-2 generates dramatically fewer lateral hallucinations
when we drop the lateral and the technique section at inference-time ‘Infer:No Lat No Tech’ with only 5.1%
lateral references compared to 39.6% when the lateral and the technique are provided. Additionally, we notice
a drop in lexical metrics where ROUGE-L falls down to 36.8 (-22%). The clinical metrics also decline; Macro
F1-14 is lower by 9.27%, RadCliQ increases by 4.15%, and RadFact phrase precision and recall decrease
by 4.1% and 10.2%, respectively. This indicates that MAIRA-2 relies on the lateral view to identify the
presence or absence of certain pathologies in multi-view studies. In particular, pleural effusion11 F1 score
drops from 71.4 [66.6, 75.0] to 64.7 [59.9, 69.5]. Hence, we can conclude that using the lateral view, along with
the technique section, reduces "lateral hallucinations" and improves clinical accuracy. These additional inputs
prevent the model from relying on superficial cues in the training data. Instead, it enables MAIRA-2 to learn
the underlying semantics of multi-view studies where the frontal and the lateral are complementary to make
more comprehensive diagnoses.

10Dropping the lateral view alone is not sufficient to evaluate how well MAIRA-2 leverages laterals since it can use the
Technique section to infer the presence of a lateral view.

11Lateral views in chest X-rays are particularly helpful to identify small pleural effusions behind the diaphragm, among other
pathologies.

16



4 Conclusion

Grounded radiology report generation is a novel task that requires a model to generate image-level localisations
for each finding that can be localised within the image. This enables novel uses of automatically generated
reports, such as potentially more rapid verification of generated findings and use by non-radiologist clinicians,
or even patients. In this work we have focused on the technical aspects of this new task to demonstrate its
feasibility, leading to the development of RadFact and construction of MAIRA-2.

MAIRA-2 is a large multimodal model making use of the radiology-specialised Rad-DINO image encoder
and the open Vicuna-1.5 large language model, in either 7B or 13B sizes. MAIRA-2 improves significantly
upon the state of the art in findings generation on MIMIC-CXR owing to its more comprehensive set of
inputs. Tailored to the CXR setting, MAIRA-2 leverages the current frontal and lateral views, the prior
study (frontal image and full report), the Indication for the current study, as well as the Technique and
Comparison sections. In an array of ablations, we have demonstrated the roles of these additional inputs in
reducing hallucinations and improving clinical accuracy.

Our proposed evaluation framework, RadFact, allows for a more nuanced view of automated reporting.
RadFact targets the core objective of evaluation in report generation: to pinpoint the errors made by
the model. Using the generalisation capabilities and reasoning faculties of LLMs, RadFact does not rely
on a fixed set of finding categories or a model which is specialised to a certain reporting style, instead
operating via more flexible logical inference. Further, RadFact provides for sentence-level granularity on
model errors, and naturally supports both grounded and non-grounded reporting. We share code for RadFact
at https://github.com/microsoft/RadFact.

One limitation of this work is the absence of prior studies in our grounded reporting dataset, preventing
an understanding of the importance of prior study information on grounding specifically. Our ablations
also indicate that the model may not be using additional imaging information to the fullest extent, instead
exploiting shortcuts available in the report sections used as inputs. Other methods to incorporate additional
imaging information may prove superior to our token concatenation approach. Finally, we acknowledge
that RadFact does not distinguish between the nature of errors beyond factuality, relying on strict logical
entailment. This means some errors may be more or less clinically significant, and ‘partial errors’ are penalised
(for example, correctly describing the presence of a pneumothorax, but not that it has improved). By
open-sourcing RadFact, we support further improvements to enable better evaluation standards on the task
of radiology report generation.

Overall we have demonstrated that grounded radiology reporting is possible with MAIRA-2. Although
performance in automated report generation continues to improve – and we establish a new state-of-the-art on
MIMIC-CXR with this work – metrics to date, including RadFact, indicate a gap between model performance
and that which will be required to realise such systems in practice. The addition of grounding is a step
towards real clinical impact in automated radiology report generation.
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Listing 1: Instruction to GPT-4 for extracting single-finding sentences from narrative reports.

System: You are an AI radiology assistant. You are helping process reports from chest X-rays.

Please extract phrases from the radiology report which refer to objects, findings, or
anatomies visible in a chest X-ray, or the absence of such.

Rules:
- If a sentence describes multiple findings, split them up into separate sentences.
- Exclude clinical speculation or interpretation (e.g. "... highly suggestive of pneumonia").
- Exclude recommendations (e.g. "Recommend a CT").
- Exclude comments on the technical quality of the X-ray (e.g. "there are low lung volumes").
- Include mentions of change (e.g. "Pleural effusion has increased") because change is
visible when we compare two X-rays.
- If consecutive sentences are closely linked such that one sentence can't be understood
without the other one, process them together.

The objective is to extract phrases which refer to things which can be located on a chest X-
ray, or confirmed not to be present.

A Extended methods

A.1 Datasets used to re-train Rad-DINO

Table A.1 shows the list of datasets used to train Rad-DINO for MAIRA-2. There is no overlap between the
training, validation, or test patients between the datasets in Table A.1 and Table 1.

Table A.1: Datasets used to train Rad-DINO, our image encoder.

Data source Num. images

BRAX (Reis et al., 2022) 41 260
ChestX-ray8 (Wang et al., 2017) 112 120
CheXpert (Irvin et al., 2019) 223 648
MIMIC-CXR (Johnson et al., 2019a) 368 960
PadChest (Bustos et al., 2020) 136 787
USMix (private) 521 608

Total 1 404 383

A.2 Extraction of sentences from reports

We convert narrative reports (specifically the Findings section) into lists of sentences, wherein each sentence
should mention at most one finding. We do this in two places: 1) Construction of grounded reports, as
described in Section 2.1, 2) To enable the use of RadFact on narrative reports, since it operates on lists of
sentences.

In Listings 1 and 2 we show the system message and one of the few-shot examples used for this task. Due
to space limitations, the complete set of few-shots will be shared alongside the metric implementation here:
https://github.com/microsoft/RadFact.

We use GPT-4 for this task, through an Azure OpenAI endpoint.

This process changes the distribution of words and even pathologies in the reports. To quantify this, in
Table A.2 we convert the MIMIC validation set to lists of sentences, and compare it to the original reports
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Listing 2: One of the examples provided to GPT-4 for extracting single-finding sentences from narrative
reports. Speculative statements are removed and sentences with multiple findings are split into separate
sentences. Here ‘orig’ refers to the original sentence, and ‘new’ is a list of derived sentences. The processed
version of the report is the concatenation of the ‘new’ sentences.

User:
The lungs remain hyperinflated, in keeping with history of asthma. Since the prior study,
there are streaky opacities in the bilateral lung bases which may be due to bronchial wall
thickening, small airways disease without discrete lobar consolidation. No pleural effusion or
pneumothorax is seen. The cardiac and mediastinal silhouettes are unremarkable.

Assistant:
orig: The lungs remain hyperinflated, in keeping with history of asthma.
new:
- The lungs remain hyperinflated.
orig: Since the prior study, there are streaky opacities in the bilateral lung bases which may
be due to bronchial wall thickening, small airways disease without discrete lobar
consolidation.
new:
- Since the prior study, there are streaky opacities in the bilateral lung bases.
orig: No pleural effusion or pneumothorax is seen.
new:
- No pleural effusion is seen.
- No pneumothorax is seen.
orig: The cardiac and mediastinal silhouettes are unremarkable.
new:
- The cardiac silhouette is unremarkable.
- The mediastinal silhouette is unremarkable.
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Table A.2: Conversion of reports into lists of sentences alters the distribution of words and pathologies.
We use typical report generation metrics to compare the modified reports with the originals, using the
MIMIC-CXR validation set.

Metric Modified

ROUGE-L 82.1 [81.8, 82.5]
RGER 91.2 [90.9, 91.5]

CheXpert, uncertain as negative:
Macro F1-14 87.0 [86.3, 87.7]
Macro F1-5 93.6 [92.7, 94.3]
Recall - Atelectasis 91.2 [89.8, 92.6]
Recall - Cardiomegaly 96.2 [95.2, 97.1]
Recall - No Finding 96.9 [94.6, 96.7]
Recall - Pneumonia 3.4 [1.2, 6.7]

Listing 3: System message used for RadFact, instructing the LLM to assess the correctness of a single sentence
given a list of reference sentences.

System: You are an AI radiology assistant. Your task is to assess whether a statement about a
chest X-ray (the "hypothesis") is true or not, given a reference report about the chest X-ray
. This task is known as entailment verification. If the statement is true ("entailed")
according to the reference, provide the evidence to support it.

using standard report generation metrics. For pathology-level CheXbert metrics, specificity is above 97%
for all finding classes, indicating the conversion into sentence lists does not produce additional mentions of
findings. For most findings, the recall is similarly high, indicating there is little loss. The notable exception is
pneumonia, where the recall is ≈ 3.4%, indicating that over 96% of mentions of pneumonia in the original
reports have been removed by this processing. This is desired via the prompt and occurs because pneumonia
is a clinical interpretation of other findings, often described with speculative language such as ‘... opacity
suggesting pneumonia’.

A.3 RadFact metric

Listings 3 to 5 show the system message, sample few-shot examples, and a sample query for RadFact. The
LLM is prompted to produce valid YAML outputs that can easily be parsed, which is enforced with Pydantic12

via LangChain13. As in Appendix A.2, due to space limitations we show only one of the few-shot examples –
the rest can be found in the repository14. Following chain-of-thought style prompting (Wei et al., 2022), we
found that prompting the assistant to provide the evidence before the classification (“status”) improved
performance.

Using Llama3-70B as a backbone instead of GPT-4 – as in Chaves et al. (2024) – provides multiple advantages:
It is open-source and faster, making it more accessible to the research community and advantageous when
evaluating large volumes. In Table A.3, we compare the performance and throughput of RadFact using
Llama3-70B and GPT-4. We measure performance on the binary task of entailment verification: classifying
a given hypothesis sentence as entailed or not, given a list of references. In practice, to compute RadFact
we need to process one such query per sentence in the report, in each direction. This results in, on average,
six to seven queries per report. In this light, the performance drop observed in Table A.3 seems neglegible
relative to the gain in throughput.

12https://github.com/pydantic/pydantic
13https://www.langchain.com/
14https://github.com/microsoft/RadFact
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Listing 4: Two of the examples used in the entailment verification task in RadFact. The model is tasked with
assigning a logical status (either entailment or not_entailment) to the hypothesis sentence, given the list
of reference sentences. The ‘evidence’ field is a list of reference sentences supporting the logical state. For
‘Degenerative changes are seen throughout the spine’, nothing in the reference sentences indicates this is true,
so it is labelled with not_entailment. ‘There is persistent consolidation in the left lung base’ implies ‘Left
basilar consolidation is present’, so it is labelled with entailment. Note that the reverse does not hold, due
to the additional detail of persistence.

User:
reference:
- The lungs are clear.
- The cardiomediastinal silhouette is unremarkable.
- There are no pleural effusions.

hypothesis: Degenerative changes are seen throughout the spine.

Assistant:
phrase: Degenerative changes are seen throughout the spine.
evidence: []
status: not_entailment
----------------------
User:
reference:
- There are small bilateral pleural effusions that have developed since prior study.
- Left basilar consolidation is present.
- The cardiomediastinal silhouette is within normal limits.
- No acute chest wall abnormality is radiographically evident.

hypothesis: Left basilar consolidation is present.

Assistant:
phrase: Left basilar consolidation is present.
evidence:
- There is persistent consolidation in the left lung base.
status: entailment

Listing 5: An example query to RadFact. Based on the reference sentences, the model must determine the
logical state of the hypothesis.

User:
reference:
- The heart is borderline in size.
- There is no evidence of CHF.
- No infiltrate.
- The diaphragm is well-visualized.

hypothesis: There is a new abnormal density filling most of the right hemithorax.
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Table A.3: Accuracy and speed of RadFact using Llama3-70B and GPT-4 as backbones. Llama3 runs on a
single compute node with four A100 GPUs. GPT-4 is hosted on Microsoft Azure.

Accuracy (%) Inference speed (s/report)

Llama3 92.0 17.35
GPT-4 93.2 27.06

Table B.1: Findings generation performance on IU-Xray. We report median and 95% confidence
intervals based on 500 bootstrap samples. ‘↓’ indicates that lower is better. CheXpert F1 metrics are
computed based on CheXbert labeller outputs. RadFact uses RadFact-Llama3.

Model ROUGE-L BLEU-4 CheXbert RadFact Logical
Macro F1-14 Micro F1-14 Precision Recall

MAIRA-2 27.4 [27.1, 27.8] 11.7 [11.4, 12.0] 28.6 [26.2, 31.2] 52.9 [51.3, 54.5] 71.1 [70.3, 71.9] 67.3 [66.5, 68.0]
MAIRA-2 13B 27.8 [27.4, 28.1] 11.8 [11.5, 12.1] 30.0 [27.3, 32.6] 52.5 [50.9, 54.2] 71.1 [70.3, 71.8] 68.8 [68.1, 69.5]
LLaVA-Rad 25.3 [25.0, 25.7] – – 53.5 [51.6, 55.8] – –

RadFact-Llama3 shows high alignment with the errors spotted by radiologists in the ReXVal dataset (Yu
et al., 2023a). The Kendall rank correlation coefficient between the error counts in ReXVal and the logical
F1-score of RadFact (computed as the harmonic mean between the logical precision and the logical recall)
is 0.59 [0.51, 0.66] (0.62 [0.55, 0.68] for clinically significant errors). Confidence intervals were computed using
bootstrapping with n = 1000 in concordance with Yu et al. (2023b). While the correlation of RadFact is
smaller than of the recently proposed CheXprompt (Chaves et al., 2024), the latter presents an attempt to
directly count the different errors using a LLM. In contrast, RadFact is not restricted to the six error types
defined in ReXVal, and can perform entailment verification for any sentence that can potentially occur in
a report, naturally leading to a lower alignment with ReXVal. We found, for example, mentions of lateral
images in reports from all datasets used for training MAIRA-2. Hallucinations or omissions of such mentions
would not be detected by CheXprompt.

B Extended results

B.1 Findings generation on IU-Xray

Table B.1 shows external validation performance on IU-Xray. We compare to LLavA-Rad (Chaves et al., 2024)
to provide a fair comparison of held-out performance on the Findings generation task. MAIRA-2 produces
higher ROUGE-L scores and statistically equivalent CheXbert Micro F1-14 scores. One risk associated with
using additional inputs (such as the Technique and Comparison sections, which LLaVA-Rad does not use) is
that MAIRA-2 would over-rely spurious, dataset-level associations between these inputs and the Findings
section. However, our findings on IU-Xray suggest this has not occurred to a significant degree. In particular,
the high RadFact scores suggest that MAIRA-2 may be producing higher-quality reports than it does on
MIMIC-CXR, however this may also reflect that IU-Xray is an ‘easier’ dataset than MIMIC-CXR.

B.2 Impact of multitask training

Tables B.2 and B.3 provide tabular versions of the results shown in Figs. 4 and 5, indicating the impact of
dropping either FindGen or GroundRep tasks from the multitask training mix.

B.3 Further ablations on additional inputs

The ablations in this section provide further insight on the individual effect of different views and sections.

Description of the ‘%Comparison mentions’ and ‘%Lateral mentions’ metrics We used a language
model (Llama3-70B-Instruct) to detect if a findings-section mentions a comparison to a prior report. We
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Table B.2: Impact of dropping the FindGen task during training on GR-Bench grounded reporting performance.
These tables mirror Fig. 4. The top table shows text-based metrics, while the bottom table shows box and
grounding-based metrics. We report median and 95% confidence intervals based on 500 bootstrap samples.
‘↓’ indicates that lower is better. CheXpert F1 metrics are computed based on CheXbert labeller outputs.
RadFact uses RadFact-Llama3.

ROUGE-L CheXbert RGER RadCliQ (↓) RadFact Logical
Experiment Macro F1-14 Precision Recall

MAIRA-2 58.2 [56.7, 59.8] 40.9 [35.9, 47.1] 56.9 [55.3, 58.5] 1.63 [1.55, 1.7] 73.5 [72.2, 74.9] 72.4 [71.0, 73.8]
NoFindGen 55.6 [53.9, 57.0] 19.6 [16.7, 23.4] 53.1 [51.5, 54.7] 1.86 [1.79, 1.93] 68.9 [67.5, 70.4] 64.9 [63.4, 66.4]

RadFact Grounding Box-completion
Experiment Precision Recall Precision Recall IoU

MAIRA-2 68.2 [64.7, 71.7] 92.2 [89.8, 94.4] 68.4 [67.2, 69.7] 84.6 [83.7, 85.5] 60.7 [59.4, 61.9]
NoFindGen 74.3 [70.2, 78.5] 92.5 [89.6, 95.1] 66.3 [64.9, 67.6] 82.7 [81.8, 83.6] 58.4 [57.1, 59.5]

Table B.3: Impact of dropping the GroundRep task during training on MIMIC Findings generation performance.
This table mirrors Fig. 5. We report median and 95% confidence intervals based on 500 bootstrap samples.
‘↓’ indicates that lower is better. CheXpert F1 metrics are computed based on CheXbert labeller outputs.
RadFact uses RadFact-Llama3.

ROUGE-L CheXbert RGER RadCliQ (↓) RadFact Logical
Experiment Macro F1-14 Precision Recall

MAIRA-2 38.4 [37.8, 39.1] 42.7 [40.9, 44.4] 51.5 [49.3, 53.5] 39.7 [38.9, 40.4] 2.64 [2.61, 2.68] 50.5 [49.7, 51.3]
NoGroundRep 38.3 [37.7, 38.9] 41.8 [40.2, 43.8] 49.9 [47.7, 51.7] 39.6 [39.0, 40.3] 2.65 [2.61, 2.68] 51.2 [50.4, 52.1]

evaluated the prior detection algorithm on 100 samples from the training sets of each MIMIC-CXR, PadChest,
and USMix, and found it very robust with 98%, 96%, and 97% accuracy, respectively. The evaluation sets
were balanced w.r.t. the prevalence of prior mentions. Since mentions of lateral images in the findings are
usually explicit, we resorted to a simple regex shown in Listing 6 and refrained from creating evaluation sets
for this task. Applying these algorithms to the generated and reference findings allows us to estimate in how
many cases the model should have, and in how many cases it has mentioned a prior report or lateral image.
Logical precision or recall values as in RadFact can not be computed from these numbers, as the detected
mentions in the prediction and the reference do not have to be related.

Inputs containing temporal information In Table B.4, we show training and inference-time ablations
demonstrating the independent effect of including the prior study and comparison section. As in Section 3.4,
this analysis is performed on the subset of the MIMIC test set that has prior images. When we train without
the prior study ‘Train:No Prior ’, we observe a significant drop in Macro F1-14 (-8.5%). We also see a similar
but larger drop in Macro F1-14 (-10.3%) when we train with the prior study but drop it during inference
‘Infer:No Prior ’, indicating that MAIRA-2 uses the prior study to produce more factually correct reports.
We also note that using a model trained with prior studies and running inference without prior studies will
cause fewer hallucinations of comparisons (72.9%) as compared to a model that was not trained with prior
studies (82.8%). When we train a model without the comparison section ‘Train:No Comp’, we observe a

Listing 6: Regular Expression used to detect mentions of lateral images.

(pa|ap|frontal) and lateral|
\blateral and (pa|ap|frontal)|
\blateral (projection|view)|
(two|2) views
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Table B.4: Prior and comparison ablation experiments on MIMIC-CXR, on the set of test cases with a prior
study (n=2181). No Comp means we drop the comparison section, No Prior means we drop the prior frontal
image and the prior report. Infer:means we drop the inputs only at inference time (we evaluate a model
trained using these inputs), otherwise we both train and evaluate without the inputs. This table complements
Fig. 6. We report median and 95% confidence intervals based on 500 bootstrap samples. ‘↓’ indicates that
lower is better. CheXpert F1 metrics are computed based on CheXbert labeller outputs. RadFact uses
RadFact-Llama3.

ROUGE-L CheXbert RadCliQ (↓) RadFact Logical % Mentions
Experiment Macro F1-14 Precision Recall comparison

MAIRA-2 38.4 [37.7, 39.0] 43.7 [41.9, 45.6] 2.64 [2.61, 2.68] 52.6 [51.4, 53.6] 48.6 [47.4, 49.7] 85.6 [84.2, 87.0]
Infer:No Comp 29.8 [29.2, 30.4] 39.9 [38.0, 41.6] 3.07 [3.03, 3.10] 47.9 [46.7, 49.0] 42.6 [41.7, 43.8] 71.2 [69.2, 73.2]
Train:No Comp 34.9 [34.3, 35.5] 41.9 [39.9, 43.7] 2.81 [2.78, 2.85] 52.7 [51.6, 53.7] 46.4 [45.3, 47.4] 86.4 [84.9, 87.9]
Infer:No Prior 37.9 [37.3, 38.6] 39.2 [37.6, 41.2] 2.69 [2.66, 2.73] 51.5 [50.5, 52.5] 47.1 [46.2, 48.2] 72.9 [71.1, 74.8]
Train:No Prior 38.2 [37.5, 38.9] 40.0 [38.2, 41.8] 2.67 [2.63, 2.71] 52.5 [51.6, 53.6] 47.4 [46.4, 48.4] 82.8 [81.2, 84.3]
Infer:No Prior No Comp 27.3 [26.7, 28.0] 35.8 [34.2, 37.5] 3.18 [3.15, 3.22] 45.5 [44.4, 46.5] 40.5 [39.6, 41.4] 38.6 [36.7, 40.5]
Train:No Prior No Comp 33.9 [33.2, 34.5] 39.3 [37.5, 41.1] 2.89 [2.86, 2.93] 50.6 [49.5, 51.5] 44.7 [43.7, 45.7] 75.8 [73.9, 77.4]

significant drop in lexical metrics (-9.1% drop in ROUGE-L) as well as an increase in RadCliQ (+6.4), but
no significant drop in Macro F1-14. When we train with the comparison section but drop it at inference
time ‘Infer:No Comp’, we note an even larger drop in ROUGE-L (-22.4) in addition to an overall decrease
in performance across all other metrics. Based on the large drop in lexical metrics when not using the
comparison section, and the reduction in hallucinations when we train a model with comparison sections and
run inference without them ‘Infer:No Prior No Comp’ as compared to training without these sections entirely
‘No Prior No Comp’, we hypothesise that the model uses the comparison section as an indicator of whether
or not temporal change mentions should be generated in the text, and that the prior image is necessary to
ensure the change words generated are correct.

Table B.5: Lateral and technique ablations on MIMIC-CXR for the subset of the test set with a lateral view
(n = 1,116). No Lat means we drop the lateral view, No Tech means we drop the Technique section. ‘Inf’
means we drop the inputs only at inference time, evaluating a model trained using those inputs. Otherwise,
we both train and evaluate without the inputs. This table complements Fig. 7. We report median and 95%
confidence intervals based on 500 bootstrap samples. ‘↓’ indicates that lower is better. CheXpert F1 metrics
are computed based on CheXbert labeller outputs. RadFact uses RadFact-Llama3.

ROUGE-L CheXbert RadCliQ (↓) RadFact Logical % Mentions
Experiment Macro F1-14 Precision Recall lateral

MAIRA-2 40.4 [39.5, 41.4] 38.8 [35.9, 41.5] 2.50 [2.44, 2.56] 60.2 [58.7, 61.7] 54.7 [53.2, 56.0] 39.6 [36.6, 42.5]
Infer:No Lat 38.9 [38.0, 39.8] 36.8 [34.5, 39.6] 2.54 [2.49, 2.60] 60.5 [59.0, 61.9] 53.2 [51.7, 54.6] 13.2 [11.3, 15.3]
Train:No Lat 40.4 [39.4, 41.4] 39.1 [36.5, 42.5] 2.51 [2.46, 2.56] 60.4 [58.9, 62.0] 54.1 [52.8, 55.6] 38.2 [35.4, 41.3]
Infer:No Tech 34.1 [33.2, 34.9] 36.6 [33.7, 39.5] 2.81 [2.76, 2.86] 56.6 [55.2, 58.2] 51.1 [49.8, 52.3] 61.2 [58.4, 64.0]
Train:No Tech 37.2 [36.3, 38.2] 36.1 [33.3, 38.6] 2.64 [2.59, 2.69] 58.4 [57.0, 59.7] 53.1 [51.8, 54.4] 36.3 [33.2, 39.4]
Infer:No Lat No Tech 31.5 [30.8, 32.3] 35.2 [32.8, 37.7] 2.87 [2.82, 2.92] 57.7 [56.3, 59.0] 49.1 [47.8, 50.7] 5.1 [3.8, 6.4]
Train:No Lat No Tech 36.8 [36.0, 37.9] 39.0 [36.2, 41.9] 2.66 [2.61, 2.71] 58.5 [57.2, 59.9] 53.7 [52.3, 55.0] 36.1 [33.0, 39.2]

Inputs related to multi-view studies Table B.5 shows training and inference-time ablations to evaluate
the impact of including the lateral view and the technique section independently, as a complement to the
analysis in Section 3.4 demonstrating their joint effect. Similarly, we restrict the analysis to the test studies
that include a lateral view (n=1,116, 30.6%). When we drop the lateral view at inference-time ‘Infer:No Lat’,
we notice that MAIRA-2 generates less lateral mentions (13.23% vs 39.57%) and therefore limited “lateral
hallucinations”. We also observe a drop in almost all metrics including Macro F1-14 (-5.15%) highlighting the
importance of the lateral view in making accurate diagnosis. On the other hand, a model trained without the
lateral view continues to hallucinate lateral mentions (38.16%) since it can use the technique section as a
proxy to make simple lateral predictions. Even though this ablated model is able to generate simple lateral
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references using the technique section as a shortcut, there is no guarantee that it has improved it’s clinical
accuracy when a pathology can only be seen on the lateral. Moreover, when we drop the technique in the
presence of the lateral view ‘Infer:No Tech’, we see a large drop in ROUGE-L (-15.59%) and a substantial
increase of the %Lateral mentions, exceeding 35.57% (percentage of lateral mentions in the ground truth)
by a very large margin. This suggests that the technique section is a strong indicator for generating lateral
mentions. However, when this information is omitted during training ‘Train:No Tech’, the model can still
figure out when to mention the lateral view (36.33%) but not as accurately as in MAIRA-2. Finally, when
we drop both the lateral and the technique at the same time during inference ‘Infer:No Lat No Tech’, the
percentage of lateral mentions drops down to 5.1% (getting closer to 0) indicating that both the lateral view
and the technique section are essential to reduce hallucinations related to lateral mentions. This further
becomes clearer when compared to a model that is trained without this information ‘Train:No Lat No Tech’
but still hallucinates lateral mentions (36.12%) as discussed in Section 3.4.

C Additional qualitative examples

C.1 Successful grounded reporting examples from GR-Bench

We showcase additional sample generations from MAIRA-2 with comments from radiologist review in
Figures C.1 to C.3.

C.2 High and low-scoring examples from GR-Bench according to RadFact

Figures C.4 to C.6 present manually selected qualitative example of MAIRA-2 output on GR-Bench with
varying RadFact logical precision: 1.0, 0.78 and 0.0 respectively. Figures C.7 to C.9 present additional
examples selected based on varying RadFact grounding precision: 1.0, 0.5 and 0.0 respectively.

C.3 Findings generation examples from MIMIC-CXR

It is not possible to quantitatively compare to models trained to generate other sections, such as Impres-
sion (Bannur et al., 2023) or both Findings and Impression together (Tanno et al., 2023; Yang et al., 2024).
In Figures C.10 to C.13, we qualitatively compare on the examples shown in Yang et al. (2024), which
were sourced from the MIMIC-CXR validation set. We find that all four study examples represent mostly
“normal” patient cases that make little or no references to prior or lateral images. As illustrated in the model
outputs, there’s little difference between MAIRA-2 and Med-Gemini phrases, and the original reference text.
In independent reviews with two radiologists, minor variances were surfaced in terms of findings missed or
hallucinated, and preferences for their conciseness or ordering that are described in the Figure captions.
Overall, for this very limited set of examples, which predominantly report negative rather than more clinically
relevant (positive) findings, it is difficult to surface any more clinically significant differences between the
outputs of either model.
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MAIRA-2 model inputs:

Frontal Lateral (flipped horizontally for display)

RadFact logical precision: 0.78
RadFact logical recall: 0.75

INDICATION: _-year-old woman with bilateral facial and left 
arm spasms; evaluate for consolidation.

TECHNIQUE: PA and lateral radiograph views of the chest 
were obtained.

COMPARISON: Chest radiograph dated _.

MAIRA-2 model outputs:
 

Grounded FINDINGS Box alignment

FINDINGS not-entailed in either reference or prediction phrases

B. There is a pectus 
deformity of the 
sternum. 

1. The bony structures 
are demineralized. 

2. There are degener-
ative changes of the 
thoracic spine. 

7. The lungs are 

hyperlucent. 

FINDINGS entailed (here: bi-directionally)

G. / 9. The cardiac size 
is moderately enlarged.

H. There is uncoiling of the 
aorta compatible with 
hypertension./ 10. 
Uncoiling of the aorta.

Reference box

MAIRA-2 box

A. The bony structures are intact.
B. There is a pectus deformity of the sternum. 
C. The lungs show no acute infiltrate or mass.

D. There is no effusion.
E. The pulmonary interstitial markings are normal.

F. The diaphragm is smooth.
G. The cardiac size is moderately enlarged. 
H. There is uncoiling of the aorta compatible with hypertension. 
I. There is no hilar or mediastinal adenopathy.

Reference text

1. The bony structures are demineralized. 
2. There are degenerative changes of the thoracic spine. 
3. The lungs show no acute infiltrate.
4. The lungs show no mass.
5. There is no effusion.
6. The pulmonary interstitial markings are normal.
7. The lungs are hyperlucent.
8. The diaphragm is smooth.
9. The cardiac size is moderately enlarged. 
10. Uncoiling of the aorta.
11. There is no hilar adenopathy. 
12. There is no mediastinal adenopathy.

RadFact spatial precision: 0.67
RadFact spatial recall: 0.4

RadFact grounding precision: 1.0
RadFact grounding recall: 1.0

FINDINGS phrases

Text variances

Figure C.1: A manually selected qualitative example of MAIRA-2 output on GR-Bench. This 3-part figure
shows MAIRA-2 model inputs (top); the MAIRA-2 phrase outputs vis-à-vis the reference text (middle);
and grounding boxes for the MAIRA-2 phrases on the current frontal image alongside their alignment with
reference boxes (bottom). The selected example has moderate MAIRA-2 RadFact logical precision (0.78)
and recall (0.75). Qualitative comparison with the reference text suggests that MAIRA-2 misclassified the
patient’s bony structures as “intact”; added that the uncoiling of the aorta is “compatible with hypertension”;
and missed detecting the “degenerative changes of the thoracic spine” and that the “lungs are hyperlucent”.
In individual reviews with two consultant radiologists, it was suggested that the demineralisation of the
bony structures is difficult to see on the images and therefore considered a borderline finding to call out.
Similarly, the degenerative changes of the spine were assessed as only mild. Furthermore, the addition of
hypertension was regarded as ‘acceptable’ since the aorta is slightly torturous. Lastly, it was noted how the
MAIRA-2 findings also included that “There is a pectus deformity of the sternum”, which was not reported
in the reference and can only be clearly seen on the lateral view. For image grounding, there was no overlap
between four abnormal findings that were reported in either the MAIRA-2 candidate or the reference text,
resulting in non-corresponding bounding box as is reflected in lower spatial precision (0.67) and recall (0.4)
scores. For the two abnormal findings that were reported and entailed in both findings texts, however, there
is high grounding precision and recall (1.0).
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MAIRA-2 model inputs:

Frontal

RadFact logical precision: 0.75
RadFact logical recall: 0.71

INDICATION:  R09.89 Abnormal Chest Sounds R63.0 
Anorexia. 

TECHNIQUE:  PA and lateral views of the chest were 
obtained.  

COMPARISON: None.

MAIRA-2 model outputs:
 

Grounded FINDINGS Box alignment

FINDING not entailed in either reference or predicted phrases

B. Small amount of 
fluid is seen in the 
minor fissure.

FINDINGS entailed (uni-directionally)

Reference text

RadFact spatial precision: 0.33
RadFact spatial recall: 0.5

RadFact grounding precision: 0.5
RadFact grounding recall: 1.0

FINDINGS phrases

A. There is a 
moderatesized right 
pleural effusion. <-- 
2. Blunting of right 
lateral costophrenic 
sulcus.

C. There is likely consolidation or 
atelectasis present in the right 
middle lobe and right lung base. <-- 
1. Dense consolidation seen in the 
right middle lobe. 2. Blunting of 
right lateral costophrenic sulcus.

1. Dense consolidation seen 
in the right middle lobe. <-- 
C. There is likely consolidation 
or atelectasis present in the 
right middle lobe and right 
lung base.

Reference box

MAIRA-2 box

A. There is a moderatesized right pleural effusion.
B. Small amount of fluid is seen in the minor fissure.
C. There is likely consolidation or atelectasis present in the 
right middle lobe and right lung base.
D. No vascular congestive changes.
E. Median sternotomy sutures noted.
F. Prosthetic intracardiac valve noted.
G. There is no hilar or mediastinal adenopathy.
H. The bony structures are intact.
 

2. Blunting of right 
lateral costophrenic 
sulcus.

1. Dense consolidation seen in the right middle lobe.
2. Blunting of right lateral costophrenic sulcus. 
3. The cardiac size is normal.
4. Mediastinal sutures noted.
5.  Prosthetic mitral valve noted.
6. There is no hilar or mediastinal adenopathy.
7. The bony structures are intact.

Lateral (flipped horizontally for display)

Text variances

Figure C.2: A manually selected qualitative example of MAIRA-2 output on GR-Bench. This 3-part figure
shows MAIRA-2 model inputs (top); the MAIRA-2 phrase outputs vis-à-vis the reference text (middle);
and grounding boxes for the MAIRA-2 phrases on the current frontal image alongside their alignment with
reference boxes (bottom). The selected example has moderate MAIRA-2 RadFact logical precision (0.75) and
recall (0.71). In this example study, MAIRA-2 model outputs state moderate right pleural effusion, small
amount of fluid in the minor fissure; as well as the presence of consolidation or atelectasis in the right middle
lobe and right lung base. In review with a consultant radiologist, they agreed with these findings, however,
they found that the corresponding MAIRA-2 bounding boxes for findings B and C were too big. For example,
a small amount of fluid in the minor fissure is only visible as a small single line in the middle of the much
larger box for finding C. As such, this study presents an example of good logical precision, however, with
lower spatial performance. Both the reference text and the MAIRA-2 outputs also state different normals
(e.g., normal cardiac size, no vascular congestive changes). Furthermore, reviewing finding E and reference
finding 4, the consultant radiologist preferred the MAIRA-2 phrase of “Median sternotomy sutures noted.”,
since it is more accurate in its indication of the sutures: sternotomy rather than the mediastinal. Regarding
finding 5, the term “mitral” simply presents a type of “intracardiac valve”, and therefore finding F was
considered acceptable.
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MAIRA-2 model inputs:

Frontal

RadFact logical precision: 0.75
RadFact logical recall: 0.86

INDICATION:  R07.9 Chest Pain R05 Cough.

TECHNIQUE:  PA and lateral.  

COMPARISON: None.

MAIRA-2 model outputs:
 

Grounded FINDINGS Box alignment

FINDING not entailed in predicted phrases

2. The lungs show 
irregularity of the left 
hemidiaphragm.

FINDINGS entailed (uni-directionally)

Reference text

RadFact spatial precision: 0.0
RadFact spatial recall: 0.5

RadFact grounding precision: 0.0
RadFact grounding recall: 1.0

FINDINGS phrases

B. The lungs show small infiltrate at the 
left base with a small effusion. <-- 2. 
The lungs show irregularity of the left 
hemidiaphragm. 3. A small left 
effusion.

3. A small left effusion. 
<-- B. The lungs show 
small infiltrate at the 
left base with a small 
effusion. 

Reference box

MAIRA-2 box

A. The bony structures are intact.
B. The lungs show small infiltrate at the left base with a 
small effusion.
C. The right lung is clear.
D. The pulmonary interstitial markings are normal.
E. The diaphragm is smooth.
F. The cardiac size is normal.
G. There is no hilar adenopathy.
H. There is no mediastinal adenopathy.
 

1. The bony structures are intact.
2. The lungs show irregularity of the left hemidiaphragm. 
3. A small left effusion.
4. The right lung is clear.
5.  The cardiac size is normal.
6. There is no hilar adenopathy.
7. There is no mediastinal adenopathy.

Lateral (flipped horizontally for display)

Text variances

Figure C.3: A manually selected qualitative example of MAIRA-2 output on GR-Bench. This 3-part figure
shows MAIRA-2 model inputs (top); the MAIRA-2 phrase outputs vis-à-vis the reference text (middle);
and grounding boxes for the MAIRA-2 phrases on the current frontal image alongside their alignment with
reference boxes (bottom). The selected example has moderate MAIRA-2 RadFact logical precision (0.75)
and recall (0.86). Both the reference text and MAIRA-2 phrase output suggest the existence of a small
left effusion, which can be clearly seen on the lateral view. On the frontal image, the irregularity of the
diaphragm suggests that there is small infiltrate at the left base. The identified infiltrate and effusion are
considered to explain well the symptoms of chest pain and cough that are given in the indication; and the
grounding box for finding B is evaluated to be appropriate for the finding. Nonetheless, MAIRA-2 findings
erroneously state that the diaphragm is smooth, when it has irregularities. Whilst not mentioned in the
reference text, MAIRA-2 outputs also include “The pulmonary interstitial markings are normal.”, which is
correct. In this instance, the reference boxes for findings 2 and 3, which were drawn by human annotators,
are very small. Consequently, even though there was good logical entailment for the key abnormal findings,
their corresponding boxes did not overlap enough (given the set 50% threshold), explaining the low grounding
precision scores.
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MAIRA-2 model inputs:

Frontal Lateral

RadFact logical precision: 1.0
RadFact logical recall: 1.0

MAIRA-2 model outputs:
 

Reference textFINDINGS phrases

1. The heart is normal in size.
2. Uncoiled aorta.
3. The lungs are well-inflated.
4. There is no chf.
5. There is no infiltrate.
6. There is no mass lesion.
7. There are no osseous abnormalities.

A. The heart is within normal limits.
B. The lungs are within normal limits.
C. The mediastinal structures are within normal limits.
D. There is mild uncoiling of the aorta unchanged.
E. There are no osseous abnormalities.

MAIRA-2 box

Highlighted text variances

Figure C.4: This example has high RadFact logical precision and recall (1.0) and presents an interesting case
since the patient has “situs inversus”, meaning all organs are mirrored in the body (e.g., the heart, aorta
and stomach are on the right rather than the left side). Neither the reference text nor MAIRA-2 outputs
state “situs inversus”, an observation that is, of course, within normal limits. The study is mostly normal
and findings well entailed. However, while the study information state no comparison, the MAIRA-2 output
hallucinated “unchanged” about the uncoiled aorta. The reference text, relating to a normal study, also
does not have any box annotations, meaning that the uncoiled aorta is only grounded within the MAIRA-2
findings.
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MAIRA-2 model inputs:

Frontal Lateral (flipped horizontally for display) 

RadFact logical precision: 0.78
RadFact logical recall: 0.64

INDICATION: Z01.812 Encounter for 
preprocedural laboratory examination.

TECHNIQUE: PA and lateral views of the chest 
were obtained.

COMPARISON: None.

MAIRA-2 model outputs:
 

Reference textFINDINGS phrases

A. The lungs show no active infiltrate.
B. The lungs show no mass.
C. The lungs show no effusion.
D. Diaphragms are sharp.
E. Minor fibrotic/subsegmental atelectatic changes 
at the left base are noted.
F. The cardiac size is mildly enlarged.
G. There is no hilar adenopathy.
H. There is no mediastinal adenopathy.
I. The bony structures are intact.

1. The lungs show no active infiltrate.
2. The lungs show no mass.
3. The lungs show no effusion.
4. Diaphragms are sharp.
5. The heart is slightly enlarged.
6. Atherosclerotic calcifications of the aorta are present.
7. There is no hilar adenopathy.
8. There is no mediastinal adenopathy.
9. Healed fracture of the left clavicle is present.
10. Healed fractures of the left upper ribs are noted.
11. There is a bullet projecting in the inferior right lower chest.

Reference box

MAIRA-2 box

Highlighted text variances

Figure C.5: This example has moderate RadFact logic precision (0.78) and recall (0.64). Many of the phrases
are well-matched. MAIRA-2 output however missed the “bullet” that is projecting in the right lower chest,
and it does not include the calcification of the aorta, which was described in review with a consultant
radiologist as a very difficult to see finding and therefore a borderline observation. Where the reference
states healed fractures, MAIRA-2 outputted that the bony structures are intact. MAIRA-2 outputs further
include “Minor fibrotic/subsegmental atelectatic changes at the left base are noted”; which is evidenced
by the elevated left hemidiaphragm pushing in the lung with resulting atelectasis – a finding that was not
reported in the reference text.
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MAIRA-2 model inputs:

Frontal Lateral

RadFact logical precision: 0.0
RadFact logical recall: 0.0

INDICATION: COPD PULMONARY 
INFILTRATE.

TECHNIQUE: CHEST TWO VIEW.

COMPARISON: None.

MAIRA-2 model outputs:
 

Reference textFINDINGS phrases

A. The heart is stable.
B. Pulmonary vascularity is unremarkable.
C. No infiltrate is seen.
D. No pleural effusion is seen.

1. Minimal scarring or subsegmental atelectasis is noted 
at the left lung base.
2. Lungs remain mildly hyperinflated.

Reference box

Highlighted text variances

Figure C.6: This example has low RadFact logical precision and recall (0.0). MAIRA-2 phrases suggest this
is a normal study, whilst the reference states “Minimal scarring or subsegmental atelectasis is noted at the
left lung base.” and “Lungs remain mildly hyperinflated.”. Both present minimal or mild findings that were
however missed. In reviews with a consultant radiologists it was pointed out that the study indication states
COPD, which – where it is a known condition – would mean hyperinflation is to be expected. Furthermore,
the review surfaced that both text candidates missed the “scoliosis” – a sideways curvature of the spine –
that is visible in the frontal image.
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MAIRA-2 model inputs:

Frontal

RadFact logical precision: 0.9
RadFact logical recall: 1.0

INDICATION: I10 Hypertension E11.9 type 2 diabetes. 

TECHNIQUE: PA and lateral views of the chest were 
obtained.

COMPARISON: None.

MAIRA-2 model outputs:
 

Grounded FINDINGS Box alignment

FINDING not entailed in reference phrases

I. Calcification is noted within 
the aortic knob. I. Calcification is 
noted within the aortic knob. 

FINDINGS entailed (bi-directionally)

Reference text

RadFact spatial precision: 0.75
RadFact spatial box recall: 1.0

RadFact grounding precision: 1.0
RadFact grounding box recall: 1.0

FINDINGS phrases

B./ 2. There are 
degenerative changes 
of the spine.

G./ 7. The cardiac size 
is mildly enlarged.

H. There is uncoiling of the aorta.H. There 
is uncoiling of the aorta. / 8. Considerable 
uncoiling the aorta is noted. 

Lateral (flipped horizontally for display)

A. The bony structures are intact.
B. There are degenerative changes of the spine.
C. The lungs show no acute infiltrate or mass.
D. There is no effusion.
E. The pulmonary interstitial markings are normal.
F. The diaphragm is smooth.
G. The cardiac size is mildly enlarged.
H. There is uncoiling of the aorta.
I. Calcification is noted within the aortic knob. 
J. There is no hilar or mediastinal adenopathy.

1. The bony structures are intact.
2. There are degenerative changes of the spine. 
3. The lungs show no acute infiltrate or mass.
4.  There is no effusion.
5. The pulmonary interstitial markings are normal.
6. The diaphragm is smooth.
7. The cardiac size is mildly enlarged.
8. Considerable uncoiling the aorta is noted. 
9. There is no hilar or mediastinal adenopathy.

Reference box

MAIRA-2 box

Text variances

Figure C.7: This example has high grounding precision (1.0). There is generally high overlap between both
findings texts. MAIRA-2 output includes the finding of a “Calcification is noted within the aortic knob.”,
which is described in radiologist review as a plausible, borderline findings that was however not included
in the reference text. Where generated MAIRA-2 findings and boxes are matching the reference, resulting
grounding precision is high.
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MAIRA-2 model inputs:

Frontal

RadFact logical precision: 0.91
RadFact logical recall: 0.78

INDICATION:  287.891 smoker. J93.9 previous 
pneumothorax.

COMPARISON: None.

MAIRA-2 model outputs:
 

Grounded FINDINGS Box alignment

FINDINGS not entailed in predicted or reference phrases

E. There is evidence of 
lung hyperexpansion.

2. There is a mild 
scoliosis.

FINDINGS entailed (uni-directionally)

Reference text

RadFact spatial precision: 0.33
RadFact spatial recall: 0.5

RadFact grounding  precision: 0.5
RadFact grounding recall: 1.0

FINDINGS phrases

F. There is evidence of apical 
pleural thickening on the 
right. <-- 6. There is right 
apical pleural thickening with 
surgical clips in the right 
upper lobe medially 
compatible with 
pneumothorax repair.

Lateral (flipped horizontally for display)

1. The bony structures are intact.
2. There is a mild scoliosis. 
3. The lungs show no acute infiltrate or mass.
4. There is no effusion.
5.  The pulmonary interstitial markings are normal.
6. There is right apical pleural thickening with surgical clips in 
the right upper lobe medially compatible with pneumothorax 
repair.
7. The diaphragm is smooth.
8. The cardiac size is normal.
9. There is no hilar or mediastinal adenopathy.

A. The bony structures are intact.
B. The lungs show no active infiltrate.
C. The lungs show no mass.
D. The lungs show no effusion.
E. There is evidence of lung hyperexpansion.
F. There is evidence of apical pleural thickening on the right.
G. The previously reported pneumothorax has cleared.
H. The diaphragm is smooth.
I. The cardiac size is normal.
J. There is no hilar adenopathy.
K. There is no mediastinal adenopathy.

G. The previously reported 
pneumothorax has cleared. 
<-- 6. There is right apical 
pleural thickening with 
surgical clips in the right 
upper lobe medially 
compatible with 
pneumothorax repair.

 6. There is right apical pleural 
thickening with surgical clips in 
the right upper lobe medially 
compatible with pneumothorax 
repair. <-- F. There is evidence of 
apical pleural thickening on the 
right. G. The previously reported 
pneumothorax has cleared. 

Reference box

MAIRA-2 box

Text variances

Figure C.8: This example has moderate grounding precision (0.5). The MAIRA-2 outputs include a finding
stating “There is evidence of lung hyperexpansion”, which in radiologist review was verified to be correct. Both
findings texts correctly identified the apical pleural thickening on the right upper lobe. However, the reference
text expands this finding to also include commentary about surgical clips and pneumothorax repair, whereas
the MAIRA-2 model outputs a separate phrase stating the “previously noted pneumothorax has cleared”.
Although there is good alignment with the reference boxes where the findings specify the apical pleural
thickening (findings F and 6), MAIRA-2 falsely generated a whole right lung box for a cleared pneumothorax
(finding G), which would not match to the much narrower reference bounding box that is centered on
the pleural thickening; thereby explaining the lower entailed box performance metrics. Nonetheless, it is
interesting to point out that change information about the pneumothorax was generated even though no
prior image was available to this study, likely as a consequence of the study indication that states “previous
pneumothorax”.
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MAIRA-2 model inputs:

Frontal

RadFact logical precision: 1.0
RadFact logical recall: 0.75

INDICATION:  F17.210 Current smoker.

TECHNIQUE: PA and lateral views of the chest were 
obtained. 

COMPARISON: None.

MAIRA-2 model outputs:
 

Grounded FINDINGS Box alignment

FINDINGS not entailed in predicted phrases

1. There is linear scarring versus subsegmental 
atelectasis within the right middle lobe and 
lower lobes bilaterally, right greater than left.

5. There is 
calcification of aortic 
knob.

FINDINGS entailed (uni-directionally)

Reference text

RadFact spatial precision: 0.0
RadFact spatial recall: 0.0

RadFact grounding precision: 0.0
RadFact grounding recall: nan

FINDINGS phrases

A. There is linear scarring versus subsegmental atelectasis within the right 
middle lobe and right lower lobe. <-- 1. There is linear scarring versus 
subsegmental atelectasis within the right middle lobe and lower lobes 
bilaterally, right greater than left.

Lateral (flipped horizontally for display)

1. There is linear scarring versus subsegmental atelectasis 
within the right middle lobe and lower lobes bilaterally, right 
greater than left.
2. No active infiltrate or consolidation is demonstrated. 
3. Pulmonary vascularity is normal.
4. The hila are not enlarged.
5.  There is calcification of aortic knob.
6. The mediastinum is not widened.
7. The heart size is normal.
8. The bones appear intact.

A. There is linear scarring versus subsegmental atelectasis within 
the right middle lobe and right lower lobe.
B. No active infiltrate or consolidation is demonstrated.
C. Pulmonary vascularity is normal.
D. The hila are not enlarged.
E. The mediastinum is not widened.
F. The heart size is normal.
G. The bones appear intact.

Reference box

MAIRA-2 box

Text variances

Figure C.9: This example has low grounding precision (0.0). The reference text states that the finding of
“linear scarring versus subsegmental atelectasis” exists bilaterally, whereas the MAIRA-2 outputs describe
these as right-sided only. In radiologist review, the left lower lobe omission was indeed considered a missed
subtle finding. MAIRA-2 outputs also did not include the report of the “calcification of aortic knob”. In
terms of bounding box placement and size, the MAIRA-2 box for finding A was considered a bit too big, but
acceptable; whereas the corresponding bounding boxes for the reference text (Finding 1) were described as
a bit too narrow; especially on the right side. This low overlap in bounding boxes explains the lower box
precision scores in this instance. 40



Frontal

INDICATION:  History: _F with intubation for ICH // position 
of ET tube

TECHNIQUE:  Portable upright chest radiograph 

COMPARISON: -

FINDINGS: Tip of the endotracheal tube projects over the mid 
thoracic trachea, approximately 3.7 cm from the carina. 
Enteric tube terminates beyond the diaphragm, in the left 
upper quadrant. Lungs are clear and cardiomediastinal 
silhouette is normal

MAIRA-2 outputs:
 
FINDINGS: Endotracheal tube terminates 4.5 cm from the 
carina. Enteric tube terminates in the left upper quadrant. 
Lungs are clear. Cardiomediastinal and hilar contours are 
normal. No pleural effusion or pneumothorax.

No Lateral, No Prior

MedGemini outputs: 

FINDINGS: The endotracheal tube terminates 4.5 cm above 
the carina. an enteric tube courses below the diaphragm 
and terminates within the stomach. There is no focal 
consolidation, pleural effusion, pneumothorax, or 
pulmonary edema. The cardiomediastinal silhouette is 
within normal limits.  

Reference: Original reportCurrent Study

Figure C.10: One of the examples from Yang et al. (2024) to enable qualitative comparison to Med-Gemini.
Apart from the specific lines and tubes findings, this study is mostly normal. Neither generated report
findings missed any observations and both were assessed in radiologist reviews as equivalent from a clinical
perspective. Interestingly, both candidate texts hallucinated the 4.5 cm measure of the endotracheal tube
terminating above the carina, as neither model can plausibly predict the correct measurement from a chest
X-ray as they have no information on scale. While the MAIRA-2 output produces the exact same location
description for the enteric tube as the reference text stating it to terminate “in the left upper quadrant”;
the Med-Gemini location of “terminates within the stomach” is considered as more precise. On the other
hand, preferences were expressed for MAIRA-2 stating “Lungs are clear”, which is more concise than its
counterpart; and for MAIRA-2 ’s ordering of the findings from lungs to the cardiomedistinal/ hilar structures
and then the pleura (similar to a structured report generation), compared to the Med-Gemini findings that
move between those structures.
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Frontal

INDICATION:  n/a

TECHNIQUE:  Chest frontal and lateral views. 

COMPARISON: “_.”

FINDINGS: Frontal and lateral views of the chest were 
obtained. No focal consolidation, pleural effusion or evidence 
of pneumothorax is seen. The cardiac and mediastinal 
silhouettes are unremarkable. No pulmonary edema is seen.

MAIRA-2 outputs:
 
FINDINGS: Frontal and lateral views of the chest were 
obtained. Lungs are clear without focal consolidation. No 
pleural effusion or pneumothorax is seen. Cardiac and 
mediastinal silhouettes are unremarkable.

Lateral

MedGemini outputs: 

FINDINGS: The lungs are clear without focal consolidation. 
No pleural effusion or pneumothorax is seen. The cardiac 
and mediastinal silhouettes are unremarkable.  

Reference: Original reportCurrent Study

Frontal

INDICATION:  Patient with fever. Assess for pneumonia.

COMPARISON: _.

FINDINGS: Frontal and lateral views of the chest demonstrate 
normal lung volumes. Right lung base opacities are slightly 
more conspicuous since prior, projecting over the spine on 
the lateral view. There is no pleural effusion, focal 
consolidation or pneumothorax. Hilar and mediastinal 
silhouettes are unchanged. Heart size is normal. There is no 
pulmonary edema. Partially imaged upper abdominal visceral 
organs are unremarkable.

IMPRESSION: Right lung base opacities, slightly more 
conspicuous since _, may represent atelectasis or infection in 
the appropriate clinical setting.

Reference: Original reportPrior Study

Figure C.11: One of the examples from Yang et al. (2024) to enable qualitative comparison to Med-Gemini.
This example study reports a “normal”. Both generated candidates are near identical and match the reference
text findings. Like the reference text, MAIRA-2 outputs the phrase “Frontal and lateral views of the chest
were obtained.” Whilst learned from such input instances, technically, this information does not present
an image finding and it is already included in the Technique description. Neither the reference text, nor
MAIRA-2 and Med-Gemini phrases include any comparison information with the prior study.
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Frontal

INDICATION:  ,_-year-old woman with renal failure, evaluate 
for edema or infiltrate.

TECHNIQUE:  -

COMPARISON: “_.”

FINDINGS: PA and lateral chest radiographs were obtained. 
There is an ill-defined opacity in the right lower lobe that 
does not obscure the right heart border. A right-sided pleural 
effusion is small. There is no pneumothorax. Cardiomegaly is 
mild. Aortic calcifications are minimal.

MAIRA-2 outputs:
 
FINDINGS: PA and lateral views of the chest were obtained. 
Cardiomediastinal silhouette including mild cardiomegaly is 
unchanged. There is increased pulmonary vascular 
congestion and mild-to-moderate pulmonary edema. A 
small right pleural effusion is present. There is no focal 
consolidation or pneumothorax.

Lateral

MedGemini outputs: 

FINDINGS: There is a right lower lobe consolidation. there is 
also a small right pleural effusion. The heart is mildly 
enlarged. There is mild pulmonary vascular congestion. 
there is no pneumothorax. 

Reference: Original reportCurrent Study

Frontal

INDICATION:  Cough. 

COMPARISON: None.

FINDINGS: There is moderate enlargement of the cardiac 
silhouette. The aorta is mildly tortuous and calcified. 
Pulmonary vascularity is not engorged. Ill-defined opacity is 
noted within the right lung base, which is concerning for an 
infectious process. There is no large pleural effusion or 
pneumothorax. Mild degenerative changes are noted in the 
thoracic spine. Multiple clips are seen within the upper 
abdomen.

IMPRESSION: Ill-defined opacity within the right lung base 
which is concerning for pneumonia. Followup radiographs 
after treatment are recommended to ensure resolution of 
this finding.

Reference: Original reportPrior Study

Figure C.12: One of the examples from Yang et al. (2024) to enable qualitative comparison to Med-Gemini.
In this example study, like Figure C.11, MAIRA-2 outputs the Technique, which is in keeping with the
reference report. The MAIRA-2 outputs also correctly describe the “unchanged” mild cardiomegaly. However,
neither candidate findings say anything about the progression of the previously reported right lower lobe
opacity, nor does the reference text explicitly describe any changes from the prior. Both generated report
candidates state the existence of “pulmonary vascular congestion”, which is most apparent via comparison
with the prior study, and yet this finding was not included in the reference text. In the reference report,
it is implied that the ill-defined opacity in the right lower lobe is a consolidation. Whilst the Med-Gemini
findings indeed include “There is a right lower lobe consolidation”, the MAIRA-2 outputs falsely state “There
is no focal consolidation”. Lastly, neither generated findings texts report the minimal “aortic calcifications”,
which – as a chronic finding – was reported previously, and thus, our radiologists did not consider this as a
significant omission.
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Frontal

INDICATION:  n/a

TECHNIQUE:  n/a

COMPARISON: “_.”

FINDINGS: Frontal and lateral views of the chest were 
obtained. The lungs are hyperinflated, with flattening of the 
diaphragms, consistent with chronic obstructive pulmonary 
disease. There is mild left basilar atelectasis. No focal 
consolidation is seen. There is no pleural effusion or 
pneumothorax. The cardiac and mediastinal silhouettes are 
unremarkable. Degenerative changes are seen along the 
spine.

MAIRA-2 outputs:
 
FINDINGS: PA and lateral views of the chest were obtained. 
The lungs are hyperinflated with flattened diaphragms 
suggesting underlying COPD. A stable area of scarring is 
noted in the lower lungs. There is no evidence of 
pneumonia or CHF. No pleural effusion or pneumothorax. 
Cardiomediastinal silhouette is stable. Bony structures are 
intact.

Lateral

MedGemini outputs: 

FINDINGS: The lungs are hyperinflated with flattening of 
the diaphragms and increased ap diameter, suggesting 
chronic obstructive pulmonary disease. No focal 
consolidation, pleural effusion, or pneumothorax is 
detected. Heart and mediastinal contours are within 
normal limits with extensive aortic calcification.

Reference: Original reportCurrent Study

Frontals

PREAMBLE: CHEST RADIOGRAPH

INDICATION:  Status post nephrectomy, evaluation for 
fevers. Questionable pneumonia. 

COMPARISON: _.

FINDINGS: As compared to the previous examination, 
there is no relevant change. Minimal basal areas of 
atelectasis. Normal size of the cardiac silhouette 
without pulmonary edema. No interval appearance of 
new parenchymal opacities suggestive of pneumonia. 
The contours of the hilar and mediastinal structures are 
unchanged and normal.

Reference: Original reportPrior Study

Figure C.13: One of the examples from Yang et al. (2024) to enable qualitative comparison to Med-Gemini.
Again, MAIRA-2 outputs technical details of image views as part of the Findings as is reflective of the
reference text. Both candidate reports include the suggestion of an underlying “COPD”, which presents a
clinical diagnosis rather than an image finding. Med-Gemini outputs further state “increased ap diameter”.
Whilst this finding is not false, it likely presents a hallucination since the AP dimension can only be seen on
the lateral view, which was not part of the Med-Gemini model training. The MAIRA-2 findings of “stable
area of scarring is noted in the lower lungs” relates to the mild left basilar atelectasis in the reference text – a
finding that was not reported by Med-Gemini. While reporting of the area of scarring and its progression
from the prior (“stable”) are correct in the MAIRA-2 outputs, its location description is imprecise and should
state in which lower lung (singular, left) it is present. The reference text further states “Degenerative changes
are seen along the spine”. MAIRA-2 outputs instead state that the “Bony structures are intact”. There is no
commentary made about the bones in the Med-Gemini output, which – similar to MAIRA-2 – may suggest
an assumed normal. In general, degenerative changes to the spine, especially with the existence of prior
studies, are not considered a new finding and are therefore less important to mention. Lastly, our radiologists
could not see the “extensive aortic calcification” that was described in the Med-Gemini findings and that
were also not remarked on by the reference text. Please note, for MAIRA-2, only the upper frontal image of
the prior study was included into the analysis.
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