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ABSTRACT
The opportunity for artificial intelligence, or AI, to enable acces-
sibility is rapidly growing, but widely impactful applications can
be challenging to build given the diversity of user need within and
across disability communities. Teachable AI systems give users
with disabilities a way to leverage the power of AI to personalize
applications for their own specific needs. We demonstrate Find My
Things as an end-to-end example of applying Teachable AI systems
to address the diversity of accessibility needs. An application that
can be taught by people who are blind or low vision to find their
personal things, Find My Things illustrates the potential Teachable
AI holds for accessibility.

CCS CONCEPTS
• Human-centered computing → Accessibility; Accessibility
systems and tools; Accessibility; Accessibility design and evaluation
methods.

KEYWORDS
Accessibility, Artificial Intelligence, Teachable AI

ACM Reference Format:
Linda Yilin Wen, Cecily Morrison, Martin Grayson, Rita Faia Marques,
Daniela Massiceti, Camilla Longden, and Edward Cutrell. 2024. Find My
Things: Personalized Accessibility through Teachable AI for People who are
Blind or Low Vision. In Extended Abstracts of the CHI Conference on Human
Factors in Computing Systems (CHI EA ’24), May 11–16, 2024, Honolulu, HI,
USA. ACM, New York, NY, USA, 6 pages. https://doi.org/10.1145/3613905.
3648641

1 INTRODUCTION
The power of artificial intelligence (AI) to enable accessibility is
growing and will continue to do so rapidly with the deployment
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of services based on large foundation models. Despite the oppor-
tunity, the diversity of user needs both across and within disabil-
ity categories can present a challenge to creating broadly usable
and efficacious AI systems for accessibility. Further, many ma-
chine learning capabilities do not generalize well enough to create
compelling, real-world experiences, despite articulated user need
demonstrated through heavy usage of apps that provide remote
human assistance1.

Teachable AI systems give users with disabilities a way to lever-
age the power of AI to personalize applications for their specific
needs [7]. They do this by allowing users to teach the AI system
about what they need by providing examples to the AI system in
a teaching loop (e.g., [13]). In this loop, the user provides a small
number of training examples, high-level constraints, or prompts,
to train or fine-tune an AI system. The user then receives feedback
on system performance through application use, or explanation.
Through iteration, the user builds their own mental model of how
the AI system works, optimizing it for their own goals.

In this interactivity, we present Find My Things, an example of a
Teachable AI system. Designed in conjunction with a citizen design
team, Find My Things helps people who are blind or low vision
locate their personal items. As shown in Figure 1, users of Find
My Things are supported with instructions and auditory / haptic
feedback to create four diverse videos of a personal object that
they want to teach the AI system to recognize. Within seconds,
a personalized AI model is created on device for this personal
object. Users can then activate the app to locate and be guided to
their personal object with auditory, haptic, and visual cues. Find
My Things can be seen as a relatively simple example of the way
teachable AI can broaden an AI system – object recognition in this
case – to meet the individual needs of a more diverse set of users.

2 RELATED LITERATURE
2.1 Interactive Machine Learning
Interactive machine learning allows users to iteratively provide data
examples and high-level constraints to a machine learning model
to continually adapt its performance [2, 13]. The rapid, incremental

1Be My Eyes connects people needing sighted support with volunteers and companies
through live video around the world. https://www.bemyeyes.com/.
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Figure 1: A user finds a set of keys with Find MyThings, having previously taught the keys to the app by providing four videos.

interaction cycles encourage a close coupling between user and
resultant machine learning model. One of the key challenges of
interactive machine learning systems is supporting the mental
model of the user during the interactive process of refinement. The
back and forth between user and ML model to get to the desired
result is what we would call a teaching loop. Sanchez et al. [14]
proposed several guidelines for designing a teaching loop, such as
providing guidance for building teaching sequences and allowing
modifications to past teaching actions and sequences of actions.

2.2 Teachable AI for Disability
Teachable AI for disability has been proposed as a mechanism to
give people with disabilities the agency to personalize experiences
to their own needs and situations [7]. It could be adapting previ-
ously inaccessible tools or making a new class of tools [9, 12, 17].
Most examples of teachable AI for disability have been teachable ob-
ject recognizers for people who are blind or low vision, e.g., [1, 5, 8].
Kacorri et al. [8] illustrate that users needed guidance in taking
their images, as many used extreme points of view. Follow-up work
has explored different strategies to guide the taking of images, such
as leveraging ARKit2, providing sonified and verbal feedback [1],
and using hand-to-hand referencing [10].

2ARKit is Apple’s software development kit that enables app developers to incorporate
augmented reality.

2.3 Few-Shot Learning
Few-shot learning is an area of machine learning research that aims
to reduce the number of examples required to complete a machine
learning task, e.g., [16]. This in turn enables AI models to be adapted
to diverse, real-world contexts. Adding a new object category to a
typical deep learning model would require 100s to 1000s of high-
quality labelled examples [18]; in contrast, a few-shot model would
require just 5-10 examples. Meta-learning algorithms, which “learn
to learn,” hold particular promise for interactive applications as
they allow for lightweight, adaptable recognition, e.g., [19]. The
collection of new datasets such as ORBIT [11] also made it possible
for few-shot learning to be applied to real-world challenges. The
ORBIT dataset is a collection of videos recorded by people who are
blind or low vision on their mobile phones of personal objects that
they would like to recognize. The advances in few-shot learning
and the publication of the ORBIT dataset provided the foundation
for developing the Find My Things app.

3 CITIZEN DESIGN TEAM
We brought together a citizen design team of eight blind or low
vision young people between the ages of 14 and 25 to collaborate
with our research team in the design process of Find My Things.
Citizen designers were all young people who had been educated
as students with a visual impairment. Our cohort consisted of
three braillists and five print users, using screen reader technology
and magnification respectively, to access their phones. The goal of
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Figure 2: (left) Tactile depiction of the double-diamond design model; (right) tactile phone screen to teach computer vision
concepts, such as occlusion and perspective.

creating a citizen design team was to shift from positioning people
from the blind community as users and testers, to positioning them
as citizen designers and co-creators of a technology that they will
ultimately use. This goal echoes the ethos of participatory design
[3, 15] with a further focus on skill building. Over a four-month
period, we hosted three day-long, in-person workshops with our
eight citizen designers with equal attention towhat the co-designers
were taught about the design process and how that understanding
could be useful for the design process for Find My Things (see
Figure 2). The three sessions focused on: user scenario development,
teaching experience, and finding experience.

Learnings were synthesized from the sessions in a range of ways.
All activities done by the citizen designers were recorded and anal-
ysed, such as the think-aloud elements of building their prototypes.
This analysis, for example, led to UI suggestions such as: “There
should be vibration feedback because I may not want to have my
volume up in public. I don’t want to attract attention to myself”
(P1). Recordings of prototyping activities were also reviewed for
the embodied experience of the space and the relationship citizen
designers had with their phone. We observed that the citizen de-
signers who were braillists tended to hold the phone horizontally,
while print readers were likely to hold the phone at a 45-degree
angle. Prototypes and artefacts produced by the citizen design-
ers, such as the ‘scenarios of use,’ were reviewed. Telemetry data
was also collected and used to improve the performance of early
prototypes.

4 FIND MY THINGS
Find My Things is a teachable object localisation experience that
supports a person who is blind or low vision find their personal
things in 3D space using a phone. Rather than working only for
generic objects, FindMyThings gives users the power to personalise
the system to any object, including small objects such as keys,
medium-sized objects like backpacks, as well as shape-changing
ones like a folding guide cane. Find My Things has two parts of
the experience – teaching and finding. Teaching is done to add a
new ‘thing’ or object to the experience, while finding can be used
to locate any of the taught objects. The teaching process guides
the user to record four short videos of a target object. These serve
as training data for a few-shot object recognition model which

can be personalized on-device in a couple of seconds. The find
experience allows a user to select an object and scan their phone
around the environment until the app localizes the object. The app
then provides audio, visual, and haptic cues to guide the user to
within arm’s reach of their object.

4.1 Scenario of Use
Dayla knows that she is constantly looking for her lip balm - some-
times she misplaces it and sometimes it rolls away. She starts the
teaching process. She is asked to put her lip balm on a clean surface
and bring her phone close to the lip balm and tap the screen. She
slowly draws the phone backwards, hearing an auditory progress
bar and then a completion sound. She is then asked to show another
side of her object and repeat the process. However, her lip balm
goes out of camera frame, and she gets vibration feedback and the
phone says ‘move left’. She moves until the feedback goes away,
knowing that the app is making sure that it can see her lip balm.
She is asked to take two more videos with the object on a chair, and
on the floor. She doesn’t even have to move away from the table.
The whole process takes just a few minutes.

The next day, Dayla is leaving early in the morning to go to
work. She packs her bag but can’t find her lip balm. She opens Find
My Things and taps “lip balm.” She scans her phone over the side
table but doesn’t hear anything. Dayla thinks where else she might
have left her lip balm. Knowing the app only sees objects in the
near vicinity (4 meters), she then walks to the kitchen and scans
the large dining table. She hears a beep that tells her the lip balm
has been spotted. As she moves toward it, she hears beeping that
progressively gets faster and higher in pitch to guide her towards
her lip balm. She manoeuvres around the table, orienting to the
pings as the lip balm goes in and out of frame. The vibration
increases, the pitch increases, and soon she hears the success sound.
She reaches for the lip balm which is just under the phone. She
pops it in her bag and heads out the door.

This is one of four “hero” scenarios that we optimized for. The
other three are: 1) finding keys that fall out of a pocket when
reaching into the pocket to answer a mobile phone that is in the
same pocket; 2) finding a backpack that a colleague has moved; and
3) finding an ear bud that has rolled off the table during a lecture.
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4.2 Technical Description
4.2.1 System Architecture. There are four main parts to the Find
My Things system. The client app is a standalone C# iOS app that
allows a user to teach/update or find personal objects or read the
tutorial. The teaching pipeline supports the collection and selec-
tion of images that are processed with an on-device personalisation
algorithm to return a mean feature embedding for the object. The
object recognition model is an on-device model consisting of
a meta-trained feature extractor and a set of embeddings that are
outputted by the personalisation algorithm – one for each object the
user has added. The localisation pipeline is an on-device process
that compares incoming camera frames with an object’s embedding
to identify hotspots. If the confidence level of a hotspot is above a
certain threshold, then the 3D guidance process is initiated using
calculations based on surface detection.

4.2.2 Teaching Pipeline. Users are asked to follow specific direc-
tions to take four videos with varied backgrounds and perspectives.
A spatial anchor is placed on the object using ARKit when the user
touches the object with their phone. This anchor is used to provide
feedback to the user if the object moves out of the camera frame.
It also helps in the selection of frames that are used to create the
personalized model embedding. Users are asked to draw the phone
away from the object towards their shoulder until the requisite
number of frames has been reached. Frames are sampled each time
the camera moves 2mm, until 200 frames (per video) have been
collected; this ensures that good variation in distance and perspec-
tive is gained. While users cannot replace specific videos, they can
easily re-teach an object in just a few minutes.

The personalisation algorithm is launched and runs in the back-
ground each time a user finishes teaching a new object. The selected
subset of 80 (20 per video) frames is fed through the object recogni-
tion model’s feature extractor, and the resulting embeddings are
averaged to obtain a mean embedding for that object. It takes on
average 3 seconds on an iPhone 12 Pro, and 8 seconds on an iPhone
8.

4.2.3 Object Recognition Model. Find My Things is based on a few-
shot image classification approach called Prototypical Networks
[16]. The model consists of 1) a meta-trained feature extractor, and
2) a set of object prototypes (i.e., class-wise mean feature embed-
dings) – one for each of the user’s objects. Together, they form a
user’s ‘personalised’ object recognition model and are stored as a
single CoreML file on the user’s device. The feature extractor is an
EfficientNetB0 with 4 million parameters that has been trained on
the ORBIT dataset [11] using an episodic training regime [4]. The
resulting feature extractor can produce strong, linearly separable
embeddings for a given set of objects using frames from only a few
teaching videos per object.

4.2.4 Localisation Pipeline. We developed a localisation algorithm
which would be more light-weight, and hence faster, than a tra-
ditional object detection model. Specifically, we perform a tree
search on a particular frame, taking crop boxes of different sizes
that can be passed through the user’s personalised object recogni-
tion model. Each box has a confidence value, and if the value is
above a (medium) threshold, the box is used to determine the likely
location of the object in the frame. We average the centre pixel

coordinate of each of these likely boxes, weighting by their confi-
dence values. This gives us an estimated coordinate for the centre
of the target object in the frame. In the case where this coordinate
falls in a box with a confidence value of a second, higher, threshold,
we use either LiDAR or ARKit’s surface detection to convert the
coordinate into a 3D location and initiate the guidance to direct the
user towards that location.

This approach, as shown in Figure 3, can locate an object to a
high degree of accuracy up to 4 metres away with an inference time
of 100-200ms per frame. A start over button is also provided for
the user to clear the current medium- and high-chance locations in
cases that they suspect they’re being guided in the wrong direction.

4.3 Key Learnings
4.3.1 Understand the quantity and quality of examples required for
optimal AI system performance. Through experiments, we found
that teaching examples that contained real-world quality issues,
such as camera motion blur and the object being partially out-
of-frame, lead to more robust model personalisation compared to
teaching frames with no quality issues. We surmise that this is
because there are quality issues during usage, hence the training
data distribution matches the test data distribution more closely.
Additionally, we found that more training examples did NOT lead
to more reliable recognition of an object. We hypothesize that
because teaching examples often contained quality issues, more
teaching frames may reduce the signal-to-noise ratio, leading to
a ‘messier’ representation of that object in the embedding space.
Knowing the quantity and quality of examples required for optimal
AI system performance informed our design of the teaching process.
For example, we limited the number of teaching videos to four, as
more videos would reduce system performance.

4.3.2 Support users in providing examples in a structured way that
reduces cognitive load and avoids over-guiding. A teachable system
brings flexibility, but also requires effort to teach. Therefore, as
we designed the teaching process, we set it up in a way that is
structured and prescriptive to reduce cognitive load and effort. For
examples, we ask users to take videos of their objects rather than
photos to reduce the (perceived) effort of blind users in taking
“good” images. To help users keep the object in frame, we place an
AR anchor on the object and only notify them when the anchor (as
a proxy for the object) moves out of frame. Our citizen design team
pointed out that constant guidance was cognitively demanding and
stressful. Hence, this design approach ensures that users do not
have to be concerned with something that they cannot necessarily
judge - whether the object is in frame. Additionally, instead of
using a freeform method which asks users to “show” us the object,
we ask users to pull the camera back towards themselves, a body
reference that all users could relate to. This simple drawing out
method helps to collect multiple perspectives of the object from
various distances. It also relieves users of the burden of having to
think about how to best frame the object.

4.3.3 Rapid teaching loop. We aimed to reduce the time between
teaching an object and testing it out, since users could leverage
their knowledge of where the object is to test the app’s performance.
This gives users the opportunity to judge system performance for
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Figure 3: Visualization of the localization algorithm used to find a purse. (left) visualization of crop boxes to localize the purse;
(left middle): grey crop boxes of the tree search that continue to subdivide; (right middle) a focus on the crop boxes that have the
highest confidence; (right) the orange boxes meet the medium confidence threshold and the green boxes the high confidence
threshold used to trigger the find user experience.

themselves by their own standards. Users can also use the envi-
ronment to consider edge cases and thus better understand the
boundaries of the system, something that users often forget [6]. To
enable this, users could teach only one object at a time, with an
experience flow that takes them straight back to the find screen
so that they could test their object immediately. Additionally, we
removed the need to calibrate the model after training to speed up
the process.

5 DISCUSSION
AI has much to offer in enabling accessibility if experiences can
be personalised to the needs of diverse users who have disabilities,
addressing the long-tail distribution of user needs. Very recent
advances in AI, such as foundation models, bring us even closer
to meeting those diverse needs by increasing the number of tasks
that a single model can do; however, the ways that we achieve
the necessary personalisation of an experience have been given
less attention. Teachable AI, for which users provide examples or
high-level constraints to teach a model, has been proposed as a
solution [7]. Yet, there is much generalizable design detail that can
be learned from building and deploying a fully working end-to-end
system.

In this interactivity, we present Find My Things, an application
that allows people who are blind or low vision to find their per-
sonal items. To our knowledge, it is among the first fully realized
end-to-end examples of a system applying Teachable AI to extend
applications to the long-tail distribution of user accessibility needs.
In the case of Find My Things, it extends object recognition to any
personal item a user might own. One could imagine many more
accessibility applications that could benefit from personalisation
from text input /output to the way audio description/captions are
provided in virtual reality and beyond. As the long distribution of
user needs is a significant challenge in creating useful, scalable ac-
cessibility applications, we demonstrate how a teachable approach
can address these challenges.
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