
Let’s Fix this Together: Conversational Debugging
with GitHub Copilot

Yasharth Bajpai†, Bhavya Chopra†, Param Biyani†, Cagri Aslan‡,
Dustin Coleman‡, Sumit Gulwani‡, Chris Parnin¶, Arjun Radhakrishna‡, and Gustavo Soares‡

†Microsoft, Bengaluru, India; ‡Microsoft, Redmond, USA; ¶Microsoft, Raleigh, USA
{ybajpai, t-bhchopra, t-pbiyani, caslan, dcoleman, sumitg, cparnin, arradha, gsoares}@microsoft.com

Abstract—Despite advancements in IDE tooling, code under-
standing, generation, and automated repair, debugging continues
to present significant challenges. Existing debugging strategies
available to developers in literature are often too mechanical and
rigid for day-to-day issues. Recent advances in Large Language
Models (LLMs) promise practical solutions that allow for more
free-form debugging strategies. While LLMs offer satisfactory
assistance in some cases, they often leap to action without
sufficient context, making implicit assumptions and providing
inaccurate responses. Moreover, the dialogue between developers
and LLMs predominantly takes the form of question-answer
pairs, placing the burden of formulating the correct questions
and sustaining multi-turn conversations on the developer.

We introduce ROBIN, a novel multi-agent conversational AI-
assistant within GitHub Copilot Chat, specifically designed for
debugging. ROBIN moves beyond the question-answer pairs by
introducing the investigate & respond pattern, that focuses on
using information gathered automatically from the IDE or gath-
ered interactively from the developer before responding. ROBIN
incorporates a general debugging strategy to systematically
analyze bugs to sustain collaborative interactions while ensuring
that the conversation does not deviate from the debugging task
at hand. Through a within-subjects user study with 16 industry
professionals, we find that equipping ROBIN to—(1) leverage the
insert expansion interaction pattern, (2) facilitate turn-taking, and
(3) utilize debugging strategies—leads to lowered conversation
barriers, a 2.5x improvement in bug localization and a substantial
3.5x improvement in bug resolution compared to AI-assisted
debugging in Visual Studio prior to ROBIN.

I. INTRODUCTION

Debugging has traditionally been a challenging and time-
consuming component of software development. Unlike other
programming tasks, debugging is often more free-form, which,
if left unchecked, can consume a significant portion of de-
velopers’ time [1]. Prior work suggests that developers may
spend over 35% of their development time on debugging their
code [2]. This has prompted the development of a wealth of
debugging tools available in modern Integrated Development
Environments (IDEs) like Visual Studio [3] and IntelliJ [4].
These IDEs offer dedicated debugging modes with traditional
tools like watch expressions and breakpoints to sophisticated
ones like hot reloading and time-travel debugging. Despite
these tools, the process of identifying, localizing, analyzing,
and resolving bugs in live environments with multiple signals
can overwhelm developers, particularly non experts who end
up underutilizing available tools [5]–[7].

Recently, with the advent of conversational large language
models (LLMs) like ChatGPT [8] there has been an emergence
of conversational assistants designed to aid developers in var-
ious aspects of the software development life-cycle. [9]–[16].
AI programming assistants, such as GitHub Copilot Chat [9],
are becoming increasingly integrated into popular IDEs as
a widely used tooling category by the software community
for day-to-day tasks, and debugging is no exception. How-
ever, despite their potential and the improvements they have
brought, they have not yet fully resolved the complexities and
challenges in debugging. These challenges with AI debugging
assistants can be divided into two major categories: their
limitations in conversationality, and their dependency on the
user for direction and strategy.

LLM-powered conversational AI assistants provide a prag-
matic approach to enable interactive implementations of the
debugging journey. However, the current generation of these
tools typically operate on the question-answer adjacency pair
interaction pattern [17], where the user initiates the conver-
sation with a query, and the AI tool responds to close the
conversation. In order to close the conversation, the assistant
may make assumptions without sufficient information or may
skip essential debugging steps such as localizing the root
cause, leading to inaccurate or unhelpful responses [18]. For a
knowledge and process-intensive domain like debugging, this
approach often leads to sub-optimal results without the user
heavily guiding the conversation and providing the necessary
context. Experts experientially acquire a collection of strate-
gies for performing programming tasks and in the process
learn the usage of IDE tools [19]. Hence for non-experts,
an efficient and successful debugging conversation is often
dependant on the AI assistant directing them towards the right
investigation strategies using available debugging tools.

The conversation in Figure 1a highlights issues arising
from both these aspects through a pre-mature closing of
the conversation. Here, the user is attempting to fix a test
case failure and the assistant’s first response is a premature
effort to provide a solution—suggesting to throw an exception
with a custom message. This response attempts to close the
conversation sub-optimally—the assistant has not taken any
steps to diagnose the problem or interact with the user to gather
more information. The user rejects the fix and reopens the
conversation, attempting to redirect the conversation towards

[...] You can add a try/catch block around the call to FromJson:

[TestMethod]

public void SerializationDeserializationTest(){

 try{

 [...]

 Address address2 = Address.FromJson(serialized);

 } catch (Exception ex){

 Assert.Fail(ex.Message);}}

But how to prevent the exception from happening in the first place?

Analyze the ‘System.Runtime.SerializationException’ error.

But I don’t want to throw an exception at all

Can you explain how the try/catch block works in this context?
What other types of exceptions should I be prepared to handle here?

This error could be due to the Address object not being serialized
correctly, or because the json variable being passed to the FromJson
method is an empty string (“”). [...] To fix this, make sure the Address
object is not null or empty when passed to FromJson:

public static Address FromJson(string json){

 if(string.IsNullOrEmpty(json)){

 throw new ArgumentException(“JSON is null/empty.”);}

 <Deserialization Code> }

How can I throw a custom exception?
What are common issues with JSON formatting to look out for?

(a) Conversation with baseline assistant, demonstrating sub-optimal fixes

[...] The local context shows that the ‘json’ variable is an empty
string (“”) [...] Could you please check the value of the variable
‘serialized’ in the SerializationDeserializationTest method
before it is passed to the FromJson method?

[...] The ToJson method is supposed to convert ‘Address’ into a
JSON string. If it returns an empty string, there is an issue with the
serialization process. Could you please share the code for the
ToJson method?

[...] you are trying to read from the stream without resetting its
position. Here is the corrected code:

public string ToJson(){ [...]

 serializer.WriteObject(stream, this);

 stream.Position = 0; // reset stream position

 using(StreamReader reader = new StreamReader(...) [...]}

Analyze the ‘System.Runtime.SerializationException’ error.

serialized is an empty string.

Here is the implementation of ToJson: <code>

The code works now!

serialized is an empty string.
How to check the value of serialized during execution?

Can you explain how DataContractJsonSerializer works?
Can you show me how to serialize Address correctly?

Why does the stream position need to be reset?
Do you see any other potential issues with ToJson()?

(b) Conversation with ROBIN, demonstrating guided localization

Fig. 1: Contrasting responses for the same task across AI-assistants. The purple text represents generated follow-ups.

a deeper analysis and fix. However, the assistant jumps to a
superficial fix again, suggesting catching and re-throwing the
exception inside the test method. This frustrates the user due
to lack of constructive suggestions.

To this end, we present ROBIN1, an innovative multi-agent
workflow-based debugging system integrated into the Visual
Studio IDE as part of the GitHub Copilot Chat extension2.
ROBIN introduces the investigate & respond agentic pattern,
that aids users in systematic debugging through streamlined
conversations, while minimizing user intervention required to
repair conversations and provide debugging strategies. ROBIN
leverages LLMs as reasoning engines to provide interactive
and collaborative debugging assistance through a chat-based
interface. It incorporates a general debugging strategy that
includes interaction patterns to optimize debugging conver-
sations. ROBIN analyzes exception information, code context,
and user queries, and guides developers through a series of
steps to explore potential hypotheses, gather more information,
and utilize IDE debugging tools to fix issues. Figure 1b depicts
a developer’s conversation with ROBIN as they attempt to fix
error in Figure 1a—note how ROBIN proactively investigates
the error and asks the user for additional information when
necessary, leading to a successful fix.

We evaluate ROBIN through a task-based study with 16
industry professionals comparing its performance and user

1The name, ROBIN, is inspired by Batman’s supporting character; a
resourceful, determined, and skilled investigator. We identify the developer
to be the protagonist (Batman) in the debugging process.

2GitHub Copilot Chat: https://learn.microsoft.com/en-us/visualstudio/ide/
visual-studio-github-copilot-chat

feedback with existing approaches. Our results demonstrate
that ROBIN leads to 1.5x faster problem resolution, 3.5x
higher success rates, and higher engagement with ROBIN.
Furthermore, we witness an increased use of follow-ups and
debugger tooling inside the IDE towards bug resolution.

Our contributions in this paper are as follows:

• We propose ROBIN, an LLM-powered investigate &
respond multi-agentic debugging assistant inside IDEs.

• We implement conversational debugging strategies to
facilitate effective interactions.

• We conduct and analyze a within-subjects study using
ROBIN and GitHub Copilot Chat (as our baseline) for
debugging real-world bugs with 16 industry professionals.

• We discuss insights and recommendations derived from
the user study for builders of automated debugging tools.

II. DESIGN FOR AI-ASSISTED DEBUGGING

A. Design Principles

Our design of ROBIN, considers the following four principles:

1) D1. Balanced strategy: The debugging process should
balance reaching a resolution (fix) as soon as possible
while avoiding reaching an incorrect or premature cause
of the problem.

2) D2. Debugging tools: A debugging agent should have
access to the same tools and context as a developer, en-
abling both shared context, such as knowledge of runtime
values of variables, and also allowing a partnership in
using the debugging tools effectively with the developer.

https://learn.microsoft.com/en-us/visualstudio/ide/visual-studio-github-copilot-chat
https://learn.microsoft.com/en-us/visualstudio/ide/visual-studio-github-copilot-chat

3) D3. Human-in-the-loop: Completely automating the de-
bugging process without any visibility or partnership with
the developer is undesirable, resulting in latency, in-
creased costs due to numerous calls to LLMs, inaccurate
or incomplete results, and a lack of transparency.

4) D4. Conversational capabilities: A debugging agent
should facilitate effective multi-turn conversations, allow-
ing both the agent and the user to clarify, guide, and
recover the conversation.

To implement D1 (Balanced Strategy), we take inspiration
from explicit debugging strategies from Latoza et al. [20],
where a strategy language encodes the debugging process [21].
In designing prompts for a debugging agent, we provide a
high-level strategy for the agent, letting the reasoning ca-
pabilities of large language models adapt it as needed. To
implement D2 (Debugging Tools), we ensure that ROBIN has
knowledge and access to debugging features, including but not
limited to breakpoints, local variable windows, and stack trace
windows. To implement D3 (Human-in-the-loop), we focus
on a conversational interaction model where the debugging
agent requests inputs from the developer. We describe D4
(Conversational Capabilities) in the following subsection.

B. Conversational Capabilities

Facilitating effective conversations between AI agents and
developers presents a unique set of challenges. The existing
interaction model used by conversational agents, including
tools like Copilot Chat, is primarily based on a question-
answer adjacency pair structure [17]. This interaction pattern
puts the responsibility on the developer to not only initiate the
conversation but also to frame questions accurately at the right
time. Meanwhile, the AI agent’s role is to generate a response
that aims to conclude the conversation. However, this model
assumes that developers deeply understand the debugging
process so that they can ask the right questions. Additionally,
Large Language Models (LLMs) may prematurely attempt to
resolve tasks, even when the information provided is insuffi-
cient. This propensity to act without adequate information can
lead to assumptions that result in inaccurate or misleading
responses. To overcome these limitations, we aim to enhance
ROBIN with three critical conversational capabilities:

• Guide the Conversation Through Diverse Interaction Pat-
terns: ROBIN will be capable of initiating the dialogue,
asking clarifying questions, and suggesting the next steps,
thus actively guiding the debugging process. This is referred
to as insert expansion, which allows the user to contribute
interactionally relevant information, requested by ROBIN, to
their conversational turn.

• Inducing Principles for effective communication: Gricean
maxims of conversation propose that effective communica-
tion is guided by the right amount and orderly presentation
of information, its truthfulness, and relevance to the context
of discussion [18]. With ROBIN, we propose to softly im-
bibe these four maxims through behavioural adaptations in
various system components, enhancing conversation quality.

• Generate Relevant Follow-up Suggestions: Many existing
AI conversational assistants offer follow-up suggestions,
i.e., potential utterances the user may want to continue
the conversation with (see, for example, GitHub Copilot
Chat and Bing Copilot [9], [22]). However, the usability
of these follow-ups is questionable due to their generic
nature. Irrelevant or generic follow-ups can be distracting
and can also misdirect the conversation towards a non-
fruitful direction. In contrast, ROBIN will maximize the
relevance of debugging conversations by integrating domain
understanding and conversation context into the generation
of follow-up suggestions. This ensures that the suggestions
naturally converge towards the goal of effective debugging.

III. ROBIN: AN AI AGENT FOR DEBUGGING EXCEPTIONS

This section outlines details the multi-agent workflow ap-
proach with ROBIN, our proposed AI debugging assistant, to
enable considerations we discuss in II.

A. Agent Descriptions

ROBIN employs four agents, as seen in Figure 2: Responder
agent, Collaborative agent, Follow-up agent, and Context
Retrieval agent. The first three are LLM-based agents. Table I
provides the prompt instruction highlights for these agents.
Next, we describe these agents and explain how their goals and
implementation align with our design considerations, using the
conversation from Fig 1b as an example:
• Responder Agent: This agent is designed to produce a

response with a solution for the debugging task. The prompt
instructions for this agent guide the model to follow the
debugging process outlined in Section II-A. Additionally,
the agent adheres to a question-answer interaction pattern,
attempting to close the conversation with a comprehensive
and structured response, in line with D3 (Human-in-the-
loop). In Fig 1b, the Responder agent is responsible for
the last message from the assistant—it contains the fix and
is the answer to the developer’s first message.

• Context Retrieval Agent: In accordance with D2 (Debug-
ging Tools), this agent exploits IDE features to collect the
necessary context for the debugging task. It contributes to
the conversation by replying with this context. We developed
the Context Retrieval Agent using the APIs available in
the Visual Studio IDE infrastructure. This allows us to ac-
cess the Visual Studio Debugger and File programmatically
Viewer and extract various types of information: Exception
Information, Local State Information and Stack Information.
Exception information includes the exception message, type,
stack trace, and the exact line of code where the exception is
thrown. The local state Information consists of open-source
files in the IDE, code selections, and local variable context.
While the stack information includes logical code snippets
from the current stack and the corresponding active line at
the exception time. In Fig 1b, the first message from the
assistant is aware of the value of the json variable as a
message from the Context Retrieval agent was added to the
internal messages before the message was generated.

• Collaborative Agent: This agent assists in acquiring more
context and information from the user while isolating the
source of the issue. It generates messages encouraging user
participation in the conversation, fostering a collaborative
debugging process per design consideration D3 (Human-in-
the-loop). Its prompt instructions also promote the use of
debugging tools by directing the user towards adding break-
points, stepping through code, and handling exceptions. This
approach creates domain-specific interaction patterns in line
with the design considerations D3 (Human-in-the-loop) and
D4 (Conversational Capabilities; Section II). Going back to
Fig 1b, the Collaborative agent is responsible for the first
and second responses from the assistant. These messages ask
for additional information and context from the developer.
Further, depending on the context and prior interaction,
these messages may have included instructions on using
debugging tools to gather the required information.

• Follow-up Agent: Concentrating on the generation of
follow-up suggestions pertinent to the conversation, this
agent ensures a coherent and comprehensive interaction,
in line with D4 (Conversational Capabilities). Its prompt
instructions direct the agent to produce prompt suggestions
that align with the debugging process, guiding the user
towards the goal of fixing the bug. In Fig 1b, the purple
text below each response from the assistant are follow-
ups generated by the Follow-up agent. Note how these
follow-ups are specific to this conversation. For example,
the follow-up “serialized is an empty string” is a likely
answer to the assistant’s original question, and “How to
check the value of serialized during execution?” is
a follow-up question on how to acquire the information
needed to answer the assistant’s question.

TABLE I: Prompt instructions for LLM-based agents

Agent Prompt Instruction Highlights
Responder Structure your response as follows:

• Explain the exception message
• Explain possible causes for the exception
• Localize the error with the available code context
• Suggest a fix to the user’s code

Collaborative • Proactively ask for any additional portions of source
code, or values of variables from the user IF it can
help you reason better about the exception/error.

• The user can access debugger features such as
breakpoints, step over, step in, watch window, locals
window, immediate window, call stack, and so on.

Follow-Up • Propose two very pertinent follow-up prompts that
the user could make use of to either seek a clarifi-
cation, or to answer a question asked by ROBIN.

• These prompts should guide the conversation to-
wards bug localization and resolution. Do not di-
gress from the goal of localizing and fixing the error

Prompt Optimizations. Practical constraints of limited con-
text windows and information relevance warrant some crude
filtering of context when it exceeds a certain maximum
length set within the system, particularly in two instances.
First, inner_messages are pruned by removing messages
from the top of the conversation (barring the initial context

Collaborative Agent Responder Agent

Follow-up Agent

Conversation Orchestrator

ROBIN

 Need_Investigation()

Can_Automate_Context()

Yes

Context Agent

Yes

</>

Code Context

......

.......

......

.......

Inner Messages

No

Developer

No

Generate_Reply(message)

Po
st

_P
ro

ce
ss

()

Fig. 2: ROBIN: Multi-agent workflow. Gray arrows indicate
agent workflow, blue arrows indicate read/write operations.

setting messages). Second, if the context retrieved by Context
Retrieval Agent is more than its individual limit, we limit
the stack frames to the first N frames and reduce the open
document to fit within the context.

B. ROBIN’s Workflow

As depicted in Figure 2, ROBIN operates as a conversable
agent [23], interacting with the developer via conversational
messages. ROBIN’s workflow introduces the investigate &
respond agentic pattern. ROBIN iteratively and interactively
investigates the problem, gathering relevant information to
reason about the correct solution. Once ROBIN is confident
it has enough information, it produces a response. This ap-
proach distinguishes ROBIN’s responses from prompt-based
techniques such as chain-of-thought (CoT) [24], which relies
on pre-trained knowledge, and retrieval-augmented generation
(RAG) [25] methods that ground the agent’s response in a
single step of context retrieval.

When the developer posts a message, the
Generate_Reply function is triggered, prompting
ROBIN to generate a response. ROBIN maintains an
inner_messages state, which serves as an internal chat
history. This state is initially empty and gets updated each
time an agent replies to the conversation. To generate a
response, ROBIN coordinates a discussion with other agents
within the system, each playing their respective roles in
the multi-agent workflow. Each agent is equipped with
intelligent processing capabilities, powered by either LLMs
or deterministic business logic. These agents contribute
to the conversation at different stages, as dictated by the
workflow. ROBIN’s workflow is structured around decision
points, known as functions, that determine which agent will
participate next in the conversation.

The initial workflow step utilizes an LLM-powered function,
Need_Investigation, to assess the progress of the de-
bugging process, as outlined in D1 (Balanced Strategy). Given
the available information and messages in the conversation,
the function determines whether the bug’s root cause can be
correctly identified and fixed, or if the bug requires to be
investigated further. If the model is not confident about the root
cause, and can not propose an immediate fix, it will respond
with “YES”. Otherwise, it will return “NO”.

If the cause and location and of the bug has been ac-
curately identified, a “conversation closing” response con-
taining the suggested fix is generated by the Responder
agent. If not, ROBIN concentrates on the fault localization
and investigates further. To facilitate this, ROBIN uses the
Can_Automate_Context function to decide whether ad-
ditional useful information can be automatically retrieved. If
the fault localization step remains incomplete even after this,
the conversation is then directed to the Collaborative agent
to gather more information from the developer. Currently,
Can_Automate_Context permits the Context Retrieval
agent to contribute once at the start of the conversation.

Regardless of the path taken during the debugging pro-
cess, ROBIN consistently concludes by generating follow-ups,
ensuring a coherent and comprehensive interaction. Subse-
quently, the Post_Process function synthesizes a user-
facing response using inner_messages posted by agents.

IV. USER STUDY

We conducted a within-subjects study with 16 software de-
velopers to assess the impact of ROBIN’s debugging approach
and use of conversation patterns on developers’ AI-assisted
debugging experiences. Alongside considering task completion
metrics, we aim to understand participant perception of ROBIN
by prompting them to think aloud while solving the tasks and
through semi-structured questions following the tasks.

TABLE II: Overview of participants, their experience, and
expertise in C#, alongside the AI-assistants used per task.

ID Exp. (yrs) C# expertise Warm-up Task 1 Task 2

P1 2.5 Intermediate ROBIN Baseline ROBIN
P2 1 Beginner ROBIN Baseline ROBIN
P3 5 Intermediate ROBIN Baseline ROBIN
P4 6 Intermediate ROBIN Baseline ROBIN
P5 10 Expert ROBIN Baseline ROBIN
P6 21 Expert ROBIN Baseline ROBIN
P7 1 Beginner ROBIN Baseline ROBIN
P8 13 Expert ROBIN Baseline ROBIN
P9 4 Intermediate Baseline ROBIN Baseline
P10 7 Expert Baseline ROBIN Baseline
P11 2.5 Intermediate Baseline ROBIN Baseline
P12 2.5 Intermediate Baseline ROBIN Baseline
P13 7 Expert Baseline ROBIN Baseline
P14 8 Expert Baseline ROBIN Baseline
P15 2 Beginner Baseline ROBIN Baseline
P16 1 Beginner Baseline ROBIN Baseline

Participants: We recruited participants with at least 1
year of experience in C# development from our organization
through snowball sampling (Table II). Prior consent was

obtained from all participants to audio and screen record our
interactions and use anonymized quotes for research purposes.

Study protocol: We conducted a within-subjects study with
two conversational debugging AI-assistants integrated within
Visual Studio, both of which have access to the exception,
call stack and local variables at the point of exception — (A)
Baseline: GitHub Copilot Chat Preview extension, and (B)
ROBIN: as described in Section III; both leveraging OpenAI’s
GPT-43 for all study sessions. We conducted one-hour-long
video conferencing sessions with each of the participants.
The study began with demographic questions about their
programming background in C#, use of Visual Studio and
debugger tools, and experiences with using LLMs for debug-
ging. Next, participants were presented with a warm-up task
for familiarization with the AI-assistant & the IDE. They were
randomly assigned to start with one of the AI-assistants for the
first task and the other for the second task. Participants were
prompted to think out loud as they solved the tasks to report
any thoughts and feedback about the AI-assistants. Lastly, we
asked semi-structured questions for qualitative feedback.

Study tasks: We selected one warm-up task and two study
tasks that involved comprehending, localizing and fixing run-
time exceptions with increasing difficulty. Figure 3 shows
the task setup for the study. The tasks comprise bugs mined
from two open-source repositories and adapted for increased
tractability. We sought bugs that had committed fixes for com-
parison with participant solutions and that varied in complexity
and localization effort. We observe that the ROBIN outright
invokes the Responder agent for the warm-up task and invokes
the Collaborative agent for tasks 1 and 2 (indicating greater
difficulty). Based on observations from pilot studies, we added
time bounds of 15 & 25 minutes to each task, respectively.

(Warm-up Task) Index Out Of Range: Encountered in
accessing a list element. A beginner-friendly debugging task to
bring participants up-to-speed with the integrated AI-assistants
and available debugging tools in Visual Studio.

(Task 1) Serialization Exception4: Moderately diffi-
cult task, exposing participants to a Serialization
Exception, arising through the System.Text.JSON li-
brary where it encounters a null string while trying to deserial-
ize a string. Participants must localize the bug to the ToJson
method (not present in the exception call stack) and identify
a subtle logical error: failure to reset the stream position to 0.

(Task 2) Arithmetic Overflow Exception5: An ob-
scure YAMLException wrapped around an Arithmetic
Overflow. Bug localization involves finding the correct
branch of exploration and navigating several call stacks deep
to locate the DeserializeIntegerHelper method. The
problem is then reduced to a flaw in the logical handling of a
lower-edge integer value manipulation.

Analysis: We assess the performance of each AI-assistant
based on the time spent, successful identification of the root

3GPT-4: https://openai.com/index/gpt-4/
4protobuf-net, issue#191: github.com/protobuf-net/protobuf-net/issues/191
5YAMLDotNet, issue#673: github.com/aaubry/YamlDotNet/issues/673

https://openai.com/index/gpt-4/
github.com/protobuf-net/protobuf-net/issues/191
github.com/aaubry/YamlDotNet/issues/673

A

B

C

Fig. 3: Study Setup. Participants are exposed to the exception window (A), which has a “Ask Copilot” button to invoke the
AI-assistant (B). The assistant is available as a chat panel on the right side (C).

TABLE III: Success rates & engagement with AI-agents

Task # localizations # fixes avg time (tool) avg time (self)

T1-ROBIN 8 of 8 8 of 8 8.4 mins 2.6 mins
T1-Baseline 4 of 8 3 of 8 4.6 mins 9.7 mins

T2-ROBIN 7 of 8 6 of 8 10.2 mins 3.5 mins
T2—Baseline 2 of 8 1 of 8 8 mins 15.1 mins

cause of bugs, and patterns in developer-assistant conversa-
tions. We performed inductive thematic analysis with two
annotators to gather qualitative insights while collecting times-
tamps of activities performed by participants. For the purpose
of analysing study results, a bug is considered to be success-
fully ‘localized’ when the participant has narrowed down the
root of the issue to the method requiring a fix. Subsequently, a
‘fix’ is considered successful if it is semantically similar to the
fix made by the maintainers of the open-source repositories.

Additionally, to determine differences in the nature of
developer-AI conversations across the baseline and ROBIN,
three authors open-coded all 32 conversation logs obtained
from participant interactions for tasks 1 and 2. Each user
prompt is labeled with one or more codes from Table IV. To
find repeating occurrences of conversation patterns, we mine
all possible sub-patterns and draw insights using the top-16
patterns (having individual counts > 6) in Section V-B.

V. RESULTS

In our study, participants’ use of the assistants for the warm-
up task reveals that both the baseline and ROBIN are equally
effective in improving participants’ understanding of bugs and
suggesting fixes for bugs that require minimal localization ef-
fort. However, ROBIN significantly boosts productivity through
its Collaborative Agent workflow for accurately localizing
bugs and supports learning experiences for novice developers
owing to its collaborative human-in-the-loop behaviour. We
summarize participants’ task success metrics in section V-A,

TABLE IV: Labels for user & AI-assistant utterances; with
conducive traits in green, non-conducive traits in red, & neutral
traits in blue text.

Label Description

User
Uinvoke Invoke AI-assistant through UI
Uquestion Ask question
Ucontext Provide code context or variable values
UF-accept Accept AI generated fix
UF-reject Reject AI generated fix
Urepair Request correction to repair conversation course

AI-Assistant
Aexplain Provide explanation for code/exception/fix
AL-context Request IDE context to guide localization
AL-strategy Provide debugging steps to guide localization
AL-pre Perform shallow/premature localization
AF-optimal Fix generation addressing the root cause
AF-sub Fix generation based on incomplete localization
Aoff-topic Derailed from the debugging objective

and their interactions with the baseline and ROBIN in section
V-B, followed by qualitative insights in sections V-C–V-E.

A. Task Performance and Debugging Behaviors

We logged 80 prompts made by 16 participants in total.
Table III provides a summary of task completion metrics. No-
tably, utilizing ROBIN, we observe enhanced task-completion
success rates, including a 2.5x improvement in bug localiza-
tion and a substantial 3.5x improvement in bug resolution
(χ2 = 9.3932, p < 0.01). Figure 5 illustrates a prolonged
self-effort in bug localization with the baseline AI-assistant,
while ROBIN hand-holds developers through bug localization.
Table III also indicates an increased engagement with ROBIN,
supported by participants spending more time in debugging
with ROBIN than on their own.

0

5

10

15

20

25

30

35 Robin

Baseline

A c
on
te
xt

U c
on
te
xt

A s
tra
te
gy

A F
-o
pt
im
al

U F
-a
cc
ep
t

A L
-p
re
m
at
ur
e

A F
-s
ub

U F
-re
jec
t

U re
pa
ir

A o
ff-
to
pi
c

(a) Frequencies of conversation labels

0

2

4

6

8

10

12

14

16

18

20

Acontext
Ucontext

Astrategy
Ucontext

Acontext
Ucontext
Astrategy

Astrategy

Ucontext Ucontext
AF-optimal

Astrategy
Ucontext
Astrategy

Uinvoke
Acontext

Ucontext

Ucontext
AF-optimal
UF-accept

Uinvoke
AL-pre
Uquestion

AF-sub
UF-reject

AL-pre
Urepair

AF-sub
Urepair

Uquestion
Aoff-topic

Uquestion
AF-sub
UF-reject

Urepair Uquestion
AF-subAF-sub
Urepair

Robin

Baseline

(b) Most frequent conversation-pattern snippets

Fig. 4: Total occurrences of conversation labels across all user study sessions for ROBIN and the baseline, indicating increased
conducive traits and sub-conversation patterns with ROBIN.

B. Drift in conversation patterns with ROBIN

To assess the quality of the underlying conversations be-
tween developers and the AI-assistants, we derive 13 open-
codes, defined in Table IV. We also categorize these conversa-
tional traits as conducive, non-conducive, or neutral for debug-
ging scenarios. Upon comparing the frequencies of individual
labels (Figure 4a) and those of the mined sub-conversation
patterns (Figure 4b), we observe an increase in non-conducive
conversational elements with the baseline assistant, while
recording multiple conducive conversation chains for ROBIN.

Notably, in Figure 4b, we see high occurrence of ROBIN’s
sub-patterns involving Acontext, Astrategy, and Ucontext, which
facilitate bug localization by requesting code context or spe-
cific variable values, while also detailing ways to obtain this
information. Section V-D discusses instances where ROBIN
shares strategies to gather the required context. Further, we
also see a sub-pattern involving the generation of an optimal
fix and its subsequent acceptance (AF-optimal–UF-accept).

On the other hand, the baseline assistant shows high oc-
curences of non-conducive sub-conversation patterns, involv-
ing frequent repairs being made by users (Collaborative debug-
ging equips developers with actionable plans) before and after
sub-optimal fix generations (AF-sub). The baseline assistant’s
responses also go off-topic at times (Aoff-topic). Another set
of contrasting patterns shows how ROBIN tries to engage in
seeking additional context post invocation (Uinvoke–Acontext),
whereas the baseline often performs premature localization as
its first response (Uinvoke–AL-pre).

These above-mentioned drifts in conversational patterns
translate into observable improved task completion rates and
increased engagement, which we discuss in detail in the
following sections (V-C–V-E).

C. Single-turn responses lead to premature localization and
sub-optimal fixes

Most participants did not accept the fixes suggested by
the baseline AI-assistant (P1, P5, P10–P13, P16). Across all
sessions, participants believed that the baseline assistant only
helped them handle the errors better by throwing custom
exceptions or handling case-by-case values using conditional
logic (also seen in Figure 1a. P11 said, “I would likely not

use this fix. I could throw a custom ArgumentException
to handle this better, but I still want to find the deeper issue
as to why the string is empty in the first place.”

Few participants further reflected on this characteristic of
the baseline assistant, and hypothesized that these sub-optimal
fixes are a result of “pre-mature bug localization”. P12 said
that fixes generated by the baseline are trying to “cure the
symptoms instead of the actual disease,” and this sentiment
was shared by P9–P11 as well. P9 said, “this is trying to
localize the bug a bit too soon and just hide it, instead of
finding what is giving rise to the issue.” Figure 5 shows several
instances (P1–P3, P5, P7 in Task 1; P10–P13, P15, P16 in Task
2) where the baseline assistant generates a fix (dark green
bars) before succeeding or, in most cases, even attempting to
localize the bug. As we conducted the user study sessions,
we observed that these brief attempts at generating fixes often
distracted beginner and intermediate participants from their
initial debugging plans, sometimes leading them to accept sub-
optimal fixes (P1–P3, P7 in Task 1; P15 in Task 2).

On the other hand, ROBIN enables participants to follow
a streamlined debugging workflow and generates fixes upon
successful localization, as also seen in Figure 5. Participants
notice the investigative step-by-step approach followed by
ROBIN in locating the root cause of the issue. P5 commented
that “This is providing me thoughtful explanations and steps.
The other version gave me code to solve the bug upfront, which
confused me even more.”

D. Collaborative approach enables guided localization

All participants followed steps provided by ROBIN to add
breakpoints and step-throughs to report variable values. They
appreciated ROBIN’s collaborative approach, wherein it guides
on how/where to add breakpoints, and “telling which variables
to keep track of,” as seen in the following instances:

[...] To confirm this, you can add a breakpoint at this
line and check the value of result. If result is
−92233720368[...], then this is where the overflow
happens. Please perform this step and let me know
what you find.

[...] Set a breakpoint at the foreach loop in
DeserializeValue. [...] When the execution

[Task 1] SerializationException [Task 2] ArithmeticOverflowException
B

as
el

in
e

A
ss

is
ta

n
t

R
O

B
IN

R
O

B
IN

B
aselin

e A
ssistan

t

P1I

P2B

P3I

P4I

P5E

P6E

P7B

P8I

P1I

P2B

P3I

P4I

P5E

P6E

P7B

P8I

P9I

P10E

P11 I

P12I

P13E

P14E

P15B

P16B

P9I

P10E

P11 I

P12I

P13E

P14E

P15B

P16B

Fig. 5: Timelines of Participant Activity. The debugging workflow is interrupted by periods of sub-optimal bug fixes for
the baseline AI-assistant (seen as intermittent dark green bars before localization). ROBIN presents streamlined debugging
workflows, progressing to bug resolution only after successful localization. We also observe prolonged self-localization effort
(long slashed blue bars) with the baseline, and sparing use of debugger features; while ROBIN guides participants’ localization
effort (long dark blue bars) with increased use of debugger features.

hits the breakpoint, use ”Step Over” to execute the
code line-by-line. Monitor the values of parser
and nodeType in each iteration and please provide
their values when the exception is thrown.

Figure 1b also shows a snapshot from a conversation
where ROBIN requests additional debugging information. This
characteristic often led beginner participants to draw parallels
between ROBIN and senior software developers. P2 said, “I
often get stuck with the most pointless bugs while working,
and you don’t feel like going to ask a senior SDE. This chat
assistant would help a lot in these cases.” Few participants also
viewed their interactions with ROBIN as learning experiences.
The exploratory nature of responses aided participants’ naviga-
tion of unfamiliar source code as they solved the tasks. P10, an
expert developer, expressed such debugging assistance would
be “invaluable to new contributors”. Further, performing
the tasks proposed by ROBIN helped beginner participants
learn IDE features better, while “feeling better equipped and
knowing what to do the next time I see a similar bug” (P1).

We observed higher use of debugger features by participants

of all expertise levels while using ROBIN. This is clearly
seen in Figure 5, with the increased occurrence of vertical
yellow bars with guided localization efforts (dark blue bars).
Additionally, we find this increased use to be statistically
significant for Task 2 (t = 2.7496, df = 14, p < 0.05), which
required higher localization effort than Task 1.

We also note P16’s experience, where they expected an
actionable plan on which variable values to track from the
baseline debugging assistant after having been exposed to
ROBIN, and expressed how they felt “stuck,” not knowing
“how to get more help” from the assistant.

E. Aligned follow-up suggestions lower conversation barriers

P14 appreciated how ROBIN’s follow-up questions lie in the
“vicinity” of their query and task at hand. P7 was pleasantly
surprised when they saw a follow-up suggesting an answer to
ROBIN’s question and said, “this tells me what the model is
expecting to hear, and I can directly click this to move ahead.”
Most participants expressed that ROBIN provided them with
questions they would want to ask next (P1, P2, P4–P7, P9–
P15). These prompts for follow-up with ROBIN facilitated

turn-taking with minimal time spent on formulating queries to
continue conversing. Figure 1b shows follow-ups generated by
ROBIN for Task 1 for a participant. Follow-ups generated by
the baseline assistant often weren’t specific to the participants’
local code and conversational context and led to off-topic
responses, derailing from the objective of localization and fix
generation. For instance, P2 said, “this went off-track because I
used the follow-up” when they received a follow-up suggestion
to understand serialization using the JsonSerializer li-
brary, instead of DataContractJsonSerializer which
was used in their code. We also observe several instances of
participants hovering over the baseline assistant’s follow-ups
and ultimately deciding not to choose them.

F. Threats to Validity

Among threats to internal validity, since we placed time
limits of 15 and 25 minutes for Tasks 1 and 2 respectively,
several participants timed out for the more complex Task 2.
However, we note that it would have taken participants several
more steps to reach a preferred fix. Further, we presented
the tasks to all participants through verbal descriptions of the
objectives. This may have inevitably led to priming, wherein
the participants’ prompt formulations could have been influ-
enced by our description of the bug. Lastly, we encouraged
participants to think aloud as they go about the task, adding
to the time taken to perform various steps. To address this, we
only track time when participants actively work on the tasks.

Among threats to external validity, our task selection may
not be representative of the breadth of real-world software
bugs faced by developers. We tried to mitigate this by adapting
three real-world bugs found on GitHub, varying in complexity,
for our tasks. Since the participants did not write the code
themselves, their use of AI-assistants for debugging self-
authored code will add to the current set of findings. Another
threat includes greater participant base having intermediate–
advanced experience due to snowball sampling. We attempted
to recruit a balanced proportion of beginner participants to un-
derstand their preferences and identify any additional barriers
they might face in using the AI-assistants. Our study also does
not consider long-term usage and potential habituation effects
of using an AI-assistant like ROBIN for beginner participants.

VI. DISCUSSION

A. Personalization based on developer expertise

Developers may have different levels of experience with
debugging strategies [1], [5], [26] or debugging tools (e.g.,
breakpoints, watch expressions, etc.) [6]—less experienced
developers may not even know of their existence or under-
utilize them [7]. Our study participants belonged to diverse
expertise levels (1–21 years), having varying expectations from
debugging AI assistants. Beginner and intermediate users often
relied on the understanding of the exception and hypothesis
provided by the assistant; however, for an expert, both these
were often clear from initial exploration of the exception.
Beginners in our study required extensive hand-holding for

localizing bugs, whereas experts could achieve the same out-
comes without step-by-step instructions for routine tasks (like
setting breakpoints and code stepping). Section V-D describes
how beginners in the study often perceived ROBIN as an
educative tool, comparing the experience to receiving guidance
from senior team members. As a next step, we aim to explore
ways to align ROBIN’s responses with developer experience
and familiarity with the code base.

B. Need for deeper integration with IDE

Participants also expressed a need for both ROBIN and the
baseline assistant to have greater awareness of the source code
to avoid copy-pasting code into the chat. In particular, expert
developers desired a deeper integration within the Visual
Studio IDE, such that ROBIN could automatically perform UI-
actions like setting breakpoints and stepping through the code
on their behalf. P6 said “if it already knows what the next step
is, why doesn’t it automatically perform it, and then point me
to the conclusion?” Further, enabling AI-assistants to perform
visible UI-actions may also facilitate learning experiences for
beginners like P12, who expressed that, “watching a video
tutorial is better than reading chat responses to figure out
how to use debugger features in Visual Studio because there
are so many menus and elements in this IDE.”

C. Towards effective human-AI debugging

“All problems lie in absence of a good conversation” –
John Niland — This holds true not only for human-human
interactions but human-AI interactions as well. Effective com-
munication often guided by Grice’s maxims of quantity,
quantity, relevance and manner [18]. Here, we reflect on the
study insights in this context.

ROBIN’s behaviour in coming back to the user for clarifi-
cations or additional information, rather than providing a sub-
optimal fix, embodies the maxim of quality, in contrast with
the baseline’s tendency to speculate and act on insufficient
information (Section V-C). Towards the maxim of quantity,
ROBIN picks the Responder agent to address the warm-up
task while picking the Collaborative agent for more involved
tasks. This demonstrates ROBIN’s adaptability to debugging
scenarios with varying severity, unlike the baseline, which
tends to always provide a single-turn response. Some partic-
ipants pointed out differences in the quality of follow-ups as
the AI-assistants were swapped across tasks (Section V-E). In
conjunction with the 3.5x higher success rate with ROBIN, this
showcases the importance of aligned follow-ups in preventing
conversation derailments, enforcing the maxim of relevance.

VII. RELATED WORK

Automated debugging has a rich history driven by rules
encoded by human reasoning over syntactic and static analysis
based signals. Understanding the bug and localization is often
the application of a bunch of strategies that literature has been
rich in [5], [26]–[28]. Often these strategies are good for a
certain category of bugs, but not one-size fits; thus, different
strategies can drive faster resolution in different cases. There

have been attempts around strategizing the entire debugging
life-cycle, introducing concepts like hypothesis debugging
[29], [30], delta debugging, and program slicing [28].

The practical application of these strategies often proves
cumbersome, as developers’ debugging processes need to
blend multiple methodologies [31], resulting in mechanical
and infeasible implementations of individual strategies in real-
world scenarios. ROBIN attempts to incorporate the essence
of some of these strategies through the understand-localize-
fix flow while narrowing down towards the fault by requesting
specific pieces of additional context and clarifications from the
user and providing clear instructions, allowing them not to lose
focus [32], [33]. This further reduces debugging efforts, which
often result in redundant sessions of Edit-Runs, particularly in
codebases where the developer lacks awareness of third-party
APIs and different pieces of scattered code [34]. Alaboudi et
al. [1] emphasize the inadequacies of traditional debugging
methods, advocating for a comprehensive approach beyond
mere fault localization. ROBIN aligns with this philosophy by
incorporating hypothesis-based debugging into its investigate
& respond workflow [30]. Similar to scientific debugging [35],
ROBIN leverages (LLMs) to propose hypotheses and reasoning
towards the issue. However, it depends on environmental cues
and the developer to accept or discard the current hypothesis.

Long before the advent of LLMs and neural debugging
approaches, the vision for a “Programmer’s Apprentice” was
proposed with the aim of developing conversational agents for
aiding software development tasks [36]. With the emergence
of LLMs, this vision has become a practical reality. LLMs are
now increasingly employed for code generation within auto-
completion interfaces [16] and natural language explanations
in chat-based interfaces. Recent work on “Programmer’s As-
sistant” facilitates meaningful conversations with LLMs for
software tasks by leveraging code contexts and maintaining
transcripts of prior conversations [37]. Developers have exhib-
ited favourable attitudes towards AI tools like GitHub Copilot
for their utility in everyday programming tasks, despite not
necessarily enhancing task completion or success rates [38].
Recent bug fix benchmark performances indicate LLMs hold
considerable potential in debugging. In their studies, Prenner
et al. [39], Sobania et al. [40] utilized OpenAI’s CodeX [10],
and ChatGPT [8] respectively to debug QuixBugs [41] with
improvements over state-of-the-art.

The recent rise of agent frameworks allows for creating
more complex software specific workflows [23], [42], [43].
Inspired by these frameworks, ROBIN breaks down debugging
tasks into a conversational workflow. Each state within our
workflow represents a conversational agent, fostering a richer
and extendable collaboration between developers and ROBIN.

In parallel, software comprehension, an important sub-
task for automated software engineering tools has also seen
improvements, from using longer contexts for LLMs [44],
to improved code retrieval strategies [45], [46] and code
execution feedback [47]–[49]. Previously, before LLMs could
reliably work with code, Li et al. [50] used a human-in-
the-loop query-feedback procedure to indicate the validity of

variable values to facilitate bug localization and reported faster
debugging fixes over traditional debugging methods. Recently,
automated software engineering tools, such as ChatDBG [45],
AutoCodeRover [46], and Devin [51], have emerged as notable
advancements in solving issues and bugs in codebases in a
completely automated manner. We believe in the supervised
assistance approach to strike a balance between automation
and manual intervention for realistic deployment.

VIII. LIMITATIONS

User Responses. Our current design places users as first-
class citizens, with their responses significantly steering the
conversation. However, this approach inherently assumes user
proficiency in providing systematic and standard responses.
In future, we could potentially explore the development of
guidelines that help users towards more structured responses,
thereby enhancing the effectiveness of collaboration.

Dependence on the backing LLM. ROBIN employs LLMs
to power reasoning and generation capabilities of the agents
and functions described in the Sec III-B. The experience and
effectiveness can change significantly with any changes to the
underlying model based on its ability in various dimensions.

Automated Context Retrieval. Can Automate Context()
function defaults to false beyond the limited scope of the Con-
text Retrieval agent (described in III-A). Future improvements
to ROBIN will include support for wider automated on-demand
retrieval. This shall abstract away the burden of fetching and
sharing additional context on the developer end, reducing their
cognitive load to focus on hypothesis and decision making.

IX. CONCLUSION AND FUTURE WORK

In this paper we introduce ROBIN, an investigate & respond
agentic workflow towards pragmatic and collaborative debug-
ging within IDEs. In designing ROBIN, we explore design
principles to keep the human-in-the-loop through the use of
IDE and debugger features, approaching a balance between
complete automation and manual exploration, by shifting
towards effective conversational traits. Through a within-
subjects study with 16 industry professionals, we observe (3.5
times) higher bug resolution rates and increased engagement
with debugger tools, owing to the drift towards conducive
conversation patterns for debugging. ROBIN enables guided
localization, while participants engage in more streamlined
debugging experiences following the understand–localize–fix
workflow. We hope to improve ROBIN, envisioning an increas-
ingly cohesive debugging experience for developers. As dis-
cussed in Section VI, we aim to personalize ROBIN based on
developer expertise, and enable deeper IDE integration through
automated UI actions. We plan to investigate domain-specific
interaction patterns for project scaffolding, code migration and
re-platforming as potential long-running and time intensive
software engineering tasks, just like debugging.

ROBIN, now a part of GitHub Copilot Chat, is a checkpoint
in an evolving journey which allows for us to re-calibrate
and understand developer needs and expectations towards
intelligent debugging assistance.

REFERENCES

[1] A. Alaboudi and T. D. LaToza, “Rethinking Debugging and
Debuggers,” 12th Annual Workshop at the Intersection of PL and HCI,
6 2022. [Online]. Available: https://kilthub.cmu.edu/articles/conference
contribution/Rethinking Debugging and Debuggers/19852006

[2] D. H. O’Dell, “The debugging mindset: Understanding the psychology
of learning strategies leads to effective problem-solving skills.”
Queue, vol. 15, no. 1, p. 71–90, feb 2017. [Online]. Available:
https://doi.org/10.1145/3055301.3068754

[3] Microsoft, “Visual studio,” 2023. [Online]. Available: https:
//visualstudio.microsoft.com/

[4] J. Brains, “Intellij idea,” 2023. [Online]. Available: https://www.
jetbrains.com/idea/

[5] I. Vessey, “Expertise in debugging computer programs: A process
analysis,” International Journal of Man-Machine Studies, vol. 23, no. 5,
pp. 459–494, 1985. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S0020737385800547

[6] M. Ko, D. B. Bose, H. A. Chowdhury, M. Seyam, and C. Brown,
“Exploring the barriers and factors that influence debugger usage for
students,” in 2023 IEEE Symposium on Visual Languages and Human-
Centric Computing (VL/HCC), 2023, pp. 168–172.

[7] B. Johnson, Y. Song, E. Murphy-Hill, and R. Bowdidge, “Why don’t
software developers use static analysis tools to find bugs?” in 2013 35th
International Conference on Software Engineering (ICSE), 2013, pp.
672–681.

[8] OpenAI, “Chatgpt,” 2022. [Online]. Available: https://chat.openai.com
[9] GitHub, “Github copilot chat,” 2023.

[Online]. Available: https://github.blog/
2023-03-22-github-copilot-x-the-ai-powered-developer-experience/

[10] M. Chen, J. Tworek, H. Jun, Q. Yuan, H. P. de Oliveira Pinto, J. Kaplan,
H. Edwards, Y. Burda, N. Joseph, G. Brockman, A. Ray, R. Puri,
G. Krueger, M. Petrov, H. Khlaaf, G. Sastry, P. Mishkin, B. Chan,
S. Gray, N. Ryder, M. Pavlov, A. Power, L. Kaiser, M. Bavarian,
C. Winter, P. Tillet, F. P. Such, D. Cummings, M. Plappert, F. Chantzis,
E. Barnes, A. Herbert-Voss, W. H. Guss, A. Nichol, A. Paino, N. Tezak,
J. Tang, I. Babuschkin, S. Balaji, S. Jain, W. Saunders, C. Hesse,
A. N. Carr, J. Leike, J. Achiam, V. Misra, E. Morikawa, A. Radford,
M. Knight, M. Brundage, M. Murati, K. Mayer, P. Welinder, B. McGrew,
D. Amodei, S. McCandlish, I. Sutskever, and W. Zaremba, “Evaluating
large language models trained on code,” 2021.

[11] E. Nijkamp, B. Pang, H. Hayashi, L. Tu, H. Wang, Y. Zhou, S. Savarese,
and C. Xiong, “Codegen: An open large language model for code with
multi-turn program synthesis,” 2023.

[12] B. Rozière, J. Gehring, F. Gloeckle, S. Sootla, I. Gat, X. E. Tan,
Y. Adi, J. Liu, T. Remez, J. Rapin, A. Kozhevnikov, I. Evtimov,
J. Bitton, M. Bhatt, C. C. Ferrer, A. Grattafiori, W. Xiong, A. Défossez,
J. Copet, F. Azhar, H. Touvron, L. Martin, N. Usunier, T. Scialom, and
G. Synnaeve, “Code llama: Open foundation models for code,” 2023.

[13] H. Le, Y. Wang, A. D. Gotmare, S. Savarese, and S. C. H. Hoi,
“Coderl: Mastering code generation through pretrained models and deep
reinforcement learning,” in NeurIPS, 2022.

[14] Y. Wang, H. Le, A. D. Gotmare, N. D. Bui, J. Li, and S. C. H. Hoi,
“Codet5+: Open code large language models for code understanding and
generation,” arXiv preprint, 2023.

[15] R. Li, L. B. Allal, Y. Zi, N. Muennighoff, D. Kocetkov, C. Mou,
M. Marone, C. Akiki, J. Li, J. Chim, Q. Liu, E. Zheltonozhskii, T. Y.
Zhuo, T. Wang, O. Dehaene, M. Davaadorj, J. Lamy-Poirier, J. Monteiro,
O. Shliazhko, N. Gontier, N. Meade, A. Zebaze, M.-H. Yee, L. K.
Umapathi, J. Zhu, B. Lipkin, M. Oblokulov, Z. Wang, R. Murthy,
J. Stillerman, S. S. Patel, D. Abulkhanov, M. Zocca, M. Dey, Z. Zhang,
N. Fahmy, U. Bhattacharyya, W. Yu, S. Singh, S. Luccioni, P. Villegas,
M. Kunakov, F. Zhdanov, M. Romero, T. Lee, N. Timor, J. Ding,
C. Schlesinger, H. Schoelkopf, J. Ebert, T. Dao, M. Mishra, A. Gu,
J. Robinson, C. J. Anderson, B. Dolan-Gavitt, D. Contractor, S. Reddy,
D. Fried, D. Bahdanau, Y. Jernite, C. M. Ferrandis, S. Hughes, T. Wolf,
A. Guha, L. von Werra, and H. de Vries, “Starcoder: may the source be
with you!” 2023.

[16] P. Gupta, A. Khare, Y. Bajpai, S. Chakraborty, S. Gulwani, A. Kanade,
A. Radhakrishna, G. Soares, and A. Tiwari, “Grace: Language models
meet code edits,” in Proceedings of the 31st ACM Joint European
Software Engineering Conference and Symposium on the Foundations
of Software Engineering, ser. ESEC/FSE 2023. New York, NY, USA:

Association for Computing Machinery, 2023, p. 1483–1495. [Online].
Available: https://doi.org/10.1145/3611643.3616253

[17] R. Dale, R. Fusaroli, N. D. Duran, and D. C. Richardson, “Chapter two
- the self-organization of human interaction,” in The Self-Organization
of Human Interaction, ser. Psychology of Learning and Motivation,
B. H. Ross, Ed. Academic Press, 2013, vol. 59, pp. 43–95.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
B9780124071872000022

[18] I. Shatz, “Grice’s maxims of conversation: The principles of
effective communication.” [Online]. Available: https://effectiviology.
com/principles-of-effective-communication/

[19] M. Arab, T. D. LaToza, J. Liang, and A. J. Ko, “An exploratory study
of sharing strategic programming knowledge,” in Proceedings of the
2022 CHI Conference on Human Factors in Computing Systems, ser.
CHI ’22. New York, NY, USA: Association for Computing Machinery,
2022. [Online]. Available: https://doi.org/10.1145/3491102.3502070

[20] T. D. LaToza, M. Arab, D. Loksa, and A. J. Ko, “Explicit programming
strategies,” Empirical Software Engineering, vol. 25, no. 4, p.
2416–2449, Mar. 2020. [Online]. Available: http://dx.doi.org/10.1007/
s10664-020-09810-1

[21] M. Arab, T. D. LaToza, J. Liang, and A. J. Ko, “An exploratory study
of sharing strategic programming knowledge,” in Proceedings of the
2022 CHI Conference on Human Factors in Computing Systems, ser.
CHI ’22. New York, NY, USA: Association for Computing Machinery,
2022. [Online]. Available: https://doi.org/10.1145/3491102.3502070

[22] Microsoft, “Bing copilot,” 2023. [Online]. Available: https://www.bing.
com/chat

[23] Q. Wu, G. Bansal, J. Zhang, Y. Wu, B. Li, E. Zhu, L. Jiang, X. Zhang,
S. Zhang, J. Liu, A. H. Awadallah, R. W. White, D. Burger, and
C. Wang, “Autogen: Enabling next-gen llm applications via multi-agent
conversation,” 2023.

[24] J. Wei, X. Wang, D. Schuurmans, M. Bosma, F. Xia, E. Chi, Q. V. Le,
D. Zhou et al., “Chain-of-thought prompting elicits reasoning in large
language models,” Advances in neural information processing systems,
vol. 35, pp. 24 824–24 837, 2022.

[25] P. Lewis, E. Perez, A. Piktus, F. Petroni, V. Karpukhin, N. Goyal,
H. Küttler, M. Lewis, W. tau Yih, T. Rocktäschel, S. Riedel, and
D. Kiela, “Retrieval-augmented generation for knowledge-intensive nlp
tasks,” 2021.

[26] M. Arab, T. D. LaToza, J. Liang, and A. J. Ko, “An exploratory study
of sharing strategic programming knowledge,” in Proceedings of the
2022 CHI Conference on Human Factors in Computing Systems, ser.
CHI ’22. New York, NY, USA: Association for Computing Machinery,
2022. [Online]. Available: https://doi.org/10.1145/3491102.3502070

[27] J. T. Liang, M. Arab, M. Ko, A. J. Ko, and T. D. LaToza,
“A qualitative study on the implementation design decisions of
developers,” in Proceedings of the 45th International Conference on
Software Engineering, ser. ICSE ’23. IEEE Press, 2023, p. 435–447.
[Online]. Available: https://doi.org/10.1109/ICSE48619.2023.00047

[28] M. Weiser, “Programmers use slices when debugging,” Commun.
ACM, vol. 25, no. 7, p. 446–452, jul 1982. [Online]. Available:
https://doi.org/10.1145/358557.358577

[29] Q. Ma, H. Shen, K. Koedinger, and T. Wu, “How to teach programming
in the ai era? using llms as a teachable agent for debugging,” 2024.

[30] A. Alaboudi and T. D. LaToza, “Using hypotheses as a debugging aid,”
in 2020 IEEE Symposium on Visual Languages and Human-Centric
Computing (VL/HCC), 2020, pp. 1–9.

[31] C. Parnin and A. Orso, “Are automated debugging techniques actually
helping programmers?” in Proceedings of the 2011 International
Symposium on Software Testing and Analysis, ser. ISSTA ’11. New
York, NY, USA: Association for Computing Machinery, 2011, p.
199–209. [Online]. Available: https://doi.org/10.1145/2001420.2001445

[32] A. J. Ko and B. A. Myers, “Debugging reinvented: Asking and
answering why and why not questions about program behavior,”
in Proceedings of the 30th International Conference on Software
Engineering, ser. ICSE ’08. New York, NY, USA: Association
for Computing Machinery, 2008, p. 301–310. [Online]. Available:
https://doi.org/10.1145/1368088.1368130

[33] ——, “Finding causes of program output with the java whyline,”
in Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems, ser. CHI ’09. New York, NY, USA: Association
for Computing Machinery, 2009, p. 1569–1578. [Online]. Available:
https://doi.org/10.1145/1518701.1518942

https://kilthub.cmu.edu/articles/conference_contribution/Rethinking_Debugging_and_Debuggers/19852006
https://kilthub.cmu.edu/articles/conference_contribution/Rethinking_Debugging_and_Debuggers/19852006
https://doi.org/10.1145/3055301.3068754
https://visualstudio.microsoft.com/
https://visualstudio.microsoft.com/
https://www.jetbrains.com/idea/
https://www.jetbrains.com/idea/
https://www.sciencedirect.com/science/article/pii/S0020737385800547
https://www.sciencedirect.com/science/article/pii/S0020737385800547
https://chat.openai.com
https://github.blog/2023-03-22-github-copilot-x-the-ai-powered-developer-experience/
https://github.blog/2023-03-22-github-copilot-x-the-ai-powered-developer-experience/
https://doi.org/10.1145/3611643.3616253
https://www.sciencedirect.com/science/article/pii/B9780124071872000022
https://www.sciencedirect.com/science/article/pii/B9780124071872000022
https://effectiviology.com/principles-of-effective-communication/
https://effectiviology.com/principles-of-effective-communication/
https://doi.org/10.1145/3491102.3502070
http://dx.doi.org/10.1007/s10664-020-09810-1
http://dx.doi.org/10.1007/s10664-020-09810-1
https://doi.org/10.1145/3491102.3502070
https://www.bing.com/chat
https://www.bing.com/chat
https://doi.org/10.1145/3491102.3502070
https://doi.org/10.1109/ICSE48619.2023.00047
https://doi.org/10.1145/358557.358577
https://doi.org/10.1145/2001420.2001445
https://doi.org/10.1145/1368088.1368130
https://doi.org/10.1145/1518701.1518942

[34] A. Alaboudi and T. D. LaToza, “Edit - run behavior in programming
and debugging,” in 2021 IEEE Symposium on Visual Languages and
Human-Centric Computing (VL/HCC). Los Alamitos, CA, USA: IEEE
Computer Society, oct 2021, pp. 1–10. [Online]. Available: https:
//doi.ieeecomputersociety.org/10.1109/VL/HCC51201.2021.9576170

[35] S. Kang, B. Chen, S. Yoo, and J.-G. Lou, “Explainable automated
debugging via large language model-driven scientific debugging,” 2023.

[36] C. Rich and R. C. Waters, The programmer’s apprentice. New York,
NY, USA: Association for Computing Machinery, 1990.

[37] S. I. Ross, F. Martinez, S. Houde, M. Muller, and J. D. Weisz,
“The programmer’s assistant: Conversational interaction with a large
language model for software development,” in Proceedings of the 28th
International Conference on Intelligent User Interfaces, ser. IUI ’23.
New York, NY, USA: Association for Computing Machinery, 2023, p.
491–514. [Online]. Available: https://doi.org/10.1145/3581641.3584037

[38] P. Vaithilingam, T. Zhang, and E. L. Glassman, “Expectation vs.
experience: Evaluating the usability of code generation tools powered
by large language models,” in Extended Abstracts of the 2022 CHI
Conference on Human Factors in Computing Systems, ser. CHI EA
’22. New York, NY, USA: Association for Computing Machinery,
2022. [Online]. Available: https://doi.org/10.1145/3491101.3519665

[39] J. A. Prenner, H. Babii, and R. Robbes, “Can openai’s codex fix bugs?
an evaluation on quixbugs,” in Proceedings of the Third International
Workshop on Automated Program Repair, ser. APR ’22. New York,
NY, USA: Association for Computing Machinery, 2022, p. 69–75.
[Online]. Available: https://doi.org/10.1145/3524459.3527351

[40] D. Sobania, M. Briesch, C. Hanna, and J. Petke, “An analysis
of the automatic bug fixing performance of chatgpt,” in 2023
IEEE/ACM International Workshop on Automated Program Repair
(APR). Los Alamitos, CA, USA: IEEE Computer Society, may 2023,
pp. 23–30. [Online]. Available: https://doi.ieeecomputersociety.org/10.
1109/APR59189.2023.00012

[41] D. Lin, J. Koppel, A. Chen, and A. Solar-Lezama, “Quixbugs: a
multi-lingual program repair benchmark set based on the quixey
challenge,” in Proceedings Companion of the 2017 ACM SIGPLAN
International Conference on Systems, Programming, Languages, and
Applications: Software for Humanity, ser. SPLASH Companion 2017.
New York, NY, USA: Association for Computing Machinery, 2017, p.
55–56. [Online]. Available: https://doi.org/10.1145/3135932.3135941

[42] L. Wang, C. Ma, X. Feng, Z. Zhang, H. Yang, J. Zhang, Z. Chen, J. Tang,
X. Chen, Y. Lin, W. X. Zhao, Z. Wei, and J.-R. Wen, “A survey on large
language model based autonomous agents,” 2023.

[43] W. Chen, Y. Su, J. Zuo, C. Yang, C. Yuan, C.-M. Chan, H. Yu, Y. Lu,
Y.-H. Hung, C. Qian, Y. Qin, X. Cong, R. Xie, Z. Liu, M. Sun,
and J. Zhou, “Agentverse: Facilitating multi-agent collaboration and
exploring emergent behaviors,” 2023.

[44] N. F. Liu, K. Lin, J. Hewitt, A. Paranjape, M. Bevilacqua,
F. Petroni, and P. Liang, “Lost in the middle: How language
models use long contexts,” Transactions of the Association for
Computational Linguistics, vol. 12, pp. 157–173, 2023. [Online].
Available: https://api.semanticscholar.org/CorpusID:259360665

[45] K. Levin, N. van Kempen, E. D. Berger, and S. N. Freund, “Chatdbg:
An ai-powered debugging assistant,” 2024.

[46] Y. Zhang, H. Ruan, Z. Fan, and A. Roychoudhury, “Autocoderover:
Autonomous program improvement,” 2024.

[47] X. Chen, M. Lin, N. Schärli, and D. Zhou, “Teaching large language
models to self-debug,” 2023.

[48] R. Tian, Y. Ye, Y. Qin, X. Cong, Y. Lin, Y. Pan, Y. Wu, Z. Liu,
and M. Sun, “Debugbench: Evaluating debugging capability of large
language models,” 2024.

[49] L. Zhong, Z. Wang, and J. Shang, “Ldb: A large language model
debugger via verifying runtime execution step-by-step,” 2024.

[50] X. Li, S. Zhu, M. d’Amorim, and A. Orso, “Enlightened debugging,”
in Proceedings of the 40th International Conference on Software
Engineering, ser. ICSE ’18. New York, NY, USA: Association
for Computing Machinery, 2018, p. 82–92. [Online]. Available:
https://doi.org/10.1145/3180155.3180242

[51] C. Labs, “Devin, ai software engineer,” 2024. [Online]. Available:
https://www.cognition-labs.com/introducing-devin

https://doi.ieeecomputersociety.org/10.1109/VL/HCC51201.2021.9576170
https://doi.ieeecomputersociety.org/10.1109/VL/HCC51201.2021.9576170
https://doi.org/10.1145/3581641.3584037
https://doi.org/10.1145/3491101.3519665
https://doi.org/10.1145/3524459.3527351
https://doi.ieeecomputersociety.org/10.1109/APR59189.2023.00012
https://doi.ieeecomputersociety.org/10.1109/APR59189.2023.00012
https://doi.org/10.1145/3135932.3135941
https://api.semanticscholar.org/CorpusID:259360665
https://doi.org/10.1145/3180155.3180242
https://www.cognition-labs.com/introducing-devin

	Introduction
	Design for AI-Assisted Debugging
	Design Principles
	Conversational Capabilities

	Robin: An AI Agent for debugging exceptions
	Agent Descriptions
	Robin's Workflow

	User Study
	Results
	Task Performance and Debugging Behaviors
	Drift in conversation patterns with Robin
	Single-turn responses lead to premature localization and sub-optimal fixes
	Collaborative approach enables guided localization
	Aligned follow-up suggestions lower conversation barriers
	Threats to Validity

	Discussion
	Personalization based on developer expertise
	Need for deeper integration with IDE
	Towards effective human-AI debugging

	Related Work
	Limitations
	Conclusion and Future Work
	References

