Modeling Systems from Logs of their Behavior
Logged messages are invaluable for debugging and diagnosing problems. Unfortunately, many execution logs are inscrutable in their raw form. For example, a production Google system may generate a billion-line log file in a single day. In my talk, I will detail two log-analysis tools that I developed to deal with this problem. These tools infer concise and precise models from large execution logs of sequential and distributed systems. Both tools enable new kinds of program analyses and make logs more useful to developers. For example, my empirical experiments show that developers find the inferred models useful for identifying bugs, confirming bugs that were previously known, and increasing their confidence in their implementations.
Speaker Details
Ivan Beschastnikh is a final-year PhD student at the University of Washington working with Tom Anderson, Michael D. Ernst, and Arvind Krishnamurthy. His research aim is to improve the design, implementation, and operation of large systems by using techniques from the areas of systems and software engineering.
- Series:
- Microsoft Research Talks
- Date:
- Speakers:
- Ivan Beschastnikh
- Affiliation:
- University of British Columbia
-
-
Jeff Running
-
Series: Microsoft Research Talks
-
Decoding the Human Brain – A Neurosurgeon’s Experience
Speakers:- Pascal Zinn,
- Ivan Tashev
-
-
-
-
Galea: The Bridge Between Mixed Reality and Neurotechnology
Speakers:- Eva Esteban,
- Conor Russomanno
-
Current and Future Application of BCIs
Speakers:- Christoph Guger
-
Challenges in Evolving a Successful Database Product (SQL Server) to a Cloud Service (SQL Azure)
Speakers:- Hanuma Kodavalla,
- Phil Bernstein
-
Improving text prediction accuracy using neurophysiology
Speakers:- Sophia Mehdizadeh
-
-
DIABLo: a Deep Individual-Agnostic Binaural Localizer
Speakers:- Shoken Kaneko
-
-
Recent Efforts Towards Efficient And Scalable Neural Waveform Coding
Speakers:- Kai Zhen
-
-
Audio-based Toxic Language Detection
Speakers:- Midia Yousefi
-
-
From SqueezeNet to SqueezeBERT: Developing Efficient Deep Neural Networks
Speakers:- Sujeeth Bharadwaj
-
Hope Speech and Help Speech: Surfacing Positivity Amidst Hate
Speakers:- Monojit Choudhury
-
-
-
-
-
'F' to 'A' on the N.Y. Regents Science Exams: An Overview of the Aristo Project
Speakers:- Peter Clark
-
Checkpointing the Un-checkpointable: the Split-Process Approach for MPI and Formal Verification
Speakers:- Gene Cooperman
-
Learning Structured Models for Safe Robot Control
Speakers:- Ashish Kapoor
-