The Asymmetric Traveling Salesman Problem
- Shayan Oveis Gharan | Stanford
We consider the asymmetric traveling salesman problem for costs satisfying the triangle inequality. We derive a randomized algorithm which delivers a solution within a factor O(log n/ log log n) of the optimum with high probability. Also we give the first constant factor approximation algorithm for metrics that are shortest path distances in a weighted directed graph when the underlying undirected graph has a bounded orientable genus. In this talk I will try to describe the main ideas of these algorithms.
Our approach for ATSP has similarities with Christofides’ algorithm; we first construct a spanning tree with special properties. Then we find a minimum cost Eulerian augmentation of this tree, and finally, shortcut the resulting Eulerian walk.
-
-
Jeff Running
-
Watch Next
-
-
-
Accelerating MRI image reconstruction with Tyger
- Karen Easterbrook,
- Ilyana Rosenberg
-
-
-
-
From Microfarms to the Moon: A Teen Innovator’s Journey in Robotics
- Pranav Kumar Redlapalli
-
-
-