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ABsSTRACT. The GRIP architecture allows efficient execution of functional pro-
grams on a multi-processor built from standard hardware components. State-of-
the-art compilation techniques are combined with sophisticated runtime resource-
control to give good parallel performance. This paper reports the results of run-
ning GRIP on an application which is apparently unsuited to the basic functional
model: a database transaction manager incorporating updates as well as lookup
transactions. The results obtained show good relative speedups for GRIP, with
real performance advantages over the same application executing on sequential
machines.

1. INTRODUCTION

GRIP is a parallel processor designed for fast, efficient execution of pure functional pro-
grams. Good sequential compiler technology is combined with parallel runtime support
to give good real-time performance. Pure functional languages form an attractive basis
for parallel implementation, if a safe evaluation strategy such as parallel graph reduction
is used:

e The principle of referential transparency ensures that all cached copies of a given
object will have the same value when evaluated, whether or not they are shared,
and no matter how many times they are evaluated. Thus, there can be no cache-
coherency problems in a parallel functional implementation.

e The semantics of a functional program remains the same whether it is executed
sequentially or in parallel. Thus, a parallel functional program may be debugged
on a sequential machine without affecting its result. There can be no unexpected
non-determinism in a parallel functional program.

e There is no possibility of deadlock. Parallel functional programs have exactly the
same termination properties as their sequential counterparts.

e Because there is no explicitly sequential evaluation order, it is easy to automatically

partition a functional program for parallel execution.

Automatic resource-control is much more straightforward, since there are no hidden

dependencies between tasks.

A number of pragmatic issues remain, however, for example whether good partitions into
tasks can be made without human intervention, or whether dynamic control decisions
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can be made sufficiently fast to allow scheduling of fine-grained parallelism on a machine
such as GRIP. We have addressed some of these issues in earlier papers [HP92]. In this
paper, we consider another important pragmatic issue: whether functional programs can
be made to process large amounts of data in a manner which is competitive with im-
perative programs. We have chosen as our case-study a partial implementation of the
well-known DebitCredit benchmark: a transaction-processing benchmark for databases,
which involves updating the database. Given that sequential compilers for functional lan-
guages do not yet give performance which matches that of imperative languages, we do
not expect our implementation to outperform a hand-coded imperative program for the
same machine. We do, however, hope to obtain respectable performance compared with
imperative implementations, and to obtain decent speedups from our parallel architec-
ture. Choosing a widely-accepted benchmark allows tentative comparisons to be drawn
with other architectures and models of computation.

While the results we obtain here apply principally to our novel GRIP architecture, there
is some hope that the lessons learned here may also be of use to other parallel functional
implementations, such as those for networks of transputers, or hypercubes. Although the
GRIP model lessens the problems of locality through the use of a 2-level bus structure and
fast heterogeneous communications hardware, the distinction between local and non-local
memory accesses is still a crucial one.

The remainder of this paper is structured as follows. Section 2 describes the GRIP machine
architecture. Section 3 describes the characteristics recorded during program execution
on GRIP. Section 4 describes the DebitCredit-based application studied here. Section 5
gives the results gathered during the execution of the application. Section 6 concludes.

2. MACHINE ARCHITECTURE

2.1. Overview. The GRIP architecture comprises a single bus-connected cluster of one
to 20 printed circuit boards. A fully-populated board contains four processing elements
(PEs) and one Intelligent Memory Unit (IMU), linked by a local bus. A fully-populated
GRIP thus contains 80 PEs and 20 IMUs. The boards are connected using a fast packet-
switched bus [Pey86], and the whole machine is attached to a Unix host using slower data
links.

Each PE incorporates an MC68020 CPU, an MC68881 floating-point co-processor, and
1Mbyte of private memory which is not accessible by any other hardware component.

The IMUs collectively constitute the global address space. They each contain 1M words
of 40 bit-wide static memory, together with a microprogrammable data engine. The
microcode interprets incoming requests from the bus, services them and dispatches a reply
to the bus. In this way, the IMUs can support a variety of memory operations, rather than
the simple READ and WRITE operations supported by conventional memories. The IMUs
are the most innovative feature of the GRIP architecture, offering a fast implementation
of low-level memory operations with great flexibility.

An internal bus was chosen specifically to make the locality issue less pressing. Com-
munication is handled by sophisticated Bus Interface Processors (BIPs): one per board.
Identical protocols are used for communication between remote components or those on the
same board. Throughput and latency are essentially the same for both local and remote
communication from functional programs [Mad91]. However, inter-component communi-
cation is still an order-of-magnitude slower than access to a PE’s private memory. It is
thus crucially important to minimise the number and frequency of remote accesses.
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2.2. Graph reduction on GRIP. We start from the belief that parallel graph reduction
will only be competitive if it can take advantage of all the compiler technology that has
been developed for sequential graph-reduction implementations [Pey87]. Our intention
is that, provided a thread does not refer to remote graph nodes, it should be executed
exactly as a compiled program would be on a sequential machine.

Our graph reduction model is based on the Spineless Tagless G-machine [PS89]. The
expression to be evaluated is represented by a graph of closures, held in dynamic heap
memory. Each closure consists of a pointer to its code, together with zero or more free-
variable fields. Closures in (weak head) normal form require no further evaluation, hence
their code is usually just a return instruction!. Other closures represent unevaluated
expressions, whose code will reduce the closure to its normal form. A closure is evaluated
(or entered) by jumping to its code. A register records the current closure for update
purposes, or for access to the free variables. When evaluation is complete, the closure is
updated with (an indirection to) a closure representing its normal form.

A thread is a sequential computation whose purpose is to reduce a particular sub-graph
to (weak head) normal form. In a parallel graph reducer, there will typically be many
threads which could be executed. Idle PEs fetch new threads from this (distributed) pool
of threads. A single PE may execute one thread at a time, or may multi-task between a
number of threads.

Initially there is only one thread, representing the result of the program. When a thread
encounters a closure whose value will be required in the future, it has the option of record-
ing the closure for (possible) execution by other PEs. This is known as sparking the
closure.

If the parent thread requires the value of the sparked closure while a child thread is
computing it, the parent becomes blocked. When the child thread completes the evaluation
of the closure, the closure is updated with its normal form, and the parent thread is
resumed. If no PE has begun execution of the sparked closure when its value is required,
the parent thread will evaluate the closure itself. Consequently a thread can only become
blocked if it requires a result which some other thread is evaluating [PS89, HP90]. This
is the evaluate-and-die model of evaluation for parallel functional languages. It is related
to some other models such as lazy task creation [MKH91].

This blocking/resumption mechanism is the only form of inter-thread communication and
synchronisation. Once an expression has been evaluated to normal form, then arbitrarily
many threads can inspect it simultaneously without contention. The synchronisation
provides the inter-transaction “locking” required by the functional database, as described
in [Tri89]. A transaction demanding the result of a previous transaction is blocked until
the previous transaction has constructed the value it requires.

2.3. IMU Operations. The following range of operations is supported by our current
IMU microcode:

e Variable-sized heap nodes may be allocated and initialised.

e Garbage collection of global nodes is performed autonomously by the IMUs. Ter-
mination is ensured using an algorithm proposed by Baker [Bak78§].

e Fach IMU maintains a pool of executable threads, which may be exported to idle
PEs.

e The blocking/resumption model is supported for access to global nodes.

!Closures in weak head normal form are functions, or constructors. In contrast to true normal
forms, their arguments may be unevaluated.
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FicureE 1. GRIP extended with disks and disk controllers

2.4. Additional Configuration. Database applications require that the underlying ma-
chine supports permanent storage, typically in the form of disks. The existing GRIP
machine has a simple stream-based disk interface, which is clearly inadequate for such
an application. Pragmatics aside, it would be easy to extend the GRIP architecture to
include more sophisticated disk storage. For example, a disk controller and disk could be
added to each PE. Any PE could then access the data on any disk by sending a suitable
request to the controlling PE. This architecture is depicted in Figure 1.

To simulate this architecture on the existing machine, a special primitive operation, delay,
is used to model disk accesses. delay n a introduces a timed delay of n milliseconds for
the current thread. To model the effect of contention for shared resources, such as disks,
delays are queued on the PE addressed by a, and are cumulative with any outstanding
delays on that PE. We use a delay of 13ms for a disk read, and 14ms for a disk write,
and assume a block size of 8K bytes, with a total capacity of 1G bytes per drive. These
correspond to figures quoted for many small SCSI drives, e.g. Seagate ST41200N 1.2Gb
(16.5ms) or Maxtor 1.7Gb (13ms).

3. DATABASE ARCHITECTURE

3.1. DebitCredit. The database application that has been implemented on GRIP is the
processing part of the DebitCredit benchmark[Tpc89]. This section describes the signifi-
cant features of this application. DebitCredit measures transaction processing capacity in
a simple bank database. The full benchmark measures transactions passed over a network
from a set of terminals and includes pricing information for the entire system. The ap-
plication we describe only processes the transactions against the database: the so-called
back-end processing. Network response times and equipment costs are not considered
here.

The DebitCredit bank database comprises customer, teller, branch and history records. A
single transaction is repeatedly executed against these records. The transaction adds an
amount of money to an account (a negative amount is a withdrawal), the corresponding
teller and branch records are similarly updated and a history record is generated. Various
relationships exist between the records, for example the balance held at a branch should be
the sum of all of the accounts at the branch. The benchmark specifies a set of atomicity,
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consistency, isolation and durability (ACID) tests. All except the durability test have
been performed successfully for the program described here. Results are omitted for space
reasons.

The essential metric measured in DebitCredit is the number of transactions processed
in a second (tps). However, the database size does not remain constant as the tps rate
increases. For each transaction-per-second the database must use 100,000 account records,
10 teller records and 1 branch record.

DebitCredit figures have been published for many machines. The figures reported in this
paper are for only part of DebitCredit, involve simulated disk access and, as described in
the next section, deviate from the specification in several respects. Hence they cannot be
directly compared to a full implementation. However, for reference, the following figures
are quoted by e.g. [Rob89, TPGS&R]: IBM 4381-P22, 22 TPS; DEC VAX 8830, 27 TPS;
Tandem, 208 TPS.

3.2. Application Design.

3.2.1. Persistent Functional Languages. The transaction processor is designed using the
principles first outlined in [AFHLT87] and prototyped in [AHPT91, Tri®9], which assume
the existence of a parallel persistent functional language. In most existing languages only
certain types of data may be permanently stored. Much of the effort in writing programs
that manipulate permanent data is expended in unpacking the data into a form suitable for
the computation and then repacking it for storage afterwards. The idea behind persistent
programming languages is to allow values of any type to be permanently stored. The
length of time that an entity exists, or its persistence, is independent of its type.

In a persistent environment a class, or collection of ‘similar’ data items, can be represented
as a data structure that persists for some time. Because of their large size, such structures
are termed bulk data structures. Operations that do not modify bulk data structures,
e.g. lookups, can be implemented efficiently in a functional language [HN91]. However,
modifications to a data structure must be non-destructive in a pure functional language,
i.e. a new version of the structure must be constructed and the original preserved. At
first glance it seems to be prohibitively expensive to create a new version of a bulk data
structure every time it is modified.

3.2.2. Trees. New versions of trees can be constructed cheaply, however. If et is the type
of the data values at the leaves, and kt is the type of the keys, then a simplistic tree type
can be written

bdt = Node bdt kt bdt | Tip et.

A function to update such a tree produces a new tree reflecting the update and a message
reporting the success or failure of the operation.

update € (Tip e) = (Ok e, Tip €), if key e = key ¢
= (Error, Tip e), otherwise
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update € (Node It k rt) = (m,Node It' k rt), if key € <k
= (m, Node It k rt'), otherwise
where
(m,lt') = update €' It
(m,rt') = update € rt

Let us assume that the tree contains n entities and is balanced. In this case its depth is
proportional to logn, hence the update function needs only to construct log n new nodes
to create a new version of such a tree. Any unchanged nodes can be shared between the old
and the new versions and thus a new path through the tree is all that need be constructed.
The figure overleaf shows a tree which has been updated to associate a value of 3 with «.

A time complexity of logn is the same as an imperative tree update. The non-destructive
update has a larger constant factor, however, as the new nodes must be created and
some unchanged information copied into them. The functional update can be made more
efficient using reference counting [Tri89], but the GRIP software does not currently support
this optimisation. However, when non-destructive update is used, a copy of the tree can
be kept cheaply because the nodes common to the old and new versions are shared, i.e.
only the differences between the versions are required. The uses of cheap multiple versions
of the database are described in [AFHLT87, Tri®9]. Destructive update is also likely
to introduce unwanted sequential dependencies (as its name suggests, single-threading
imposes sequential access in order to allow destructive update). This is highly undesirable
for our parallel application.

The DebitCredit branch, teller and account classes are each represented as trees, while
the history is simply a sequence. Because the branch and teller classes are small enough
they are stored entirely in primary memory, as binary trees with data (a single 100 byte
record) only at the leaves. The account tree is too large to reside in primary memory,
hence we use a 2-3 tree (i.e. a B-tree of order 3).

Original New

A disk-block access is simulated for each leaf access, as described in Section 2.4. This
corresponds to an ideal ‘warm start’ in a conventional database, i.e. all of the index is in
memory and only the data is disk resident. Each DebitCredit account record is 100 bytes
and hence 80 records are retrieved from an 8Kb disk-block.

We choose a low-order B-tree to minimise the construction time required for the root
node. This reduces a potential throughput bottleneck [Tri89]. Future work may include
experimenting with the order of the B-tree.
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3.2.3. Transaction Manager. A transaction is a function that takes the database as an
argument and returns some output and a new version of the database as a result. Let us
call this type, bdt — (output x bdt), tat. Transactions are built out of tree manipulating
operations such as lookup and update. Two functions that prove useful to construct a
simple example transaction are ¢sok, which determines whether an operation succeeded,
and dep which increments the balance of an account. The arguments to dep are a some
of money to deposit n and an entity whose components are an account number ano, the
current balance of the account bal, the credit limit for the account c¢rl, and the type of
the account class.

isok (Ok e) =True

1s0k out = False

dep (Ok (Entity ano bal crl class)) n = Entity ano (bal+n) erl class
A transaction to deposit a sum of money in a bank account can be written as follows.

deposit a n d = update (dep m n) d, if (isok m)
= (Error,d), otherwise
where
m = lookup a d

The depostt function takes as its arguments an account number a, a sum of money n and
a database d. If the lookup fails to locate the account an error message and the original
database are returned. If the lookup succeeds, the result of the function is the result of
updating the account. The update replaces the existing account entity with an identical
entity, except that the balance has been incremented by the specified sum. Note that
deposit is of the correct type for a transaction-function when it is partially applied to an
account number and a sum of money, i.e. deposit a n has type bdt — (output x bdt). The
DebitCredit transaction, detrans which is used for performance analysis is much more
complicated than deposit. Its definition is given in Appendix A.

Both deposit and dctrans have a common transaction form: some operations are performed
on the database and if they succeed the transaction commits, i.e. returns the updated
database. If the operations fail, the transaction aborts and returns an unchanged database.
Transactions that may either commit or abort are termed total.

The database manager is a stream processing function. It consumes a lazy list, or stream,
of transaction-functions and produces a stream of output. That is, the manager has type
bdt — [tat] — [output]. A simple version can be written as follows.

manager d (f: fs) = out : manager d' fs
where

(out,d'y= f d

The first transaction f in the input stream is applied to the database and a pair is returned
as the result. The output component of the pair is placed in the output stream. The
updated database, d’, is given as the first argument to the recursive call to the manager.
Because the manager retains the modified database produced by each transaction it has
an evolving state. The manager can be made available to many users simultaneously using
techniques developed for functional operating systems [Hen82].

3.2.4. Concurrent Transactions. Concurrency can be introduced between transactions by
making the manager eager. This allows the current transaction to be evaluated in parallel
with the remaining transactions. The original task evaluates the current transaction. The
new task applies the manager to the remaining transactions. This proceeds recursively.
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Unfortunately, total transactions can seriously restrict concurrency. This is because nei-
ther the original nor the updated database can be returned until the commit/abort deci-
sion has been taken. Consequently, no other transaction may access any other part of the
database until this decision has been made. Total transactions have the form,

1f predicate db then transform db else db.

In most cases the bulk of the database will be the same whether or not the transaction
commits. This common, or unchanged, part of the database will be returned whatever
the result of the commit decision. If there were some way of returning the common part
early then concurrency would be greatly increased. Transactions that only depend on
unchanged data can begin and possibly even complete without waiting for the preceding
total transaction to commit or abort.

The common parts of the database can be returned early using fwif, a variant of the
conditional statement proposed by Friedman and Wise [FW78]. A more complete descrip-
tion of fwif and its implementation in a simulated parallel graph reducer can be found
in [Tri89]. To define the semantics of fwif let us view every data value as a constructor
and a sequence of constructed values. Every member of an unstructured type, e.g. 1, is a
zero-arity constructor — the sequence of constructed values is empty. Using C' to denote
a constructor, the semantics can be given by the following reduction rules.

fwif True v y= =
fwif False v y=y

To implement fwif, the predicate and the two conditional branches are evaluated con-
currently. The values of the conditional branches are compared and common parts are
returned. When a part is found not to be common to both branches, the evaluation of
those branches ceases. Once the predicate is evaluated, the chosen branch is returned and
the evaluation of the other is cancelled. This strategy amounts to speculative parallelism,
the conditional branches being evaluated in the hope that parts of them will be identical.

The problems of speculative parallelism are well known. For example speculative tasks
may consume resources and hence prevent more important tasks from completing. They,
and any child tasks, may also be hard to kill if they are not required, or fail to termi-
nate. Fortunately in the DebitCredit application the tasks being sparked by fwif evaluate
functions like update which are relatively small, spark no additional tasks and are guaran-
teed to terminate as they traverse a finite data structure. Since most of the database is
unchanged between transactions, the speculative work is likely to be used.

4. REsSULTS

4.1. Performance on Parallel and Sequential Machines. The first set of results
compares the absolute execution times of a fixed program running on a varying number of
GRIP PEs with those for the same program executing on two common sequential machines.
This program processes 400 transactions on a database configured for 50 DebitCredit TPS.
Figure 2 plots the execution times for a 4-IMU GRIP (20Mb “slow” global heap) with
between 2 and 15 PEs (this was the largest stable configuration at the time these results
were obtained). Each PE has 600K available heap (the remaining 400K static RAM is
occupied by program code, the operating system, and static data). Due to the size of
the application, it could not be executed on a single GRIP PE. Offloading the in-memory
index to global memory would bias the performance results, and give unrealistic super-
linear speedups, which we wished to avoid.
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Ficure 2. Execution Time Profile: 400 Transactions, 50 TPS Database

The same figure also shows the execution times for an identical program executing on
a Sun 3/50 (Motorola MC68020) and a Sun 4/60 (Sun Sparc). The Sun 3/50 uses the
same processor at the same speed as GRIP; the Sun 4/60 is a commonly used modern
machine. An 8M heap was used for the sequential machines: this gave the best overall
time performance in both cases. The same compiler was used for all three machines. Disk
accesses were simulated for GRIP using interrupt-timed delays, as described above. For
the sequential versions, sequential disk access was simulated using count-down loops of
an appropriate duration. The implementation of delays is the only difference between the
programs. Results are averaged across 10 runs in each case.

A direct architectural comparison can be made between GRIP and the Sun 3/50. They use
the same microprocessor (16MHz Motorola MC68020) to execute an essentially identical
source program compiled by the same compiler. The machines differ in their memory
architectures, in their communications sub-systems, and in their virtual disk architectures,
as described above. Absolute speedups over the Sun 3/50 are obtained with 3 or more PEs.
Not all the overhead is due to communications and context-switching costs, however: a
significant fraction of this overhead is caused by the relatively small local memory available
to each GRIP PE (for example, decreasing the Sun 3/50 heap to 2Mb halves its overall
performance).

The raw integer performance (given by SPECint89) of the Sparc-1 chip used in the Sun
4/60 is roughly 3 to 4 times that of the Motorola 68020. For this application, however,
disk performance is at least as important as that of the processor. Consequently, the
overall performance of the 4/60 is only twice that of the 3/50, in spite of using a RISC
chip. Hence a GRIP with 6 or more PEs outperforms the Sun 4/60, and a 15-PE GRIP
is more than twice as fast as a Sun 4/60. This is a primarily a consequence of our use of
concurrency to exploit additional disks in the parallel machine.

To summarise, for this program, a 15-PE GRIP delivers good real-time performance com-
pared with some common sequential machines.

4.2. Relative Speedup. The second set of results investigates the relative speedup as
the number of processors is increased from 2 to 15. Figure 3 plots the same data as Figure
2, but in terms of the speedup relative to the two-PE case (the single PE data-point was
unobtainable, but extrapolating from our data suggests a single PE would be roughly half
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Ficure 3. Speedup Graph: 400 transactions, 50 TPS Database

the speed of a 2-PE system). That is, the program measured executes 400 transactions
against a database configured for 50 DebitCredit TPS. We observe that the speedup is
linear until 10 PEs are in use and degrades thereafter.

This degradation in speedup occurs as the software bound on parallelism is approached.
The bound for a functional transaction processor has been shown to be the ratio between
the time required to construct the root and make it available to other processors and
the time required to process the transaction [Tri89]. Hence we would expect that, if the
transactions became shorter, the software bound would be reached sooner.

The length of DebitCredit transactions is easily adjusted. Recall that the time to execute
a transaction is proportional to the log of the size of the database. Furthermore, the
benchmark specifies that the size of the database increases in proportion to the number of
TPS. The largest database studied here is the 50 TPS database from the previous section,
selected because a 15-PE GRIP achieves 48 FTPS (400 transactions in 8.36 seconds). The
smallest database we consider is a 15 TPS database, chosen because a 2-PE GRIP achieves
14 FTPS. A good intermediate point is a 35 TPS database, chosen because an 8-PE GRIP
achieves 36 FTPS.

Figure 4 plots the speedup curves for the 400 transaction program executed on 15 TPS,
35 TPS and 50 TPS databases respectively. As predicted, a program with shorter trans-
actions (and hence a smaller database) reaches the software bound earlier. We note that
considerable improvement is still obtained after the speedup becomes non-linear. In fact,
none of the programs have actually reached a limit on speedup. This suggests that the
DebitCredit execution time could be further reduced by increasing the number of proces-
sors beyond 15.

5. CONCLUSION

We have run a large data-intensive application on the parallel graph-reducer GRIP. Our
application is written in the pure non-strict functional language, Haskell. It exploits the
data-dependencies implicit in a functional program to provide inter-transaction concur-
rency and locking. This represents the first attempt that we are aware of to consider the
problems of concurrency in a functional transaction processor, in the presence of update
as well as lookup transactions. Our model allows the exploitation of concurrent hardware
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through the use of fwif: a primitive which allows early return of common parts of a data
structure in the context of conditional expressions.

Our results show a clear improvement from the use of a parallel machine compared with
the same application running on two popular sequential machines. We also obtain near-
linear relative speedups between 2 and 10 PE on a 50-TPS database. Our GRIP results
could be tentatively compared with those for the the full DebitCredit benchmark on a
large sequential machine.

There are several aspects which would repay further investigation. These include:

(1) One PE, with varying numbers of “virtual disks” to measure the potential concur-
rency gain for a sequential version exploiting fuwif.

(2) Other architectures, for example a shared-memory machine such as the Sequent
Symmetry, using the Chalmers < v,G>-machine compiler [AJ89].

(3) Eager pre-fetch of normal-form packets from the IMUs.

(4) Local sparking [HP92] to reduce communication overhead.

(5) An improved implementation of fwif with indirection-chaining via the IMUs.
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APPENDIX A DEBITCREDIT PROGRAM

module Types where = ————————————- Type Definitions ---———---———-

data Fill = Fill_Bra Int Int Int | Fill_Tel Int Int

data Entity = Branch Int Int Fill | Teller Int Int Int Fill

data Tree

data BOOL

= Tip Entity | Tip_Acc Int Int | Nodel Tree Int Tree
Node2 Tree Int Tree Int Tree
FALSE | TRUE | UNKNOWN

module Main where = -————————————- Main Module W -———————-——

infixr ‘seq‘, ‘par’

import FWIF (fwifdb) -— fwifdb :: Bool -> Tree -> Tree -> Tree
import Types(Fill,Entity,Tree)

import Delay(delaya) -— delaya :: Int -> Int -> Int

data Histrt = His Int Int Int Int Int

data Dbt = Root Tree Tree Tree [Histrt]

data Msgt = Ok Int

Error Int



PROCESSING TRANSACTIONS ON GRIP, A PARALLEL GRAPH REDUCER

isok :: (Msgt, tree) —-> Bool

isok (Ok k, t)

= Tru
isok (Error k, t) =

- ... Code to build the database trees

e

False

replace :: Int -> Int -> Tree -> (Msgt, Tree)

replace key d nd@(Tip_Acc aid nrec) =
if not is_error && key >= aid && key <= aid+nrec then
write_disk 14 (read_disk 13 (Ok key, (Tip_Acc aid nrec)))

else

read_disk 13 (Error key, nd)

where

read_disk d cont = read_delay d ‘seq‘ cont
where read_delay n = delaya n key
write_disk d cont = write_delay d ‘seq‘ cont
where write_delay n = delaya n key

is_error

(key ‘div‘ 10) ‘mod¢ 20 == 0

replace key d (Nodel 1t k rt) =
if key > k then

(msg_r, Nodel 1t k new_rt)

else (msg_1, Nodel new_lt k rt)
where (msg_r, new_rt) = replace key d rt
(msg_1, new_lt) = replace key d 1t
—————————————————— Code for Tip and Node2 cases Bttt
{- The following function represents one DebitCredit transaction. -}
dctrans :: Int -> Int -> Int -> Int-> Transaction

dctrans aid bid tid delta db =
ret_acc ‘par‘ (ret_bra ‘par‘ (ret_tel ‘par‘
(0k (acct a_result), Root ret_acc ret_bra ret_tel ret_his )))

where

(Root acc bra tel his) = db

a_result = replace aid delta acc

b_result = replace bid delta bra

t_result = replace tid delta tel

h_result = (0k 0, His aid bid tid delta O:his)
p = isok a_result && isok b_result && isok t_result
ret_acc = fwifdb p (snd a_result) acc

ret_bra = fwifdb p (snd b_result) bra

ret_tel = fwifdb p (snd t_result) tel

ret_his = if p then snd h_result else his

acct (Ok aid,_) = aid

acct (Error aid,_) = aid

Code to generate a list of random tramsactions ...  —-——————-
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manager :: a —> [a -> (b,a)] -> [b]
manager d (f:fs) = ms ‘par‘ ml
where fd = f d
(m,d’) = £d
ms = manager d’ fs
ml = m ‘seq‘ (m:ms)

manager d [] = []
—————————— ... Code to calculate a checksum of results etc ... ——————————

main _ = db ‘seq‘ txs ‘seq‘ show (checksum result)
where db = builddb cur_tps cur_nrec
txs = randtxs cur_ntxs cur_tps
result = (manager db txs)

APPENDIX B OUTLINE OF FWIF IMPLEMENTATION

The following is a listing of the fwifdb function, or Friedmann and Wise if [FW78] for the
database type Dbt, in Haskell. The eq pseudo-function tests whether its arguments are

pointer identical. The boolval pseudo-function returns TRUE if its argument is True,
FALSE if its argument is False or UNKNOWN if its argument is unevaluated.

module FWIF where

¢ ¢

infixr ‘seq

import Types (Tree,Bool)

import Primitives (eq,boolval) -- eq :: a -> a -> Bool
-- boolval :: Bool —> BOOL

fwifdb :: Bool -> Tree -> Tree -> Tree
fwifdb p x y =
case boolval p of
TRUE -> x
FALSE -> y

UNKNOWN | x ‘eq‘ y -> x
| otherwise -> x ‘seq‘ y
if x ‘eq‘ y then x

¢ ¢

seq
else fwifeval x y

fwifeval (Nodel 11 k1 r1) (Nodel 12 k2 r2) =
if 11 ‘eq‘ 12 then r’ ‘par‘ newnode

else 1’ ‘par‘ newnode
where 1’ = fwifdb p 11 12
r’ = fwifdb p rl1 r2

newnode = Nodel 1’ (if k1 = k2 then k1 else if p then ki1 else k2) r’
—————————————————— ... Code for Node2 and Tip cases ... e

fwifeval _ _ = if p then x else y



