
PROCESSING TRANSACTIONS ON GRIP,A PARALLEL GRAPH REDUCERG. AKERHOLT, K. HAMMOND, S. PEYTON JONES AND P. TRINDERTo appear in Proc. PARLE '93, Munich, June 1993.Abstract. The GRIP architecture allows e�cient execution of functional pro-grams on a multi-processor built from standard hardware components. State-of-the-art compilation techniques are combined with sophisticated runtime resource-control to give good parallel performance. This paper reports the results of run-ning GRIP on an application which is apparently unsuited to the basic functionalmodel: a database transaction manager incorporating updates as well as lookuptransactions. The results obtained show good relative speedups for GRIP, withreal performance advantages over the same application executing on sequentialmachines. 1. IntroductionGRIP is a parallel processor designed for fast, e�cient execution of pure functional pro-grams. Good sequential compiler technology is combined with parallel runtime supportto give good real-time performance. Pure functional languages form an attractive basisfor parallel implementation, if a safe evaluation strategy such as parallel graph reductionis used:� The principle of referential transparency ensures that all cached copies of a givenobject will have the same value when evaluated, whether or not they are shared,and no matter how many times they are evaluated. Thus, there can be no cache-coherency problems in a parallel functional implementation.� The semantics of a functional program remains the same whether it is executedsequentially or in parallel. Thus, a parallel functional program may be debuggedon a sequential machine without a�ecting its result. There can be no unexpectednon-determinism in a parallel functional program.� There is no possibility of deadlock. Parallel functional programs have exactly thesame termination properties as their sequential counterparts.� Because there is no explicitly sequential evaluation order, it is easy to automaticallypartition a functional program for parallel execution.� Automatic resource-control is much more straightforward, since there are no hiddendependencies between tasks.A number of pragmatic issues remain, however, for example whether good partitions intotasks can be made without human intervention, or whether dynamic control decisionsThis work is supported by the ESPRIT FIDE Project (BRA 3070), the SERC Bulk Data TypeConstructors Project, the SERC GRASP Project and the Royal Society of Edinburgh. Authors'address: Computing Science Dept, Glasgow University, Glasgow, Scotland. Email: fakerholg,kh, simonpj,trinderg@dcs.glasgow.ac.uk 1

2 G. AKERHOLT, K. HAMMOND, S. PEYTON JONES AND P. TRINDERcan be made su�ciently fast to allow scheduling of �ne-grained parallelism on a machinesuch as GRIP. We have addressed some of these issues in earlier papers [HP92]. In thispaper, we consider another important pragmatic issue: whether functional programs canbe made to process large amounts of data in a manner which is competitive with im-perative programs. We have chosen as our case-study a partial implementation of thewell-known DebitCredit benchmark: a transaction-processing benchmark for databases,which involves updating the database. Given that sequential compilers for functional lan-guages do not yet give performance which matches that of imperative languages, we donot expect our implementation to outperform a hand-coded imperative program for thesame machine. We do, however, hope to obtain respectable performance compared withimperative implementations, and to obtain decent speedups from our parallel architec-ture. Choosing a widely-accepted benchmark allows tentative comparisons to be drawnwith other architectures and models of computation.While the results we obtain here apply principally to our novel GRIP architecture, thereis some hope that the lessons learned here may also be of use to other parallel functionalimplementations, such as those for networks of transputers, or hypercubes. Although theGRIP model lessens the problems of locality through the use of a 2-level bus structure andfast heterogeneous communications hardware, the distinction between local and non-localmemory accesses is still a crucial one.The remainder of this paper is structured as follows. Section 2 describes the GRIP machinearchitecture. Section 3 describes the characteristics recorded during program executionon GRIP. Section 4 describes the DebitCredit-based application studied here. Section 5gives the results gathered during the execution of the application. Section 6 concludes.2. Machine Architecture2.1. Overview. The GRIP architecture comprises a single bus-connected cluster of oneto 20 printed circuit boards. A fully-populated board contains four processing elements(PEs) and one Intelligent Memory Unit (IMU), linked by a local bus. A fully-populatedGRIP thus contains 80 PEs and 20 IMUs. The boards are connected using a fast packet-switched bus [Pey86], and the whole machine is attached to a Unix host using slower datalinks.Each PE incorporates an MC68020 CPU, an MC68881
oating-point co-processor, and1Mbyte of private memory which is not accessible by any other hardware component.The IMUs collectively constitute the global address space. They each contain 1M wordsof 40 bit-wide static memory, together with a microprogrammable data engine. Themicrocode interprets incoming requests from the bus, services them and dispatches a replyto the bus. In this way, the IMUs can support a variety of memory operations, rather thanthe simple READ and WRITE operations supported by conventional memories. The IMUsare the most innovative feature of the GRIP architecture, o�ering a fast implementationof low-level memory operations with great
exibility.An internal bus was chosen speci�cally to make the locality issue less pressing. Com-munication is handled by sophisticated Bus Interface Processors (BIPs): one per board.Identical protocols are used for communication between remote components or those on thesame board. Throughput and latency are essentially the same for both local and remotecommunication from functional programs [Mad91]. However, inter-component communi-cation is still an order-of-magnitude slower than access to a PE's private memory. It isthus crucially important to minimise the number and frequency of remote accesses.

PROCESSING TRANSACTIONS ON GRIP, A PARALLEL GRAPH REDUCER 32.2. Graph reduction on GRIP. We start from the belief that parallel graph reductionwill only be competitive if it can take advantage of all the compiler technology that hasbeen developed for sequential graph-reduction implementations [Pey87]. Our intentionis that, provided a thread does not refer to remote graph nodes, it should be executedexactly as a compiled program would be on a sequential machine.Our graph reduction model is based on the Spineless Tagless G-machine [PS89]. Theexpression to be evaluated is represented by a graph of closures, held in dynamic heapmemory. Each closure consists of a pointer to its code, together with zero or more free-variable �elds. Closures in (weak head) normal form require no further evaluation, hencetheir code is usually just a return instruction1. Other closures represent unevaluatedexpressions, whose code will reduce the closure to its normal form. A closure is evaluated(or entered) by jumping to its code. A register records the current closure for updatepurposes, or for access to the free variables. When evaluation is complete, the closure isupdated with (an indirection to) a closure representing its normal form.A thread is a sequential computation whose purpose is to reduce a particular sub-graphto (weak head) normal form. In a parallel graph reducer, there will typically be manythreads which could be executed. Idle PEs fetch new threads from this (distributed) poolof threads. A single PE may execute one thread at a time, or may multi-task between anumber of threads.Initially there is only one thread, representing the result of the program. When a threadencounters a closure whose value will be required in the future, it has the option of record-ing the closure for (possible) execution by other PEs. This is known as sparking theclosure.If the parent thread requires the value of the sparked closure while a child thread iscomputing it, the parent becomes blocked. When the child thread completes the evaluationof the closure, the closure is updated with its normal form, and the parent thread isresumed. If no PE has begun execution of the sparked closure when its value is required,the parent thread will evaluate the closure itself. Consequently a thread can only becomeblocked if it requires a result which some other thread is evaluating [PS89, HP90]. Thisis the evaluate-and-die model of evaluation for parallel functional languages. It is relatedto some other models such as lazy task creation [MKH91].This blocking/resumption mechanism is the only form of inter-thread communication andsynchronisation. Once an expression has been evaluated to normal form, then arbitrarilymany threads can inspect it simultaneously without contention. The synchronisationprovides the inter-transaction \locking" required by the functional database, as describedin [Tri89]. A transaction demanding the result of a previous transaction is blocked untilthe previous transaction has constructed the value it requires.2.3. IMU Operations. The following range of operations is supported by our currentIMU microcode:� Variable-sized heap nodes may be allocated and initialised.� Garbage collection of global nodes is performed autonomously by the IMUs. Ter-mination is ensured using an algorithm proposed by Baker [Bak78].� Each IMU maintains a pool of executable threads, which may be exported to idlePEs.� The blocking/resumption model is supported for access to global nodes.1Closures in weak head normal form are functions, or constructors. In contrast to true normalforms, their arguments may be unevaluated.

4 G. AKERHOLT, K. HAMMOND, S. PEYTON JONES AND P. TRINDER

Board: n

IMU: n

Disk:n.4Disk:n.3

Disk:n.2Disk:n.1

IMU: 1

Board: 1

Disk:1.1 Disk:1.2

Disk:1.3 Disk:1.4

PE:1.1 PE:1.2

PE:1.3 PE:1.4

PE:n.1 PE:n.2

PE:n.3 PE:n.4

BIP:1 BIP:nFigure 1. GRIP extended with disks and disk controllers2.4. Additional Con�guration. Database applications require that the underlying ma-chine supports permanent storage, typically in the form of disks. The existing GRIPmachine has a simple stream-based disk interface, which is clearly inadequate for suchan application. Pragmatics aside, it would be easy to extend the GRIP architecture toinclude more sophisticated disk storage. For example, a disk controller and disk could beadded to each PE. Any PE could then access the data on any disk by sending a suitablerequest to the controlling PE. This architecture is depicted in Figure 1.To simulate this architecture on the existing machine, a special primitive operation, delay,is used to model disk accesses. delay n a introduces a timed delay of n milliseconds forthe current thread. To model the e�ect of contention for shared resources, such as disks,delays are queued on the PE addressed by a, and are cumulative with any outstandingdelays on that PE. We use a delay of 13ms for a disk read, and 14ms for a disk write,and assume a block size of 8K bytes, with a total capacity of 1G bytes per drive. Thesecorrespond to �gures quoted for many small SCSI drives, e.g. Seagate ST41200N 1.2Gb(16.5ms) or Maxtor 1.7Gb (13ms).3. Database Architecture3.1. DebitCredit. The database application that has been implemented on GRIP is theprocessing part of the DebitCredit benchmark[Tpc89]. This section describes the signi�-cant features of this application. DebitCredit measures transaction processing capacity ina simple bank database. The full benchmark measures transactions passed over a networkfrom a set of terminals and includes pricing information for the entire system. The ap-plication we describe only processes the transactions against the database: the so-calledback-end processing. Network response times and equipment costs are not consideredhere.The DebitCredit bank database comprises customer, teller, branch and history records. Asingle transaction is repeatedly executed against these records. The transaction adds anamount of money to an account (a negative amount is a withdrawal), the correspondingteller and branch records are similarly updated and a history record is generated. Variousrelationships exist between the records, for example the balance held at a branch should bethe sum of all of the accounts at the branch. The benchmark speci�es a set of atomicity,

PROCESSING TRANSACTIONS ON GRIP, A PARALLEL GRAPH REDUCER 5consistency, isolation and durability (ACID) tests. All except the durability test havebeen performed successfully for the program described here. Results are omitted for spacereasons.The essential metric measured in DebitCredit is the number of transactions processedin a second (tps). However, the database size does not remain constant as the tps rateincreases. For each transaction-per-second the database must use 100,000 account records,10 teller records and 1 branch record.DebitCredit �gures have been published for many machines. The �gures reported in thispaper are for only part of DebitCredit, involve simulated disk access and, as described inthe next section, deviate from the speci�cation in several respects. Hence they cannot bedirectly compared to a full implementation. However, for reference, the following �guresare quoted by e.g. [Rob89, TPG88]: IBM 4381-P22, 22 TPS; DEC VAX 8830, 27 TPS;Tandem, 208 TPS.3.2. Application Design.3.2.1. Persistent Functional Languages. The transaction processor is designed using theprinciples �rst outlined in [AFHLT87] and prototyped in [AHPT91, Tri89], which assumethe existence of a parallel persistent functional language. In most existing languages onlycertain types of data may be permanently stored. Much of the e�ort in writing programsthat manipulate permanent data is expended in unpacking the data into a form suitable forthe computation and then repacking it for storage afterwards. The idea behind persistentprogramming languages is to allow values of any type to be permanently stored. Thelength of time that an entity exists, or its persistence, is independent of its type.In a persistent environment a class, or collection of `similar' data items, can be representedas a data structure that persists for some time. Because of their large size, such structuresare termed bulk data structures. Operations that do not modify bulk data structures,e.g. lookups, can be implemented e�ciently in a functional language [HN91]. However,modi�cations to a data structure must be non-destructive in a pure functional language,i.e. a new version of the structure must be constructed and the original preserved. At�rst glance it seems to be prohibitively expensive to create a new version of a bulk datastructure every time it is modi�ed.3.2.2. Trees. New versions of trees can be constructed cheaply, however. If et is the typeof the data values at the leaves, and kt is the type of the keys, then a simplistic tree typecan be writtenbdt = Node bdt kt bdt j Tip et.A function to update such a tree produces a new tree re
ecting the update and a messagereporting the success or failure of the operation.update e0 (Tip e) = (Ok e; T ip e0); if key e = key e0= (Error; T ip e); otherwise

6 G. AKERHOLT, K. HAMMOND, S. PEYTON JONES AND P. TRINDERupdate e0 (Node lt k rt) = (m;Node lt0 k rt); if key e0 � k= (m;Node lt k rt0); otherwisewhere(m; lt0) = update e0 lt(m; rt0) = update e0 rtLet us assume that the tree contains n entities and is balanced. In this case its depth isproportional to logn, hence the update function needs only to construct log n new nodesto create a new version of such a tree. Any unchanged nodes can be shared between the oldand the new versions and thus a new path through the tree is all that need be constructed.The �gure overleaf shows a tree which has been updated to associate a value of 3 with x.A time complexity of logn is the same as an imperative tree update. The non-destructiveupdate has a larger constant factor, however, as the new nodes must be created andsome unchanged information copied into them. The functional update can be made moree�cient using reference counting [Tri89], but the GRIP software does not currently supportthis optimisation. However, when non-destructive update is used, a copy of the tree canbe kept cheaply because the nodes common to the old and new versions are shared, i.e.only the di�erences between the versions are required. The uses of cheap multiple versionsof the database are described in [AFHLT87, Tri89]. Destructive update is also likelyto introduce unwanted sequential dependencies (as its name suggests, single-threadingimposes sequential access in order to allow destructive update). This is highly undesirablefor our parallel application.The DebitCredit branch, teller and account classes are each represented as trees, whilethe history is simply a sequence. Because the branch and teller classes are small enoughthey are stored entirely in primary memory, as binary trees with data (a single 100 byterecord) only at the leaves. The account tree is too large to reside in primary memory,hence we use a 2-3 tree (i.e. a B-tree of order 3).Originalm������f QQQQQQs����e�� DD AAAA j�� DD ����p AAAAx����p 1 DDDDs 3 ����x 2 DDDDy 6 ���� �������� x 3����������� AAAAx�������������� QQQQQQ smNew
A disk-block access is simulated for each leaf access, as described in Section 2.4. Thiscorresponds to an ideal `warm start' in a conventional database, i.e. all of the index is inmemory and only the data is disk resident. Each DebitCredit account record is 100 bytesand hence 80 records are retrieved from an 8Kb disk-block.We choose a low-order B-tree to minimise the construction time required for the rootnode. This reduces a potential throughput bottleneck [Tri89]. Future work may includeexperimenting with the order of the B-tree.

PROCESSING TRANSACTIONS ON GRIP, A PARALLEL GRAPH REDUCER 73.2.3. Transaction Manager. A transaction is a function that takes the database as anargument and returns some output and a new version of the database as a result. Let uscall this type, bdt ! (output � bdt), txt. Transactions are built out of tree manipulatingoperations such as lookup and update. Two functions that prove useful to construct asimple example transaction are isok, which determines whether an operation succeeded,and dep which increments the balance of an account. The arguments to dep are a someof money to deposit n and an entity whose components are an account number ano, thecurrent balance of the account bal, the credit limit for the account crl, and the type ofthe account class.isok (Ok e) = Trueisok out = Falsedep (Ok (Entity ano bal crl class)) n = Entity ano (bal+ n) crl classA transaction to deposit a sum of money in a bank account can be written as follows.deposit a n d = update (dep m n) d; if (isok m)= (Error; d), otherwisewherem = lookup a dThe deposit function takes as its arguments an account number a, a sum of money n anda database d. If the lookup fails to locate the account an error message and the originaldatabase are returned. If the lookup succeeds, the result of the function is the result ofupdating the account. The update replaces the existing account entity with an identicalentity, except that the balance has been incremented by the speci�ed sum. Note thatdeposit is of the correct type for a transaction-function when it is partially applied to anaccount number and a sum of money, i.e. deposit a n has type bdt! (output� bdt). TheDebitCredit transaction, dctrans which is used for performance analysis is much morecomplicated than deposit. Its de�nition is given in Appendix A.Both deposit and dctrans have a common transaction form: some operations are performedon the database and if they succeed the transaction commits, i.e. returns the updateddatabase. If the operations fail, the transaction aborts and returns an unchanged database.Transactions that may either commit or abort are termed total.The database manager is a stream processing function. It consumes a lazy list, or stream,of transaction-functions and produces a stream of output. That is, the manager has typebdt! [txt]! [output]. A simple version can be written as follows.manager d (f : fs) = out :manager d0 fswhere(out; d0) = f dThe �rst transaction f in the input stream is applied to the database and a pair is returnedas the result. The output component of the pair is placed in the output stream. Theupdated database, d0, is given as the �rst argument to the recursive call to the manager.Because the manager retains the modi�ed database produced by each transaction it hasan evolving state. The manager can be made available to many users simultaneously usingtechniques developed for functional operating systems [Hen82].3.2.4. Concurrent Transactions. Concurrency can be introduced between transactions bymaking the manager eager. This allows the current transaction to be evaluated in parallelwith the remaining transactions. The original task evaluates the current transaction. Thenew task applies the manager to the remaining transactions. This proceeds recursively.

8 G. AKERHOLT, K. HAMMOND, S. PEYTON JONES AND P. TRINDERUnfortunately, total transactions can seriously restrict concurrency. This is because nei-ther the original nor the updated database can be returned until the commit/abort deci-sion has been taken. Consequently, no other transaction may access any other part of thedatabase until this decision has been made. Total transactions have the form,if predicate db then transform db else db.In most cases the bulk of the database will be the same whether or not the transactioncommits. This common, or unchanged, part of the database will be returned whateverthe result of the commit decision. If there were some way of returning the common partearly then concurrency would be greatly increased. Transactions that only depend onunchanged data can begin and possibly even complete without waiting for the precedingtotal transaction to commit or abort.The common parts of the database can be returned early using fwif, a variant of theconditional statement proposed by Friedman and Wise [FW78]. A more complete descrip-tion of fwif and its implementation in a simulated parallel graph reducer can be foundin [Tri89]. To de�ne the semantics of fwif let us view every data value as a constructorand a sequence of constructed values. Every member of an unstructured type, e.g. 1, is azero-arity constructor | the sequence of constructed values is empty. Using C to denotea constructor, the semantics can be given by the following reduction rules.fwif True x y) xfwif False x y) yfwif p (C x0 : : :xn) (C y0 : : :yn)) C (fwif p x0 y0) : : :(fwif p xn yn)To implement fwif, the predicate and the two conditional branches are evaluated con-currently. The values of the conditional branches are compared and common parts arereturned. When a part is found not to be common to both branches, the evaluation ofthose branches ceases. Once the predicate is evaluated, the chosen branch is returned andthe evaluation of the other is cancelled. This strategy amounts to speculative parallelism,the conditional branches being evaluated in the hope that parts of them will be identical.The problems of speculative parallelism are well known. For example speculative tasksmay consume resources and hence prevent more important tasks from completing. They,and any child tasks, may also be hard to kill if they are not required, or fail to termi-nate. Fortunately in the DebitCredit application the tasks being sparked by fwif evaluatefunctions like update which are relatively small, spark no additional tasks and are guaran-teed to terminate as they traverse a �nite data structure. Since most of the database isunchanged between transactions, the speculative work is likely to be used.4. Results4.1. Performance on Parallel and Sequential Machines. The �rst set of resultscompares the absolute execution times of a �xed program running on a varying number ofGRIP PEs with those for the same program executing on two common sequential machines.This program processes 400 transactions on a database con�gured for 50 DebitCredit TPS.Figure 2 plots the execution times for a 4-IMU GRIP (20Mb \slow" global heap) withbetween 2 and 15 PEs (this was the largest stable con�guration at the time these resultswere obtained). Each PE has 600K available heap (the remaining 400K static RAM isoccupied by program code, the operating system, and static data). Due to the size ofthe application, it could not be executed on a single GRIP PE. O�oading the in-memoryindex to global memory would bias the performance results, and give unrealistic super-linear speedups, which we wished to avoid.

PROCESSING TRANSACTIONS ON GRIP, A PARALLEL GRAPH REDUCER 9
0

10

20

30

40

50

60

0 2 4 6 8 10 12 14 16

T
i
m
e

(
s
)

No of PEs (GRIP)

GRIP
Sun 3/50
Sun 4/60

Figure 2. Execution Time Pro�le: 400 Transactions, 50 TPS DatabaseThe same �gure also shows the execution times for an identical program executing ona Sun 3/50 (Motorola MC68020) and a Sun 4/60 (Sun Sparc). The Sun 3/50 uses thesame processor at the same speed as GRIP; the Sun 4/60 is a commonly used modernmachine. An 8M heap was used for the sequential machines: this gave the best overalltime performance in both cases. The same compiler was used for all three machines. Diskaccesses were simulated for GRIP using interrupt-timed delays, as described above. Forthe sequential versions, sequential disk access was simulated using count-down loops ofan appropriate duration. The implementation of delays is the only di�erence between theprograms. Results are averaged across 10 runs in each case.A direct architectural comparison can be made between GRIP and the Sun 3/50. They usethe same microprocessor (16MHz Motorola MC68020) to execute an essentially identicalsource program compiled by the same compiler. The machines di�er in their memoryarchitectures, in their communications sub-systems, and in their virtual disk architectures,as described above. Absolute speedups over the Sun 3/50 are obtained with 3 or more PEs.Not all the overhead is due to communications and context-switching costs, however: asigni�cant fraction of this overhead is caused by the relatively small local memory availableto each GRIP PE (for example, decreasing the Sun 3/50 heap to 2Mb halves its overallperformance).The raw integer performance (given by SPECint89) of the Sparc-1 chip used in the Sun4/60 is roughly 3 to 4 times that of the Motorola 68020. For this application, however,disk performance is at least as important as that of the processor. Consequently, theoverall performance of the 4/60 is only twice that of the 3/50, in spite of using a RISCchip. Hence a GRIP with 6 or more PEs outperforms the Sun 4/60, and a 15-PE GRIPis more than twice as fast as a Sun 4/60. This is a primarily a consequence of our use ofconcurrency to exploit additional disks in the parallel machine.To summarise, for this program, a 15-PE GRIP delivers good real-time performance com-pared with some common sequential machines.4.2. Relative Speedup. The second set of results investigates the relative speedup asthe number of processors is increased from 2 to 15. Figure 3 plots the same data as Figure2, but in terms of the speedup relative to the two-PE case (the single PE data-point wasunobtainable, but extrapolating from our data suggests a single PE would be roughly half

10 G. AKERHOLT, K. HAMMOND, S. PEYTON JONES AND P. TRINDER
2

4

6

8

10

12

14

16

2 4 6 8 10 12 14 16

S
p
e
e
d
u
p

(
2
P
E
s

=

2
.
0
)

No. of PEs

50 FTPS
Hardware Bound

Sun 3/50
Sun 4/60

Figure 3. Speedup Graph: 400 transactions, 50 TPS Databasethe speed of a 2-PE system). That is, the program measured executes 400 transactionsagainst a database con�gured for 50 DebitCredit TPS. We observe that the speedup islinear until 10 PEs are in use and degrades thereafter.This degradation in speedup occurs as the software bound on parallelism is approached.The bound for a functional transaction processor has been shown to be the ratio betweenthe time required to construct the root and make it available to other processors andthe time required to process the transaction [Tri89]. Hence we would expect that, if thetransactions became shorter, the software bound would be reached sooner.The length of DebitCredit transactions is easily adjusted. Recall that the time to executea transaction is proportional to the log of the size of the database. Furthermore, thebenchmark speci�es that the size of the database increases in proportion to the number ofTPS. The largest database studied here is the 50 TPS database from the previous section,selected because a 15-PE GRIP achieves 48 FTPS (400 transactions in 8.36 seconds). Thesmallest database we consider is a 15 TPS database, chosen because a 2-PE GRIP achieves14 FTPS. A good intermediate point is a 35 TPS database, chosen because an 8-PE GRIPachieves 36 FTPS.Figure 4 plots the speedup curves for the 400 transaction program executed on 15 TPS,35 TPS and 50 TPS databases respectively. As predicted, a program with shorter trans-actions (and hence a smaller database) reaches the software bound earlier. We note thatconsiderable improvement is still obtained after the speedup becomes non-linear. In fact,none of the programs have actually reached a limit on speedup. This suggests that theDebitCredit execution time could be further reduced by increasing the number of proces-sors beyond 15. 5. ConclusionWe have run a large data-intensive application on the parallel graph-reducer GRIP. Ourapplication is written in the pure non-strict functional language, Haskell. It exploits thedata-dependencies implicit in a functional program to provide inter-transaction concur-rency and locking. This represents the �rst attempt that we are aware of to consider theproblems of concurrency in a functional transaction processor, in the presence of updateas well as lookup transactions. Our model allows the exploitation of concurrent hardware

PROCESSING TRANSACTIONS ON GRIP, A PARALLEL GRAPH REDUCER 11
2

4

6

8

10

12

14

16

2 4 6 8 10 12 14 16

S
p
e
e
d
u
p

(
2
P
E
s

=

2
.
0
)

No. of PEs

50 FTPS
35 FTPS
15 FTPS

Hardware Bound
Sun 3/50
Sun 4/60

Figure 4. Parallel Speedup Graphs for Varying TPSthrough the use of fwif: a primitive which allows early return of common parts of a datastructure in the context of conditional expressions.Our results show a clear improvement from the use of a parallel machine compared withthe same application running on two popular sequential machines. We also obtain near-linear relative speedups between 2 and 10 PE on a 50-TPS database. Our GRIP resultscould be tentatively compared with those for the the full DebitCredit benchmark on alarge sequential machine.There are several aspects which would repay further investigation. These include:(1) One PE, with varying numbers of \virtual disks" to measure the potential concur-rency gain for a sequential version exploiting fwif.(2) Other architectures, for example a shared-memory machine such as the SequentSymmetry, using the Chalmers < �;G>-machine compiler [AJ89].(3) Eager pre-fetch of normal-form packets from the IMUs.(4) Local sparking [HP92] to reduce communication overhead.(5) An improved implementation of fwif with indirection-chaining via the IMUs.References[AFHLT87] Argo G, Fairbairn J, Hughes RJM, Launchbury EJ, and Trinder PW, \ImplementingFunctional Databases", Proc Workshop on Database Programming Languages, Rosco�,France (September 1987), pp. 87-103.[AHPT91] Akerholt G, Hammond K, Peyton Jones SL, and Trinder P, \A Parallel FunctionalDatabase On GRIP", Glasgow Workshop on Functional Programming, Portree, Scot-land (August 1991).[AJ89] Augustsson L and Johnsson T, \Parallel graph reduction with the < �;G>-machine",Proc IFIP Conference on Functional Programming Languages and Computer Architec-ture, London, (September 1989).[Bak78] Baker HG, \List processing in real time on a serial computer", Comm. ACM 21(4),(April 1978), pp. 280-294.[FW78] Friedman DP, and Wise DS, \A Note on Conditional Expressions", Comm. ACM21(11), (November 1978).[HP90] Hammond K, and Peyton Jones SL, \Some Early Experiments on the GRIP ParallelReducer", Proc 2nd Intl Workshop on Parallel Implementation of Functional Lan-guages, Plasmeijer MJ (Ed), University of Nijmegen, (1990).

12 G. AKERHOLT, K. HAMMOND, S. PEYTON JONES AND P. TRINDER[HP92] Hammond K, and Peyton Jones SL, \Pro�ling Scheduling Strategies on the GRIPParallel Reducer", Proc 4th Intl Workshop on Parallel Implementation of FunctionalLanguages, Kuchen H and Loogen R (Eds), RWTH, Aachen, (1992).[Hen82] Henderson P. \Purely Functional Operating Systems", in Functional Programming andits Application. Darlington J. Henderson P. Turner D.A. (Eds) Cambridge UniversityPress (1982).[HN91] Heytens, M.L. and Nikhil R.S. \List Comprehensions in AGNA, a Parallel PersistentObject System" Proc FPCA 91, Cambridge, Mass. (1991).[Mad91] Madden, P.J. \The Hardware Performance of the GRIP Multiprocessor" MSc Thesis,Glasgow University, (1991).[MKH91] Mohr E, Kranz DA and Halstead RH, \Lazy task creation - a technique for increasingthe granularity of parallel programs" IEEE Transactions on Parallel and DistributedSystems, 2(3), (July 1991).[PCSH87] Peyton Jones SL, Clack, C, Salkild, J and Hardie, M \GRIP { a high-performancearchitecture for parallel graph reduction", Proc FPCA 87, Portland, Oregon, ed KahnG, Springer-Verlag LNCS, (1987).[Pey86] Peyton Jones SL, \Using Futurebus in a Fifth Generation Computer", Microprocessorsand Microsystems 10(2), (March 1986), pp. 69-76.[Pey87] Peyton Jones SL, The Implementation of Functional Programming Languages, PrenticeHall, (1987).[PS89] Peyton Jones SL, and Salkild J, \The Spineless Tagless G-machine", Proc FPCA 89,London, MacQueen (Ed), Addison Wesley, (1989).[Rob89] Robertson IB, \Hope+ on Flagship", Proc 1989 GlasgowWorkshop on Functional Pro-gramming, Fraserburgh, Scotland, Springer Verlag, (August 1989).[Tpc89] Transaction Processing Performance Council (TPC), \TPC BENCHMARK A, Draft6-pr Proposed Standard\, Administered by ITOM INternational Co, POB 1450, LosAltos, CA 94023, USA, (August 1989).[TPG88] The Tandem Performance Group, "A Benchmark of NonStop SQL on the DebitCreditTransaction", Tandem Computers Inc., 19333 Vallco Pky., Cupertino, CA. 95014,(1988).[Tri89] Trinder PW, A Functional Database, Oxford University D.Phil. Thesis, (December1989). Appendix A DebitCredit Programmodule Types where ------------- Type Definitions -------------data Fill = Fill_Bra Int Int Int | Fill_Tel Int Intdata Entity = Branch Int Int Fill | Teller Int Int Int Filldata Tree = Tip Entity | Tip_Acc Int Int | Node1 Tree Int Tree |Node2 Tree Int Tree Int Treedata BOOL = FALSE | TRUE | UNKNOWNmodule Main where ------------- Main Module -------------infixr `seq`, `par`import FWIF (fwifdb) -- fwifdb :: Bool -> Tree -> Tree -> Treeimport Types(Fill,Entity,Tree)import Delay(delaya) -- delaya :: Int -> Int -> Intdata Histrt = His Int Int Int Int Intdata Dbt = Root Tree Tree Tree [Histrt]data Msgt = Ok Int| Error Int

PROCESSING TRANSACTIONS ON GRIP, A PARALLEL GRAPH REDUCER 13isok :: (Msgt, tree) -> Boolisok (Ok k, t) = Trueisok (Error k, t) = False---------------- ... Code to build the database trees ... ---------------replace :: Int -> Int -> Tree -> (Msgt, Tree)replace key d nd@(Tip_Acc aid nrec) =if not is_error && key >= aid && key <= aid+nrec thenwrite_disk 14 (read_disk 13 (Ok key, (Tip_Acc aid nrec)))else read_disk 13 (Error key, nd)where read_disk d cont = read_delay d `seq` contwhere read_delay n = delaya n keywrite_disk d cont = write_delay d `seq` contwhere write_delay n = delaya n keyis_error = (key `div` 10) `mod` 20 == 0replace key d (Node1 lt k rt) =if key > k then (msg_r, Node1 lt k new_rt)else (msg_l, Node1 new_lt k rt)where (msg_r, new_rt) = replace key d rt(msg_l, new_lt) = replace key d lt------------------ ... Code for Tip and Node2 cases ... -----------------{- The following function represents one DebitCredit transaction. -}dctrans :: Int -> Int -> Int -> Int-> Transactiondctrans aid bid tid delta db =ret_acc `par` (ret_bra `par` (ret_tel `par`(Ok (acct a_result), Root ret_acc ret_bra ret_tel ret_his)))where (Root acc bra tel his) = dba_result = replace aid delta accb_result = replace bid delta brat_result = replace tid delta telh_result = (Ok 0, His aid bid tid delta 0:his)p = isok a_result && isok b_result && isok t_resultret_acc = fwifdb p (snd a_result) accret_bra = fwifdb p (snd b_result) braret_tel = fwifdb p (snd t_result) telret_his = if p then snd h_result else hisacct (Ok aid,_) = aidacct (Error aid,_) = aid--------- ... Code to generate a list of random transactions ... --------

14 G. AKERHOLT, K. HAMMOND, S. PEYTON JONES AND P. TRINDERmanager :: a -> [a -> (b,a)] -> [b]manager d (f:fs) = ms `par` mlwhere fd = f d(m,d') = fdms = manager d' fsml = m `seq` (m:ms)manager d [] = []---------- ... Code to calculate a checksum of results etc ... ----------main _ = db `seq` txs `seq` show (checksum result)where db = builddb cur_tps cur_nrectxs = randtxs cur_ntxs cur_tpsresult = (manager db txs)Appendix B Outline of FWIF ImplementationThe following is a listing of the fwifdb function, or Friedmann and Wise if [FW78] for thedatabase type Dbt, in Haskell. The eq pseudo-function tests whether its arguments arepointer identical. The boolval pseudo-function returns TRUE if its argument is True,FALSE if its argument is False or UNKNOWN if its argument is unevaluated.module FWIF whereinfixr `seq`import Types (Tree,Bool)import Primitives (eq,boolval) -- eq :: a -> a -> Bool-- boolval :: Bool -> BOOLfwifdb :: Bool -> Tree -> Tree -> Treefwifdb p x y =case boolval p ofTRUE -> xFALSE -> yUNKNOWN | x `eq` y -> x| otherwise -> x `seq` y `seq`if x `eq` y then x else fwifeval x yfwifeval (Node1 l1 k1 r1) (Node1 l2 k2 r2) =if l1 `eq` l2 then r' `par` newnodeelse l' `par` newnodewhere l' = fwifdb p l1 l2r' = fwifdb p r1 r2newnode = Node1 l' (if k1 = k2 then k1 else if p then k1 else k2) r'------------------ ... Code for Node2 and Tip cases ... -----------------fwifeval _ _ = if p then x else y

