
Bulk types with class

Simon Peyton Jones

University of Glasgow

Email: simonpj@dcs.gla.ac.uk.

WWW: http:://www.dcs.gla.ac.uk/~simonpj

May 1, 1997

Abstract

Bulk types | such as lists, bags, sets, �nite maps, and priority queues | are ubiquitous

in programming. Yet many languages don't support them well, even though they have

received a great deal of attention, especially from the database community. Haskell is

currently among the culprits.

This paper has two aims: to identify some of the technical di�culties, and to attempt to

address them using Haskell's constructor classes.

This paper appears in the proceedings of the 1997 Haskell Workshop, Amsterdam, 7 June

1997. A slightly earlier version appears in the (electronic) proceedings of the 1996 Glasgow

Functional Programming Workshop:

http://www.dcs.gla.ac.uk/fp/workshops/fpw96/Proceedings96.html

1 Introduction

Functional programs use a lot of lists, but often a list is actually used to represent:

a stack, a queue, a deque, a bag, a set, a �nite map (by way of an association list

of (key,value) pairs), or a priority queue.

Using lists for all of these so-called bulk types is bad programming style for two reasons:

1. The type of the object does not specify its invariant (e.g. in a set there are no duplicates)

and its expected operations (e.g. lookup in a �nite map). The lack of these invariants

makes the program harder to understand, harder to prove properties about, and harder

to maintain.

2. Operations on lists may be less e�cient, or perhaps even in a di�erent complexity class,

than operations on a suitably optimised abstract data type. For example, list append

1

(++) takes time linear in the size of its �rst argument, whereas it is easy to implement an

ordered sequence ADT with constant-time concatenation

1

.

Everyone knows this, but everyone still uses lists! Why? Because lists are well supported

by the language: they admit pattern matching, there is built-in syntax (list comprehensions),

and there is a rich library of functions that operate over lists. Even experienced functional

programmers knowingly write an O(n

2

) algorithm where an O(n) algorithm would do, because

it is just so convenient to use lists and append them rather than to design and implement and

use an abstract data type.

Why, then, aren't there well-engineered libraries to support sets, bags, �nite maps, and so on?

Many decent attempts have been made, notably C++'s standard template library (STL) { see

Section 5 { but all have technical di�culties. This paper identi�es some of these di�culties and

attacks them using Haskell's type classes.

2 The problem with bulk types

The central di�culty with bulk types is their degree of polymorphism. First, there are many

di�erent sorts of collections | lists, sets, queues, and so on. Second, one such sort may have

many di�erent possible representations | lists, trees, hash tables, and so on. Lastly, each such

representation may have many di�erent element types | integers, booleans, characters, pairs,

and so on.

A language that supports polymorphism allows the programmer to write a single algorithm

that can be used in many \essentially similar" situations. For example, suppose we want to

construct the list (or set, or bag) of leaves of a tree, where the tree is de�ned by the following

data type:

data Tree a = Leaf a | Branch (Tree a) (Tree a)

Here is a possible algorithm that works for a tree with Int leaves, constructing a set of Ints:

leavesSetInt :: Tree Int -> SetInt

leavesSetInt (Leaf a) = singletonSetInt a

leavesSetInt (Branch t1 t2) = leaves t1 `unionSetInt` leaves t2

This code assumes the existence of the following set construction functions:

singletonSetInt :: Int -> SetInt

unionSetInt :: SetInt -> SetInt -> SetInt

There are two ways in which this program can be made more polymorphic:

Element polymorphism Firstly, it is obvious that code of precisely the same form would be

required for a tree of booleans. We would like to be able to generalise leaves like this:

1

At least, it is easy if one is prepared to give up O(1) head and tail functions. It is possible, albeit somewhat

more complex, to support append, head and tail all in constant (amortized) time (Okasaki [1995]).

2

leavesSet :: Tree a -> Set a

leavesSet (Leaf a) = singletonSet a

leavesSet (Branch t1 t2) = leaves t1 `unionSet` leaves t2

To make this work we would need to have these set operations:

singletonSet :: a -> Set a

unionSet :: Set a -> Set a -> Set a

Bulk-type polymorphism Suppose that we have a second data type, OrdSet, that uses a

di�erent representation from that of Set | perhaps Set represents the set as a list with

no duplicates, while OrdSet uses a balanced tree, for example. The function to gather the

leaves of a tree into an OrdSet will be of just the same form as that for Set. The same

is true if we want to collect the leaves into a bag, or a priority queue, or a list. Ideally,

then, we would like to make leaves more polymorphic still, something like this:

leaves :: Tree a -> c a -- where c is a bulk type

leaves (Leaf a) = singleton a

leaves (Branch t1 t2) = leaves t1 `union` leaves t2

where the bulk-type constructors are now something like:

singleton :: a -> c a -- where c is a bulk type

union :: c a -> c a -> c a -- where c is a bulk type

The trouble is that neither of these two generalisations is straightforward. We discuss each in

turn.

2.1 Element polymorphism

Consider the goal of making leaves polymorphic in the elements of the Set. The tidiest kind

of polymorphism, parametric polymorphism, works when the very same source code will work

regardless of the argument type. It is supported by many modern programming languages,

including C++, ML, and Haskell

2

. If we were collecting the leaves of a tree into a list, then we

could use parametric polymorphism very easily:

leavesList :: Tree a -> [a]

leavesList (Leaf x) = singletonList x

leavesList (Branch t1 t2) = leavesList t1 `unionList` leavesList t2

Here, unionList has type [a] -> [a] -> [a]; it is just list append, commonly written ++.

The trouble arises with sets, because we cannot make a union operation that works on sets

whose elements of arbitrary type. To remove duplicates we must at least have equality on the

set elements! Furthermore, equality may not be enough:

2

In the case of ML and Haskell, this polymorphism extends to the executable code too; that is, the same

executable code works regardless of the argument type. In the case of C++, using templates one can have a

single source-code function, but the compiler must instantiate it separately for each type at which it is used.

3

� If the element type admits only equality, then determining whether an element is a member

of the set must take linear time.

� If the element type supports a total order then a tree (balanced or otherwise) may be

more appropriate, and set membership can be determined in logarithmic time.

� If the element type admits a hash function, then the set might be represented by a hash

table, or | in a purely-functional language where persistent data structures

3

are the rule

| by a tree indexed on the hash key.

� If the element type has a one-to-one function mapping elements to integers, then radix-

based tree representations become possible.

One way out of this dilemma, taken by Java for example, is to decide that every data type

supports equality, together with ordering and/or a hash function. This is simple but crude |

what about equality of functions, for example? A cleaner solution, adopted by ML for equality,

and generalised in Haskell by type classes, is to use a type system that allows type variables to

be quali�ed by the operations they support. Thus, in Haskell we can give the following type

for union on a set data type that required only equality:

unionSet :: (Eq a) => Set a -> Set a -> Set a

This type speci�es that the element type, a, must lie in the class Eq

4

. The class Eq is de�ned

like this:

class Eq a where

(==) :: a -> a -> Bool

(/=) :: a -> a -> Bool

The declaration says that types that are instances of Eq must provide operations (==) and (/=)

with the given types. For each data type that we want to be in Eq we must give an instance

declaration that de�nes (==) and (/=) at that type. For example:

instance Eq Int where

x == y = x `eqInt` y

x /= y = not (x `eqInt` y)

instance (Eq a, Eq b) => Eq (a,b) where

(a1,b1) == (a2,b2) = (a1==a2) && (b1==b2)

Given this type for unionSet, the type of leavesSet is now inferred to be:

leavesSet :: (Eq a) => Tree a -> EqSet a

3

A data structure is \persistent" if, following an update, the old version of the data structure is still available

(Okasaki [1996]).

4

Strictly speaking, the semantics of union does not require the elimination of duplicates | that could be

postponed until the set is observed by a membership test or by enumerating its elements. However, nothing

fundamental is changed by such an implementation decision so in this paper we will stick with the naive view

that union requires equality.

4

If our Set type required ordering as well as equality, we would simply replace (Eq a) by (Ord a)

in the above types.

2.1.1 Other approaches

ML has equality types built in, but not ordered types, so the Haskell solution is not available in

ML. (Restricting to equality only would be unreasonable, because sets based only on equality

are hopelessly ine�cient.) The solution adopted by some ML libraries is to make Set into a

functor:

functor Set(ORD:ORD_SIG) : SET

That is, Set is a functor taking an ordering as its argument, and producing a set structure

(i.e. module) as its result. One can thereby construct e�cient set-manipulation functions for

particular element types:

IntSet = Set IntOrd

CharSet = Set CharOrd

but now the leaves function has to mention either IntSet.union or CharSet.union| leaves

cannot be polymorphic in the element type. To solve this, leaves must be de�ned in a functor

that takes the Set structure as argument, and so on.

2.2 Bulk-type polymorphism

Next, we consider how to generalise leaves to work over arbitrary bulk types. To begin with

we will consider only types | such as lists, queues, and stacks | that are truly parametric in

their element types.

2.2.1 Using type classes

We start o� with one union operation for each collection type, each of which has quite di�erent

code to the others:

unionList :: [a] -> [a] -> [a]

unionQueue :: Queue a -> Queue a -> Queue a

...etc...

In order to generalise leaves, we earlier informally suggested the type:

leaves :: Tree a -> c a -- where c is a bulk type

We are suggesting here that leaves is polymorphic in c, the bulk type constructor. The

polymorphism is not parametric, however, because each union operation uses di�erent code;

leaves should call a di�erent union operation for each type. This is exactly what type classes

are for! Perhaps we could write:

5

leaves :: (Bulk c) => Tree a -> c a

where Bulk is the class of bulk types, de�ned thus:

class Bulk c where

empty :: c a

singleton :: a -> c a

union :: c a -> c a -> c a

Now we can give an instance declaration for each Bulk type:

instance Bulk [] where -- [] is the List type constructor

empty = []

singleton x = [x]

union = (++)

instance Bulk Queue where

empty = emptyQueue

singleton = singletonQueue

union = unionQueue

All of this is legal Haskell, but notice that c is a variable that ranges over type constructors

rather than types. This sort of higher-kind quanti�cation is a fairly straightforward but powerful

extension of the Hindley-Milner type system (Jones [1995]). It can be used in ordinary data

type declarations but, as we shall see, it is particularly useful in Haskell's system of classes,

which are thereby generalised from type classes to constructor classes.

Alas, things go wrong when we try to deal with non-parametric element types. We cannot give

an instance declaration:

instance Bulk Set where

empty = emptySet

singleton = singletonSet

union = unionSet

because unionSet has the wrong type! It requires that the element type be in Eq, whereas the

overloaded union operator does not.

2.2.2 Other approaches

A possible alternative approach is to use ad hoc polymorphism. The symbol union would stand

for a whole family of union operations, each with a di�erent type. The choice of which to use

would be made statically by the compiler, based on local type information. ML uses this sort

of overloading for numeric operators, and so does C++, Ada, and other languages. The small

disadvantage of ad hoc overloading is that one may need to write type signatures to specify

which type to use; \small" because writing type signatures is a Good Idea anyway.

The big disadvantage is that one cannot write generic operations over collections. For example,

we could write leaves thus:

6

leaves (Leaf a) = singleton a

leaves (Branch t1 t2) = leaves t1 `union` leaves t2

but the compiler would have to resolve the union to unionList, or unionQueue or unionSet,

or whatever. This resolution might be done implicitly, or by requiring the programmer to add

a type signature; but however it is done leaves will only work on collections of one type. An

exact copy of the code, with a di�erent type signature, would deal with one more type, and so

on. Every time you add a new collection type you would need to add a new copy of leaves.

(Or perhaps the compiler could automatically make them all for you, in which case the issue is

one of code size.)

2.3 Adaptive representations

There is a third issue which adds yet more spice to the challenge of implementing bulk types:

that of choosing an appropriate representation. The appropriate representation of a collection

depends on:

1. The size of the collection.

2. The relative frequency of the operations supported by the bulk type.

3. The operations that are available on the underlying element type.

Of course, we can simply dump the problem in the programmer's lap, by providing a large

variety of di�erent set data types, and leaving the choice to the programmer. (This is pre-

cisely what STL does.) A more attractive alternative is to make the bulk type choose its own

representation.

Items (1) and (2) have been fairly well studied. Clever algorithms have been developed that

adapt the representation of a data type based on its size and usage (Brodal & Okasaki [1996];

Chuang & Hwang [1996]; Okasaki [1996]). It is less obvious how to tackle item (3). How can

we build an implementation of Set that chose its representation based on what operations are

available on the elements? We return to this question in Section 3.3.

2.4 Summary

In this section we have reviewed various approaches to manipulating bulk types in polymorphic

fashion. The bottom line is that \nothing quite works". Bulk types seem quite innocent, but

the combination of polymorphism in both element and bulk types, and the non-parametric

nature of both, conspire to defeat even the most sophisticated type systems.

3 First design: the XOps route

In this section we turn to our �rst solution, based on the most promising of the approaches

reviewed, namely constructor classes. The solution we present has the merit of being imple-

7

mentable in standard Haskell (1.3), but it has some shortcomings that we will address in our

second solution (Section 4).

Like C++'s STL, we identify two main groups of bulk types:

1. Sequences, where the order of insertion is signi�cant (e.g. one can extract the most

recently inserted element), but where no operations need be performed on the elements

themselves.

2. Collections, where the order of insertion is unimportant, but where the elements must

admit at least equality and preferably some other operations

5

.

3.1 Sequences

A sequence contains a linear sequence of zero or more elements. The order of insertion and

removal of elements is signi�cant, and elements can be added or removed at either end. Exam-

ples of sequences are: lists, catenable lists

6

, stacks, queues, deques. They all support the same

set of operations, but they di�er in the complexity bounds for these operations.

Figures 1 and 2 de�nes a module Sequence whose main declaration is a type class, also called

Sequence, that de�nes the set of operations on sequences. The names of the operations are

chosen to be compatible with Haskell's current nomenclature for lists. front and back return

both the �rst (respectively, last) element of the sequence, together with the remaining sequence;

they return Null if the sequence is empty. The SeqView type is used as the return type for both

of these functions: you can think of front and back as providing a head-and-tail-like \view"

of each end of the sequence.

The fold functions, along with length, filter, partition, reverse, are straightforward

generalisations of their list counterparts. They can all readily be de�ned in terms of either front

or back. Indeed, each of them has a default method in the class declaration, indicating that

an instance of Sequence may (but is not compelled to) provide a method for these operations.

The reason for this decision is that for at least some instances of Sequence (snoc-lists, say) the

default de�nition of some functions (foldr, in this case) is likely to be outrageously ine�cient.

Making these functions into class methods gives the implementor the option (though not the

obligation) of providing more e�cient de�nitions.

The standard classes MonadPlus and Functor are superclasses of Sequence; that is, any type

in Sequence must also be in MonadPlus and Functor. Both of the latter are de�ned by the

Haskell 1.3 prelude. Figure 3 gives their de�nitions, except that we have added cons and snoc

to the class MonadPlus. They can both be implemented in terms of ++, as their default methods

show, but for many types they can be more e�ciently implemented directly.

All the operations of the standard classes Monad, MonadZero, MonadPlus, and Functor make

sense for sequences: ++ appends two sequences; map applies a function to each element of a

5

STL refers to these as \associative containers".

6

Catenable lists support constant-time append.

8

module Sequence where

data SeqView s a = Null | Cons a (s a)

empty :: Sequence s => s a

empty = zero

singleton :: Sequence s => a -> s a

singleton x = return x

fromList :: Sequence s => [a] -> s a

fromList xs = foldr ((++) . return) zero xs

toList :: Sequence s => s a -> [a]

toList s = foldr (:) [] s

class (Functor s, MonadPlus s) => Sequence s where

null :: s a -> Bool

front :: s a -> SeqView s a

back :: s a -> SeqView s a

(!!) :: s a -> Int -> a

update :: s a -> Int -> a -> s a

foldr :: (a -> b -> b) -> b -> s a -> b

foldr1 :: (a -> a -> a) -> s a -> a

foldl :: (b -> a -> b) -> b -> s a -> b

foldl1 :: (a -> a -> a) -> s a -> a

length :: s a -> Int

elem :: (Eq a) => a -> s a -> Bool

filter :: (a -> Bool) -> s a -> s a

partition :: (a -> Bool) -> s a -> (s a, s a)

reverse :: s a -> s a

Figure 1: The sequence class

9

-- Default methods

foldr k z xs = case front xs of

Null -> z

Cons x xs -> x `k` foldr k z xs

foldr1 k xs = case back xs of

Cons x xs -> foldr k x xs

foldl k z xs = case front xs of

Null -> z

Cons x xs -> foldl k (z `k` x) xs

foldl1 k xs = case front xs of

Cons x xs -> foldl k x xs

length xs = foldr (_ n -> n+1) 0 xs

filter p xs = foldr f zero xs

where f x ys | p x = x `cons` ys

| otherwise = ys

partition p xs = (filter p xs, filter (not.p) xs)

reverse xs = foldl (flip.cons) zero xs

elem x xs = foldr ((||) . (==) x) False xs

Figure 2: The sequence class, continued

class Monad m where

(>>=) :: m a -> (a -> m b) -> m b

return :: a -> m a

class (Monad m) => MonadZero m where

zero :: m a

class (MonadZero m) => MonadPlus m where

(++) :: m a -> m a -> m a

cons :: a -> s a -> s a

snoc :: s a -> a -> s a

cons x xs = (return x) ++ xs -- Not yet in 1.3

snoc xs x = xs ++ (return x) -- Not yet in 1.3

class Functor m where

map :: (a->b) -> m a -> m b

Figure 3: Monad and functor classes

10

sequence; zero is the empty sequence; return forms a singleton sequence; and >>= takes a

function that maps each element of a sequence to a new sequence, and concatenates the results.

Because sequences lie in the class Monad we can use the do notation to describe sequence-valued

expressions. For example:

do { x<-xs; y<-ys; return (x,y) }

will deliver the sequence composed of all (x,y) pairs, where x is drawn from the sequence xs and

y is drawn from ys. The same applies to Haskell's comprehension notation, which also de�nes

an expression over any monad. For example, this comprehension de�nes the same sequence as

that above.

[(x,y) | x<-xs, y<-ys]

A great deal of work has been done on the connection between bulk types and comprehension

syntax, especially in the context of database queries and their optimisation (Buneman et al.

[1994]; Trinder [1991]; Trinder & Wadler [1989]; Wadler [1992]).

Lastly, the Sequencemodule contains a couple of ordinary declarations that give more collection-

oriented names to the monadic functions zero and return, namely empty and singleton

respectively.

3.2 Collections

We observed earlier that the problem with collections is that the union operation may impose

di�erent constraints on the element type, depending on which collection we are dealing with.

Our solution is very simple, namely to give them all the same type. First we de�ne a new class

XOps, the class of element operations, thus:

class XOps a where

xEq :: a -> a -> Bool

xCmp :: Maybe (a -> a -> Ordering) -- Three-way comparison

xHash :: Maybe (a -> Int) -- Hash function; could be many-one

xToInt :: Maybe (a -> Int) -- Injection; guaranteed one-one

(Ordering is a standard Haskell data type with three constructors, LT, EQ and GT.) The point

about XOps is that it tells not only how to (say) compare two elements, but also whether such

a comparison is available. The equality operation, however, is mandatory, so it is not wrapped

in a Maybe type

7

. For example, for a particular type T, we might have an instance declaration:

instance XOps T where

xEq = (==)

xCmp = Just cmpT

xHash = Nothing

7

We could make Eq a superclass of XOps instead of having xEq, but it is sometimes convenient to de�ne a

non-standard equality for collection operations | see Section 3.6 | and it is confusing to have non-standard

instances of Eq.

11

xToInt = Nothing

to say that T had a comparison operation, cmpT, but no xHash or xToInt operation.

Next, we de�ne the class Collection, of collections, like this:

class Collection c where

empty :: c a

insert :: XOps a => a -> c a -> c a

...and much more...

We will add many further operations shortly. We use empty for both collections and sequences,

relying on the use of quali�ed names (such as C.empty) to distinguish them when necessary.

With these de�nitions, it is now possible to give a fully-respectable type to leaves:

leaves :: (Collection c, XOps a) => Tree a -> c a

Notice that, unlike the Sequence class, we cannot make MonadPlus and Functor into super-

classes of Collection. Why not? Because for collections we cannot give su�ciently polymor-

phic de�nitions for ++ and >>=. To perform these operations we will need the constraint XOps t

on the element type t | but that would not �t the signature of the classes MonadPlus and

Functor.

3.3 Instances of Collection

Next, suppose we have a datatype, OrdSet that implements sets using trees, making use of an

ordering operation on the set's elements. We can make OrdSet, the type of ordered sets (whose

implementation depends on an element ordering), an instance of Collection thus:

instance Collection OrdSet where

empty = Empty

insert x t = case xCmp of

Just cmp -> insertTree cmp x t

Nothing -> error "OrdSet.insert"

(Here we are assuming the existence of a suitable data type of Trees, with operations insertTree

to insert an element.) An obvious sadness is that if we try to build an OrdSet of things that

only admit equality then we will only get a runtime error, not a compile-time type error. Whilst

this is undoubtedly sad, we will see shortly how to design set datatypes that cannot fail in this

way. Furthermore, it is worth remembering that most programs contain quite a few functions

with incomplete patterns. To take a simple example:

head :: [a] -> a

head (x:xs) = x

head [] = error "head"

Of course, head is only called when (we think that) we know the argument is a non-empty

list. It would be nice if the type system proved this, and one could imagine more sophisticated

12

type systems that could (Freeman & Pfenning [1991]), but Haskell and ML are certainly not

rendered unusable by the possibility of such runtime errors. The error in insert is arguably in

this class.

However, it would really be best to avoid even the possibility of run-time failure, and we can do

this by building a Set data type that chooses its representation based on the available operations

on elements. Here is a sketch of one possible implementation:

data Set a = Empty

| List [a] -- No duplicates

| Tree (Tree a)

instance Collection Set where

empty = Empty

insert x Empty

= case xCmp of

Just cmp -> Tree (Branch x Empty Empty)

Nothing -> List [x]

insert x (List xs) = List (insertList xEq x xs)

insert x (Tree t)

= case xCmp of

Just cmp -> Tree (insertTree cmp x t)

The point of the game is that insert dynamically selects which representation to use in the

Empty case depending on whether or not there is a comparison operation. Notice, crucially, that

the extraction of cmp in the �nal equation for insert cannot fail, because one of the arguments

is already a Tree, and it could only have become so by virtue of the Empty equation deciding

that there was a comparison operation.

Not only have we eliminated runtime errors, but we have also delegated to the abstract data

type the choice of representation. This is a rather attractive property. When computing with

sets, most programmers do not want to have to look up the operations that are available

for the element type, and choose which set implementation to use depending on the answer.

Being able to use a single type, Set, and having the implementation choose the representation

automatically is a big advantage. Of course, we are still free to �x a particular representation

by using a simpler, more speci�c set implementation (such as OrdSet).

3.4 E�ciency

The generic Set implementation sketched above is just a start. A real implementation would

be rather cleverer.

13

� Very small sets should probably be represented by lists even if ordering is available. This

is easily programmed.

� A good compiler should be able to create specialised instances of insert at widely-used

types. For example, if it sees that insert is often used at the type

insert :: String -> Set String -> Set String

then it can create a specialised version of insert, in which c is �xed to Set and a is �xed

to String, and hence the comparison operations ought to be turned into inline code.

There are two other e�ciency concerns about Set that turn out to be relatively unimportant:

� The implementation of insert has to choose which equation to use based on which

constructor it �nds in its second argument. However, in most implementations the major

cost is doing pattern-matching (and hence forcing evaluation) at all; it is very little more

expensive to choose between equations based on the constructor found.

� One might worry that every call to insert has to pattern-match on xCmp to extract the

comparison operation, which carries an e�ciency cost. This can be done once and for all

when a tree is �rst built:

data Tree a = Tree (a->a->Ordering) -- Comparison

Int -- Size

(TreeR a)

data TreeR a = Empty | Branch a (TreeR a) (TreeR a)

On the whole, though, this is probably a bad thing to do. If the implementation fetches

the ordering function from the tree, it is less likely that the compiler will be able to prove

that for some given type, Int say, the ordering function is bound to be cmpInt. So it may

be less easy for the compiler to generate improved code when the types are known.

3.5 Taking collections apart

The operations on collections we have suggested so far (empty, insert, union) only deal with

constructing collections. What about taking collections apart? The obvious thing to do is

to augment class Collection with a homomorphism over the constructors of the collection.

Since our \constructors" (so far) are empty and insert the obvious homomorphism to add to

Collection is:

class Collection c where

...

fold :: (a->b->b) -> b -> c a -> b

14

module Collection where

class Collection c where

empty :: c a

null :: c a -> Bool

size :: c a -> Int

singleton :: (XOps a) => a -> c a

fromList :: (XOps a) => [a] -> c a

toList :: c a -> [a]

fold :: (a->b->b) -> b -> c a -> b

fold1 :: (a->b->b) -> c a -> b

filter :: (XOps a) => (a -> Bool) -> c a -> c a

partition :: (XOps a) => (a -> Bool) -> c a -> (c a,c a)

elem :: (XOps a) => a -> c a -> Bool

flatMap :: (XOps b) => c a -> (a -> c b) -> c b

insert :: (XOps a) => a -> c a -> c a

insertWith :: (XOps a) => (a->a->a) -> a -> c a -> c a

insertK :: (XOps k) => k -> a -> c (Pr k v) -> c (Pr k v)

union :: (XOps a) => c a -> c a -> c a

unionWith :: (XOps a) => (a->a->a) -> c a -> c a -> c a

delete :: (XOps a) => a -> c a -> c a

deleteK :: (XOps k) => k -> c (Pr k v) -> c (Pr k v)

lookup :: (XOps k) => k -> c (Pr k v) -> Maybe v

intersect, without :: (XOps a) => c a -> c a -> c a

Figure 4: The collection class

15

-- Default methods (part of class declaration)

size c = fold (_ n -> n+1) 0 c

null c = size c == 0

singleton x = insert x emptyC

toList c = fold (:) [] c

fromList xs = insertList xs emptyC

filter p c = fold f empty c

where

f x r | p x = x `insert` r

| otherwise = r

partition p c = (filter p c, filter (not.p) c)

elem x c = fold (\y r -> if (x==y) then True else r) False c

flatMap c f = fold (union.f) empty c

insert = insertWith (\x y -> y)

insertWith f x c = unionWith f c (singleton x)

insertK k x c = insert (k:>x) c

union = unionWith (\x y -> y)

unionWith f c1 c2 = fold (insertWith f) c1 c2

delete x c = filter (/= x) c

deleteK k c = delete (k :> error "Collection.deleteK") c

without c1 c2 = filter (\x -> not (elem x c2)) c1

intersect c1 c2 = filter (\x -> elem x c2) c1

-- Standard functions defined using class operations

insertList,deleteList :: (XOps a) => [a] -> c a -> c a

insertList xs c = foldr insert c xs

deleteList xs c = foldr delete c xs

unionList, intersectList :: XOps a) => [c a] -> c a

unionList cs = foldr union empty cs

intersectList cs = foldr1 intersect cs

Figure 5: The collection class continued

16

The question is, of course, what meaning we should give to a call such as (fold (-) 0 s)

where s is a set. Since (-) is not commutative such a call is nonsense. There is no way out

of this. All we can do is specify in any particular instance of Collection what property fold

assumes of its arguments. For example, for sets and bags fold's �rst argument should be

left-commutative (i.e. f x (f y a) = f y (f x a)), but there may be instances of Collection

for which this property need not hold (ones which guarantee to apply fold to their elements

in sorted order, for example). For arguments that do not satisfy the required properties, fold

delivers a result based on an unspeci�ed ordering of the elements of the collection.

fold is a compositional form of what in STL is called an iterator. It lays out the collection in

some order, ready to be operated on by some consuming function.

This fold is a catamorphism if we regard a collection as built by the constructors (empty,

insert). An equally valid alternative set of constructors is (empty, singleton, union), leading

to a di�erent catamorphism:

fold' :: (b->b->b) -> (a->b) -> b -> c a -> b

These two algebras have been explored by Buneman et al. [1995], who use the terminology

sr_add for fold, and sr_comb for fold'. We have chosen to use fold because it is easier to

use than fold' | only two arguments need be provided.

As we have seen, fold is a bit too powerful because in order to be well de�ned we have to

assume undecidable properties of its argument. Buneman et al. [1995] also discusses ways to

avoid this by instead using a function they call ext, but which we called flatMap in Figure 4.

The advantage of ext/flatMap is that it requires no particular properties of its argument; yet

using it one can de�ne a bunch of useful functions.

3.6 Finite maps

Finite maps (in various guises) are ubiquitous in functional programs. In mathematics, a

function (or map) is de�ned by a set of ordered (argument,result) pairs. The natural thing to

do is therefore to represent a �nite map by a set of ordered pairs, thus:

type FM k v = Set (Pr k v)

data Pr k v = k :> v deriving(Show)

instance (Eq k) => Eq (Pr k v) where

instance (XOps k) => XOps (Pr k v) where

(k1:>v1) `xEq` (k2:>v2) = k1 `xEq` k2

xCmp = case xCmp of

Just cmp -> Just (\(k1:>v1) (k2:>v2) -> k1 `cmp` k2)

Nothing -> Nothing

...similarly the other operations...

17

Here, (k :> v) is a key-value pair, read \k maps to v". Comparison of a key-value pair is done

solely on the basis of the key. It is crucial that we use a new data type for key-value pairs,

rather than using the built-in pair constructor, because the latter has equality and ordering

instances that look at both components of the pair, not just the �rst.

A Set of key-value pairs, with comparison done on this basis, is a �nite map. All that is needed

to complete the picture is to add some crucial functions to the Collection class:

class Collection c where

...as before...

insertWith :: (XOps a) => (a->a->a) -> a -> c a -> c a

unionWith :: (XOps a) => (a->a->a) -> c a -> c a -> c a

lookup :: (XOps k) => k -> c (Pr k v) -> Maybe v

The \With" variants have a function that combines values that compare as equal when doing

insertion or union. This is very important when those values are equal because they have equal

keys, but we might wish (for example) to add the second component of the pairs.

A disadvantage of this approach is that every instance of Collectionmust, in principle, provide

an implementation of lookup. While doing so is always possible | indeed one could write a

default declaration for lookup using fold | it is not desirable because for many instances of

Collection a lookup might be wildly ine�cient and inappropriate.

3.7 The complete class

Figures 4 and 5 give the complete de�nition of the collections module. There are several points

to note:

� The type of elem is a bit more speci�c than the default method requires. Again, this

is to allow an implementor to make a more e�cient elem that exploits the ordering on

elements.

� If the representation of a non-empty collection always included the necessary comparison

operations (see item (1) in Section 3.4), it would be possible to give many operations

a rather simpler type, by omitting the (XOps a) context. Doing so would place more

constraints on the implementor, so we have refrained from doing so.

� toList is a pretty dodgy looking operation because (:) is not left-commutative. Never-

theless, lists are so ubiquitous (albeit perhaps less so once these libraries are in place!)

that it may be more convenient to use toList followed by a list operation rather than a

single more respectable fold. The �nal result may (indeed should) still be independent

of the order in which the fold chose to lay out the collection.

4 Second design: multi-parameter constructor classes

Our �rst design was written in standard Haskell, but it has three fundamental de�ciencies:

18

� It defers to run time some checks that one might intuitively expect to be statically checked.

� It separates sequences and collections entirely, whereas one might have expected that they

would share common operations.

� It does not separate (say) lists, from FIFOs, from deques. These are all in class Sequence

and provide the same operations, but one might prefer the type system to express the

idea that FIFOs have more operations than lists, and deques than FIFOs.

Our second design, which we give in much less detail than the �rst, overcomes both these

objections, but at the expense of stepping outside standard Haskell by using multi-parameter

constructor classes. In the view of the author, the clean way that multi-parameter constructor

classes turn out to accommodate bulk types is a very persuasive reason for extending Haskell

to embrace them, just as monads provide the key motivation for adding constructor classes.

4.1 The key idea

The key idea is very simple. Suppose we (re-)de�ne the class of collections like this:

class Collection c a where

size :: c a -> Int

empty :: c a

cons :: a -> c a -> c a

union :: c a -> c a -> c a

fold :: (a->b->b) -> b -> c a -> b

filter :: (a->Bool) -> c a -> c a

partition :: (a->Bool) -> c a -> (c a, c a)

Notice that Collection has two parameters: c, the type constructor of he collection, and a, the

element type. Notice too that insert has no XOps constraint. The type of cons, for example,

is now:

cons :: Collection c a => a -> c a -> c a

The interesting part comes when we de�ne instances of Collection:

instance Collection [] a where

empty = []

insert = (:)

...and so on...

instance Ord a => Collection OrdSeq a where

empty = emptyTree

insert = insertTree

...and so on...

The exciting thing is that now we can provide instance-speci�c constraints on the element type.

In the �rst instance declaration, for lists, no constraints are placed on a, so insert can be used

19

on lists without placing any constraints on the element type. In contrast, the second instance

declaration speci�es that the element type a must be in class Ord, just what is needed to allow

the use of insertTree (here assumed to have type Ord a => a -> Tree a -> Tree a) to

de�ne insert.

This simple extension solves at a stroke both of the de�ciencies of our �rst design:

� Things that \should" be checked statically are checked statically. In particular, an at-

tempt to use an OrdSet with an element type that has no ordering will provoke an error

at compile time rather than at run time.

� The same class embraces both collections with constraints on the elements, and collections

with none (termed sequences of the �rst design). There is no need for both a filter on

sequences and a separate filter on collections; plain filter will work on both.

It remains possible to have adaptive representations for collections, using the same XOps class

as before, thus:

instance XOps a => Collection Set a where

...as before...

This instance declaration makes clear that the type Set of adaptive sets requires its element

type to be in class XOps. The implementation can now be given exactly as before.

Notice that MonadZero and Functor are not superclasses of Collection, as they were of

Sequence, because not all instances of Collection could be instances of Monad since the latter

requires operations polymorphic in the elements. We can still make particular bulk types (the

polymorphic ones) instances of Monad, of course, by giving a suitable instance declaration, so we

are not giving up the possibility of using monad comprehensions to create and �lter collections.

4.2 Using the class hierarchy

It seems obvious that sequences should have all the operations that unordered collections have,

and some more besides. Now that the operations in Collection apply to sequences as well

as unordered collections, we can use the class hierarchy to express precisely the inheritance we

want:

class (Collection s a) => Sequence s a where

snoc :: s a -> a -> s a

first :: s a -> SeqView s a

last :: s a -> SeqView s a

foldl :: (b->a->b) -> b -> s a -> b

reverse :: s a -> s a

There are now quite a few design decisions to make. For example:

� Does one want one class that supports front but not back, another that supports back

but not front, and a third that combines these capabilities? Or is it best to have one

20

class (such as the Sequence just de�ned above) that has both. After all, one can get the

last element of a list | it's just rather ine�cient to do so.

� Should cons (implying \add an element to the front" for sequences, and just \add an

element" for unordered collections) be in Collection, and snoc (\add an element to

the back") in Sequence, or should both be in Sequence, with some other subclass of

Collection having a neutral insert for unordered collections?

� Similar questions arise for fold and its directional cousins foldr and foldl.

� Should every collection support union when for some it may be a constant time operation

while for others it is an O(N) operation?

The answers to these questions are not obvious, but the the collection classes of Smalltalk and

C++ provide a good deal of guidance. For example, Smalltalk's collection-class hierarchy looks

like this:

Collection

Bag

Set

Dictionary

Sequencable collection

Interval

LinkedList

OrderedCollection

SortedCollection

ArrayedCollection

Array

4.3 Finite maps

Finite maps can be still handled exactly as described in Section 3.6, but multi-parameter type

classes opens up another intriguing possibility:

class Collection (c k) a => FM c k a where

extend :: k -> a -> c k a -> c k a

lookup :: c k a -> c -> k -> a

This declares the three-parameter type class FM, parameterised over c, the type constructor of

the map, k, the key type, and a, the value type. It requires that the partial application of c to

k is a collection type constructor. Now all the collection operations work on �nite maps, but

the latter add two new operations, extend and (!!) (i.e. lookup).

One advantage of this approach is that it makes it possible to include Haskell's standard arrays

in FM | which is nice, because arrays are plainly �nite maps:

instance Ix k => FM Array k a where

lookup = (!!)

21

Of course, Haskell arrays don't support extend or any of the operations in Collection, so one

might change the hierarchy to look like this:

class Indexable c k a where

lookup :: c k a -> c -> k -> a

class (Collection (c k) a, Indexable c k a) => FM c k a where

extend :: k -> a -> c k a -> c k a

Again, there are many possible design choices.

4.4 Summary

Multi-parameter constructor classes seem to be just what is needed to make a clean job of

bulk types. What we have done here is only to sketch the basic idea. A considerable amount

of design work remains to
esh it out into a concrete design, even assuming the existence of

multi-parameter constructor classes.

5 Related work

There is a large literature on collection types, also known as bulk types. Tannen [1994] gives a

useful bibliography, from a database perspective. Buneman et al. [1995] explores the algebra

and expressiveness of algebras based on (empty, insert) and (empty, singleton, union).

C++ has a well-developed library called the Standard Template Library (STL) which is specif-

ically aimed at collection types (Stepanov & Lee [1994]). There are major di�erences from the

work described here. Rather than a collection being a value which can be combined with other

similar values, it is regarded as a container into which new values can be placed. There is no

equivalent of fold; instead iterators are provided, which specify a location within a container.

It does handle polymorphism, however, using C++ templates; when a collection is declared one

speci�es both the element type and the comparison operation to use.

Parametric type classes (Chen, Hudak & Odersky [1992]) have similar power to multi-parameter

constructor classes. Indeed Chen's thesis uses bulk types as the main motivating example for

parametric type classes (Chen [1994]).

6 Summary

Designing suitable signatures for bulk types is surprisingly tricky. The number of di�erent kinds

of collection, and the number of possible implementations of each kind of collection, makes it

rather unattractive to use distinct names for the operations of each. Furthermore, if we do so

we cannot write polymorpic algorithms; that is, algorithms that work regardless of which kind

of collection is involved.

22

The �rst design proposed here exploits type classes to obtain a substantial amount of polymor-

phism. Algorithms can be polymorphic over the elements of the collection, the implementation

of the collection, and the nature of the collection.

Apart from the use of type classes, the two key design decisions are these:

� At �rst sight it seems attractive to unify all bulk types into a single class. We propose

instead to use two classes, one for sequences and one for collections. Sequences are

parametric in their element type, and are sensitive to insertion order, while the reverse

holds for collections.

� We solve the typing problems of collections with the XOps class, thereby requiring a small

amount of run-time type-checking (at least when the types are not statically known).

Whilst it is not perfect, this can be turned to our advantage by allowing the programmer

to design data types that choose their representation based on the operations available

for the element type.

The second design uses multi-parameter type classes to unify sequences and unordered collec-

tions into a single class hierarchy. It seems to be a noticeably cleaner solution, but requires a

sign�cant extension to Haskell.

An attractive property of both designs is the possibility of writing adaptable implementations,

that automatically choose their representation based on the operations available on the under-

lying data type.

Acknowledgements

I would like to thank Peter Buneman, Laszlo Nemeth, and David Watt, for their helpful com-

ments on earlier drafts of this paper. Mark Jones and Peter Thiemann both pointed out to me

the beautiful �t between multi-parameter constructor classes and bulk types that is sketched in

Section 4. They both also gave me particularly useful feedback on other aspects of the paper.

I gratefully acknowledge the support of the Oregon Graduate Institute during my sabbatical,

funded by a contract with US Air Force Material Command (F19628-93-C-0069).

References

GS Brodal & C Okasaki [Dec 1996], \Optimal purely-functional priority queues," Journal of

Functional Programming 6.

P Buneman, L Libkin, D Suciu, V Tannen & L Wong [March 1994], \Comprehension syntax,"

in SIGMOD Record#23#1, 87{96.

23

P Buneman, S Naqvi, V Tannen & L Wong [Sept 1995], \Principles of programming with

complex objects and collection types," Theoretical Computer Science 149.

K Chen [1994], \A parametric extension of Haskell's type classes," PhD thesis, Department of

Computer Science, Yale University.

K Chen, P Hudak & M Odersky [June 1992], \Parametric type classes," in ACM Symposium

on Lisp and Functional Programming, Snowbird, ACM.

T-R Chuang & WL Hwang [May 1996], \A probabilistic approach to the problem of automatic

selection of data representations," in Proc International Conference on Functional Pro-

gramming, Philadelphia, ACM, 190{200.

T Freeman & F Pfenning [June 1991], \Re�nement types for ML," in SIGPLAN Symposium on

Programming Language Design and Implementation (PLDI'91), Toronto, ACM, 268{

277.

MP Jones [Jan 1995], \A system of constructor classes: overloading and implicit higher-order

polymorphism," Journal of Functional Programming 5, 1{36.

C Okasaki [May 1996], \The role of lazy evaluation in amortized data structures," in Proc

International Conference on Functional Programming, Philadelphia, ACM, 62{72.

C Okasaki [Oct 1995], \Amortization, lazy evaluation, and persistence: lists with catenation via

lazy linking," in IEEE Symposium on Foundations of Computer Science, 646{654.

A Stepanov & M Lee [Dec 1994], \The Standard Template Library," Hewlett-Packard Labora-

tories, Palo Alto.

V Tannen [1994], \Tutorial: languages for collection types," University of Pennsylvania.

PW Trinder [Aug 1991], \Comprehensions: a query notation for DBPLs," in Proc 3rd Inter-

national Workshop on Database Programming Languages, Nahplion, Greece, Morgan

Kaufman, 49{62.

PW Trinder & PL Wadler [1989], \List comprehensions and the relational calculus," in Func-

tional Programming, Glasgow 1988 , Workshops in Computing, Springer Verlag, 115{

123.

PL Wadler [1992], \Comprehending monads," Mathematical Structures in Computer Science 2,

461{493.

24

