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AbstractWe adopt the untyped imperative object calculus of Abadi andCardelli as a minimal setting in which to study problems of com-pilation and program equivalence that arise when compiling object-oriented languages. We present both a big-step and a small-stepsubstitution-based operational semantics for the calculus. Our �rsttwo results are theorems asserting the equivalence of our substitution-based semantics with a closure-based semantics like that given byAbadi and Cardelli. Our third result is a direct proof of the correct-ness of compilation to a stack-based abstract machine via a small-stepdecompilation algorithm. Our fourth result is that contextual equiv-alence of objects coincides with a form of Mason and Talcott's CIUequivalence; the latter provides a tractable means of establishing op-erational equivalences. Finally, we prove correct an algorithm, used inour prototype compiler, for statically resolving method o�sets. This isthe �rst study of correctness of an object-oriented abstract machine,and of operational equivalence for the imperative object calculus.
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11 IntroductionThis paper collates and extends a variety of operational techniques for de-scribing and reasoning about programming languages and their implementa-tion. We focus on implementation of imperative object-oriented programs,expressed in an imperative object calculus. We examine di�erent forms ofstructural operational semantics for the calculus, specify an implementationin terms of an object-oriented abstract machine, and develop a theory of op-erational equivalence between programs which we use to specify and verifya simple compiler optimisation. Many of our semantic techniques originatein earlier studies of the �-calculus. This paper is their �rst application to anobject calculus and shows they may easily be re-used in an object-orientedsetting.The language we describe is essentially the untyped imperative objectcalculus of Abadi and Cardelli (1995a, 1995b, 1996), a small but extremelyrich language that directly accommodates object-oriented, imperative andfunctional programming styles. Abadi and Cardelli invented the calculusto serve as a foundation for understanding object-oriented programming; inparticular, they use the calculus to develop a range of increasingly sophisti-cated type systems for object-oriented programming. We have implementedthe calculus as part of a broader project to investigate object-oriented lan-guages. Other work considers a concurrent variant of the imperative objectcalculus (Gordon and Hankin 1998). This paper develops formal foundationsand veri�cation methods to document and better understand various aspectsof our implementation.Our system compiles the imperative object calculus to bytecodes for anabstract machine, implemented in C, based on the ZAM1 of Leroy's CAMLLight (Leroy 1990). We also implemented a closure-based interpreter for thecalculus. A type-checker enforces the system of primitive self types of Abadiand Cardelli. Since the results of the paper are independent of this typesystem, we will say no more about it.The rest of the paper is organised as follows:� In Section 2 we present our source language, the imperative object cal-culus, together with three forms of operational semantics (Plotkin 1981;Martin-L�of 1983; Felleisen and Friedman 1986; Kahn 1987). Theorem 1and Theorem 2 assert the consistence of these semantics.� Our target language is the instruction set of an object-oriented abstractmachine, a simpli�cation of the machine used in our implementation,1\ZAM" is an acronym for \Zinc Abstract Machine", where \Zinc" is an acronym for\Zinc is not Caml".



2 and analogous to abstract machines for functional languages. Section 3presents a formal description of our abstract machine, and a compilerfrom the object calculus to instructions for the abstract machine. Weprove a compiler correctness result, Theorem 3, by adapting an idea ofRittri (1990) to cope with state and objects.� Given the formal description of our source language, we may expresscorrectness of source-to-source transformations via operational equiv-alence. In Section 4, we adapt the contextual equivalence of Morris(1968), which has become the standard for studies of �-calculi, to theimperative object calculus. Our fourth result, Theorem 4, characterisescontextual equivalence using the CIU equivalence of Mason and Talcott(1991).� In Section 5, we exercise operational equivalence by specifying a simpleoptimisation that resolves at compile-time certain method labels tointeger o�sets. Theorem 5 states the correctness of the optimisation.We discuss related work at the ends of Sections 2, 3, 4 and 5. Finally, wereview the contributions of the paper in Section 6.Anyone desiring to experiment with our implementation is asked to con-tact the authors.2 An Imperative Object CalculusIn this section, we present the syntax of an imperative object calculus, to-gether with three forms of operational semantics, which we prove to be con-sistent with one another.2.1 Syntax of the CalculusWe begin with the syntax of an untyped imperative object calculus, the impςcalculus of Abadi and Cardelli (1996) augmented to include store locationsas terms. Let x, y, and z range over an in�nite collection of variables, `range over an in�nite collection of method labels, and � range over an in�nitecollection of locations, the addresses of objects in the store.The set of terms of the calculus is given as follows:a; b ::= termx variable� location[`i = ς(xi)bi i21::n] object (`i distinct)



3a:` method selectiona:`( ς(x)b method updateclone(a) cloninglet x = a in b letInformally, when an object is created, it is put at a fresh location, �, inthe store, and referenced thereafter by �. Method selection runs the body ofthe method with the self parameter (the x in ς(x)b) bound to the location ofthe object containing the method. Method update allows an existing methodin a stored object to be updated. Cloning makes a fresh copy of an objectin the store at a new location. The reader unfamiliar with object calculiis encouraged to consult the book of Abadi and Cardelli (1996) for manyexamples and a discussion of the design choices that led to this calculus.Here are the scoping rules for variables: in a method ς(x)b, variable xis bound in b; in let x = a in b, variable x is bound in b. If � is a phraseof syntax we write fv(�) for the set of variables that occur free in �. Wesay phrase � is closed if fv(�) = ?. We write �ff =xgg for the substitution ofphrase  for each free occurrence of variable x in phrase �. We identify allphrases of syntax up to alpha-conversion; hence a = b, for instance, meansthat we can obtain term b from term a by systematic renaming of boundvariables. Let o range over objects, terms of the form [`i = ς(xi)bi i21::n]. Ingeneral, the notation �i i21::n means �1, . . . , �n.Unlike Abadi and Cardelli, we do not identify objects up to re-ordering ofmethods. This is because the order of methods in an object is signi�cant foran application of our techniques presented in Section 5. Moreover, we includelocations in the syntax of terms. This is so we may express the dynamicbehaviour of the calculus using a substitution-based operational semantics.In Abadi and Cardelli's closure-based semantics, locations appear only inclosures and not in terms. If � is a phrase of syntax, let locs(�) be the setof locations that occur in �. Let a term a be a static term if locs(a) = ?.The static terms correspond to the source syntax accepted by our compiler.Terms containing locations arise during reduction.As a �rst example of programming in the imperative object calculus,here is how to express pairs of terms as objects with fst and snd methodsfor accessing the two components and a swap method for interchanging the



4�rst and second components:pair(a; b) def= [fst = ς(s)a;snd = ς(s)b;swap = ς(s)let x = s:fst inlet y = s:snd in(s:fst ( ς(s0)y):snd ( ς(s0)x]for s =2 fv(a) [ fv(b)The next example makes use of the imperative nature of the calculus toexpress updateable references as objects with a single ref method:ref (a) def= let x = a in [ref = ς(y)x]a := b def= let x = b in a:ref ( ς(y)x!a def= a:refAs a third example, here is an encoding of the call-by-value �-calculus:�(x)b def= [arg = ς(z)z:arg ; val = ς(s)let x = s:arg in b]b(a) def= let y = a in (b:arg ( ς(z)y):valwhere y 6= z, and s and y do not occur free in b. It is like an encodingfrom Abadi and Cardelli's book but with right-to-left evaluation of functionapplication. Given updateable methods, we can easily extend this encodingto express an ML-style call-by-value �-calculus with updateable references.Although functions are derivable, for the purpose of the operational se-mantics of this section and the abstract machine and compiler in the next,Section 3, we consider an extended calculus that includes functions and func-tion application. This is partly because an e�cient implementation wouldinclude functions (procedures) as primitive, and partly to demonstrate theapplicability of the techniques of these sections to a �-calculus with state. Wedo not use this extended calculus in Section 4 or in Section 5. The techniquesused in the study of operational equivalence in Section 4 are well understoodfor �-calculi with state. The optimisation of method access in Section 5 isindependent of the presence of primitive functions.The syntax of the extended calculus is given by:a; b ::= terms: : : as previously�(x)b functionb(a) application



5In a function �(x)b, variable x is bound in b. Unlike Abadi and Cardelli'simperative �-calculus, the imp� calculus, our extended calculus does notpermit assignments to bound variables.Throughout this paper, and in our implementation, we adopt the conven-tion that a function application b(a) is evaluated right-to-left; a is evaluatedbefore b. In making this choice we are following Leroy (1990), who proposesit on grounds of e�ciency. Adopting a left-to-right evaluation order wouldhave little e�ect on the contents of this paper, but would adversely a�ect theperformance of our implementation.We �nish this section by �xing notation for �nite lists and �nite maps. Wewrite �nite lists in the form [�1; : : : ; �n], which we usually write as [�i i21::n].Let  :: [�i i21::n] = [ ; �i i21::n]. Let [�i i21::m]@[ j j21::n] = [�i i21::m;  j j21::n].Let a �nite map, f , be a list of the form [xi 7! �i i21::n], where the xi aredistinct. When f = [xi 7! �i i21::n] is a �nite map, let dom(f) = fxi i21::ng.For the �nite map f = f 0@[x 7! �]@f 00, let f(x) = �. When f is a �nitemap, let the map f + (x 7! �), be f 0@[x 7! �]@f 00 if f = f 0@[x 7!  ]@f 00,otherwise (x 7! �) :: f .2.2 Small-Step Substitution-Based SemanticsThe goal of this section is to specify a relation, c ! d, where c and d areeach con�gurations consisting of a closed term paired with an object store.Intuitively, c ! d means that the program state represented by c takes asingle computation step to reach d. We present this operational semanticsusing reduction contexts introduced in the study of imperative �-calculi byFelleisen and Friedman (1986). We say this is a small-step semantics becauseit de�nes individual steps of computation. We say it is substitution-basedbecause it is de�ned in terms of the substitution primitive, �ffv=xgg, thatsubstitutes values for variables. We use this semantics in Section 3 to provecorrectness of compilation. In the course of this paper, we use the symbol! for several small-step relations; we refer to such relations as reduction ortransition relations.Let a store, �, be a �nite map from locations to objects. Each storedobject consists of a collection of labelled methods. The methods may be up-dated individually. Abadi and Cardelli use a method store, a �nite map fromlocations to methods, in their operational semantics of imperative objects.We prefer to use an object store, as it explicitly represents the grouping ofmethods in objects. We discuss the connection between our semantics andthat of Abadi and Cardelli in Section 4.6.� ::= [�i 7! oi i21::n] object store (�i distinct)



6c; d ::= (a; �) con�gurationWe write ` � ok , to mean that a store � is well formed, if and onlyif fv(�(�)) = ? and locs(�(�)) � dom(�) for each � 2 dom(�). We write` (a; �) ok , to mean that a con�guration (a; �) is well formed, if and only iffv(a) = ?, locs(a) � dom(�) and ` � ok .To de�ne the reduction relation we need the syntactic concepts of val-ues and reduction contexts. A value is either a location or a function. Areduction context, R, is a term given by the following grammar, with onefree occurrence of a distinguished variable, �, which represents `the point ofexecution' in R.u; v ::= � j �(x)b valueR ::= � j R:` j R:`( ς(x)b reduction contextj clone(R) j let x = R in bj a(R) j R(v)Since there is exactly one free occurrence of � in any reduction context, ifR:` ( ς(x)b is a reduction context, � =2 fv(b) � fxg. For the same reason,if let x = R in b, a(R), and R(v) are reduction contexts, � =2 fv(b) � fxg,� =2 fv(a) and � =2 fv(v), respectively. We write R[a] for the outcome ofsubstituting term a (not necessarily a value) for the single occurrence of thehole � in a reduction context R. No variables are ever captured by thisoperation, since the hole in a reduction context does not appear in the scopeof any bound variables.Let the small-step substitution-based reduction relation, c ! d, be theleast relation satisfying the following axiom schemes.(Red Object) (R[o]; �)! (R[�]; �0) if �0 = (� 7! o) :: � and � =2 dom(�).(Red Select) (R[�:`j ]; �)! (R[bjff�=xjgg]; �)if �(�) = [`i = ς(xi)bi i21::n] and j 2 1::n.(Red Update) (R[�:`j ( ς(x)b]; �)! (R[�]; �0)if �(�) = [`i = ς(xi)bi i21::n], j 2 1::n, and�0 = � + (� 7! [`i = ς(xi)bi i21::j�1; `j = ς(x)b; `i = ς(xi)bi i2j+1::n]).(Red Clone) (R[clone(�)]; �)! (R[�0]; �0)if �(�) = o, �0 = (�0 7! o) :: � and �0 =2 dom(�).(Red Let) (R[let x = v in b]; �)! (R[bffv=xgg]; �).(Red Appl) (R[(�(x)b)(v)]; �)! (R[bffv=xgg]; �).



7The outcome of reducing a well formed con�guration is itself a well formedcon�guration. Moreover, reduction may increase, but not decrease, the do-main of the store of a con�guration:Lemma 1 Suppose ` (a; �) ok and (a; �)! (a0; �0). Then ` (a0; �0) ok anddom(�) � dom(�0).Proof By inspection of the reduction rules. 2Let a con�guration c be terminal if and only if there is a store � and avalue v such that c = (v; �). We say that a con�guration c converges, c#,if and only if there is a terminal con�guration d such that c !� d. We saythat a con�guration c diverges if and only if there is an in�nite sequence ofcon�gurations c1, c2, . . . such that c! c1 ! c2 ! � � �.For instance, consider the con�guration:(pair(�1; �2):swap; �)where � is a well formed store of the form [�1 7! o1; �2 7! o2] and pair is asde�ned in Section 2.1. This is not a terminal con�guration, but it convergesbecause of the following reduction sequence (in which we assume � =2 dom(�)).(pair(�1; �2):swap; �)! (�:swap; (� 7! pair(�1; �2)) :: �)! (let x = �:fst in let y = �:snd in (�:fst ( ς(s0)y):snd ( ς(s0)x;(� 7! pair(�1; �2)) :: �)! (let x = �1 in let y = �:snd in (�:fst ( ς(s0)y):snd ( ς(s0)x;(� 7! pair(�1; �2)) :: �)! (let y = �:snd in (�:fst ( ς(s0)y):snd ( ς(s0)�1;(� 7! pair(�1; �2)) :: �)! (let y = �2 in (�:fst ( ς(s0)y):snd ( ς(s0)�1;(� 7! pair(�1; �2)) :: �)! ((�:fst ( ς(s0)�2):snd ( ς(s0)�1; (� 7! pair(�1; �2)) :: �)! (�:snd ( ς(s0)�1; (� 7! pair(�2; �2)) :: �)! (�; (� 7! pair(�2; �1)) :: �)Consider now the following con�guration:([` = ς(s)s:`]:`; [])



8It diverges because of the following reduction sequence.([` = ς(s)s:`]:`; []) ! (�:`; [� 7! [` = ς(s)s:`]])! (�:`; [� 7! [` = ς(s)s:`]])! � � �Next we show that reduction, !, is deterministic up to the choice offreshly allocated locations in rules (Red Object) and (Red Clone). To statethis precisely, we need a couple of de�nitions. First, we de�ne a predicatewhich asserts that the domain of the store of a con�guration includes a setw of locations: let the predicate `w (a; �) ok hold if and only if ` (a; �) okand w � dom(�). Second, we de�ne structural equivalence at w, �w, for any�nite set w of locations, as the least relation on con�gurations closed underthe following rules.(Struct Re
)`w c okc �w c (Struct Trans)c �w c0 c0 �w c00c �w c00(Struct Rename)`w (a; �) ok � 2 dom(�)� w �0 =2 dom(�)(a; �) �w (aff�0=�gg; �ff�0=�gg)In this de�nition the notation aff�0=�gg denotes the outcome of replacing everyoccurrence of location � in a by �0; and �ff�0=�gg denotes the outcome of renam-ing location � of store � to �0, and applying this substitution to each of theobjects in the store. An easy induction establishes that c �w d implies that`w c ok and `w d ok . Roughly, c �w d means that the locations in w areall included in the domains of the stores of both c and d, and that c may beobtained from d by a series of renamings of the locations outside w.Lemma 2 Relation �w is symmetric, and hence is an equivalence relation.Proof Suppose c �w c0, then c0 �w c follows by an induction on thederivation of c �w c0. Cases (Struct Re
) and (Struct Trans) are easy. Inthe case of (Struct Rename), we must show (aff�0=�gg; �ff�0=�gg) �w (a; �) when(a; �) �w (aff�0=�gg; �ff�0=�gg) derives from `w (a; �) ok , � 2 dom(�) � w and�0 =2 dom(�). From `w (a; �) ok it follows that locs(a)[locs(�)[w � dom(�).Therefore �0 =2 locs(a) [ locs(�). Hence we have:aff�0=�ggff�=�0gg = a (1)�ff�0=�ggff�=�0gg = � (2)



9From (a; �) �w (aff�0=�gg; �ff�0=�gg) it follows that `w (aff�0=�gg; �ff�0=�gg) ok . Wehave �0 =2 dom(�) and w � dom(�), and � 2 dom(�)�w, that is, � 2 dom(�)but � =2 w. Therefore �0 2 dom(�ff�0=�gg) but �0 =2 w, that is, �0 2 dom(�ff�0=�gg)�w. Moreover � =2 dom(�ff�0=�gg), since we may conclude that � 6= �0 from� 2 dom(�) but �0 =2 dom(�). By (Struct Rename), `w (aff�0=�gg; �ff�0=�gg) ok ,�0 2 dom(�ff�0=�gg)� w and � =2 dom(�ff�0=�gg) together imply(aff�0=�gg; �ff�0=�gg) �w (aff�0=�ggff�=�0gg; �ff�0=�ggff�=�0gg)= (a; �)the desired equation, where the second step appeals to equations (1) and (2).2The ! relation is deterministic up to structural equivalence:Proposition 1 Suppose `w c ok. Then c! c0 and c! c00 imply c0 �w c00.Proof By case analysis of the derivation of c! c0. Here is one case:(Red Object) Here c = (R[o]; �) and c0 = (R[�0]; �0) where �0 = (�0 7!o) :: � and �0 =2 dom(�). Since `w c ok , c is well formed and therefore�0 =2 locs(R). Only (Red Object) may derive c! c00, so c00 = (R[�00]; �00)where �00 = (�00 7! o)::� and �00 =2 dom(�). If �0 = �00, c0 �w c00 by (StructRe
). Otherwise, �0 6= �00, so �00 =2 dom(�0). Since w � dom(�) and�0 =2 dom(�), �0 2 dom(�0)�w. By (Struct Rename), using �0 =2 locs(R),(R[�0]; �0) �w (R[�0]ff�00=�0gg; �0ff�00=�0gg) = (R[�00]; �00);that is, c0 �w c00.The case for (Red Clone) is similar. If c ! c0 was derived using any of theother rules, and c! c00, then in fact c0 = c00; hence c0 �w c00. 2Let a con�guration c be stuck if and only if c is not terminal, but thereis no d with c ! d. Examples are (�:`; [� 7! []]) and (�:`; []). We say that acon�guration, c, goes wrong if and only if there is a stuck con�guration, d,such that c!� d.Con�gurations related by structural equivalence at w possess the follow-ing properties:Lemma 3 Suppose c �w c0.(1) c is terminal implies c0 is terminal.



10(2) c is stuck implies c0 is stuck.(3) c! d implies there exists d0 such that c0 ! d0 and d �w d0.Proof Parts (1) and (3) follow by inductions on the derivation of c �w c0.Part (2) follows from (1), (3) and the symmetry of �w, Lemma 2. 2Proposition 1 and Lemma 3 imply that whenever (a; �) is well formedand (a; �) !� d, the con�guration d is unique up to structural equivalenceat dom(�), that is, up to the renaming of any newly generated locations inthe store component of d. Furthermore, whenever c �w c0, (1) c convergesjust if c0 converges, (2) c goes wrong just if c0 goes wrong, and (3) c divergesjust if c0 diverges.Proposition 2 For any well formed con�guration c, exactly one of the fol-lowing holds:(1) c converges,(2) c goes wrong,(3) c diverges.Proof If there is no computation c !� d to a terminal or stuck con�gu-ration d, then every reduction sequence from c is in�nite (or extends to anin�nite sequence), so (3) holds and (1) and (2) are false.Otherwise, there is a least n such that c!n d, for some terminal or stuckcon�guration d. Suppose d is terminal|the case when d is stuck is analogous.Then (1) holds. By induction on n we prove that (2) and (3) are false. Ifn = 0, (2) and (3) are false because a terminal con�guration is not stuck andbecause there is no reduction d! d0 from a terminal con�guration. If n > 0,there is c0 such that c! c0 and c0 !n�1 d. By induction hypothesis, c0 doesnot go wrong and does not diverge. For any other reduction c! c00, we havec0 �? c00, by Proposition 1. As a consequence of Lemma 3, if c00 goes wrongor diverges, so does c0. Therefore there is no reduction c ! c00 such that c00goes wrong or diverges. Since c is not stuck, we get that c cannot go wrongor diverge, that is, (2) and (3) are false, as required. 22.3 Big-Step Substitution-Based SemanticsIn this section, we specify a relation, c + d, where again c and d are con-�gurations, but this time with the intuition that d is the �nal outcome of



11many computation steps starting from c. We say this is a big-step seman-tics because it relates a con�guration to the �nal outcome of taking manyindividual steps of computation. It is de�ned in terms of the substitutionprimitive, �ffv=xgg, like the small-step relation, !, of the previous section.Unlike the ! relation, the + relation is de�ned inductively. We exploit itsinduction principle in the proof of Proposition 15, the crux of Section 5. Inthe course of this paper, we use the symbol + for several big-step relations;we often refer to such relations as evaluation relations.Let the big-step substitution-based evaluation relation, c + d, be therelation on con�gurations inductively de�ned by the following rules.(Subst Value)(v; �) + (v; �) (Subst Object)�1 = (� 7! o) :: �0 � =2 dom(�0)(o; �0) + (�; �1)(Subst Select) (where j 2 1::n)(a; �0) + (�; �1) �1(�) = [`i = ς(xi)bi i21::n] (bjff�=xjgg; �1) + (v; �2)(a:`j; �0) + (v; �2)(Subst Update) (where j 2 1::n)(a; �0) + (�; �1) �1(�) = [`i = ς(xi)bi i21::n]�2 = �1 + (� 7! [`i = ς(xi)bi i21::j�1; `j = ς(x)b; `i = ς(xi)bi i2j+1::n])(a:`j ( ς(x)b; �0) + (�; �2)(Subst Clone)(a; �0) + (�; �1) �1(�) = o �2 = (�0 7! o) :: �1 �0 =2 dom(�1)(clone(a); �0) + (�0; �2)(Subst Let)(a; �0) + (v; �1) (bffv=xgg; �1) + (u; �2)(let x = a in b; �0) + (u; �2)(Subst Appl)(a; �0) + (u; �1) (b; �1) + (�(x)b0; �2) (b0ffu=xgg; �2) + (v; �3)(b(a); �0) + (v; �3)We de�ne c & d to mean that c !� d and d is terminal. The big-stepand small-step substitution semantics are consistent with one another in thefollowing sense:Theorem 1(1) Whenever c + d, c& d.



12(2) Whenever c& d, c + d.Proof(1) By induction on the derivation of c + d. The details are routine.(2) One can prove by induction on n that c + d whenever c!n d and d isterminal. Again, the details are routine. 2The big-step relation, +, is deterministic in the following sense:Proposition 3 Whenever `w c ok, c + c0 and c + c00 imply c0 �w c00.Proof Suppose that c + c0 and c + c00. By Theorem 1(1), both c0 and c00are terminal and there are m and n such that c!m c0 and c!n c00. Withoutloss of generality, suppose that m � n. There must be d such that c !m dand d !n�m c00. By Proposition 1 and Lemma 3(3), c0 �w d. It follows, byLemma 3, that d is terminal, and therefore that c00 = d. Hence we have thatc0 �w c00. 22.4 Big-Step Closure-Based SemanticsIn this section we present an operational semantics for the imperative objectcalculus, based on the one in Chapter 10 of Abadi and Cardelli (1996) butwith the addition of functions. It is in the same style as the dynamic se-mantics of expressions in the de�nition of Standard ML (Milner, Tofte, andHarper 1990). Unlike the semantics of the previous sections, it uses closures,rather than a substitution primitive, to link variables to their values. Likethe semantics of the previous section, it is a big-step semantics, an evalu-ation relation, denoted by +. The main result of this section is a proof ofconsistency between the closure-based semantics and the substitution-basedsemantics of the previous section.U; V ::= closure-based value� location(S; �(x)b) function closureS ::= [xi 7! Vi i21::n] stack (xi distinct)O ::= [`i = (Si; ς(xi)bi) i21::n] object value� ::= [�i 7! Oi i21::n] storeC;D ::= con�guration((S; a);�) initial con�guration(V;�) terminal con�guration



13A stack (of bindings) S = [xi 7! Vi i21::n] is a �nite map that bindsvariables to their values. A value is either a location, �, or a closure of the form(S; �(x)b) where the stack S maps each variable free in b to a value. A store� is a �nite map sending locations to object values, which are of the formO = [`i = (Si; ς(xi)bi) i21::n], where for each i, stack Si maps each variablefree in the method ς(xi)bi to its value. An initial con�guration consists of aclosure (S; a), together with a store � that maps locations occurring in (S; a)to object values. A terminal con�guration is simply a value paired with astore. A con�guration of the form (V;�) where V = (S; �(x)b) is both initialand terminal.Our syntax admits stores and con�gurations that include dangling point-ers and unbound variables. We could make an explicit de�nition of those wellformed stores and con�gurations that do not include such errors. Instead, itis more convenient, later on in this section, to make an implicit de�nition ofwell formed stores and con�gurations in terms of an unloading relation.We use uppercase metavariables for the entities used in our closure-basedsemantics; they mostly correspond to lowercase metavariables ranging overcorresponding entities used in the substitution-based semantics. For example,� is a store used in the two substitution-based semantics, and � is a storeused in the closure-based semantics. We refer to both entities as stores,relying on the case of the metavariable to indicate which kind of store ismeant.Let the big-step closure-based evaluation relation, C + D, be the relationon con�gurations inductively de�ned by the following rules.(Closure x)S(x) = V((S; x);�) + (V;�) (Closure Value)((S; �(x)b);�) + ((S; �(x)b);�)(Closure Select)((S; a);�0) + (�;�1) �1(�) = [`i = (Si; ς(xi)bi) i21::n]j 2 1::n xj =2 dom(Sj) (((xj 7! �) :: Sj; bj);�1) + (V;�2)((S; a:`j);�0) + (V;�2)(Closure Update)((S; a);�0) + (�;�1) �1(�) = [`i = (Si; ς(xi)bi) i21::n] j 2 1::nO = [`i = (Si; ς(xi)bi) i21::j�1; `j = (S; ς(x)b); `i = (Si; ς(xi)bi) i2j+1::n]((S; a:`j ( ς(x)b);�0) + (�; (� 7! O) + �1)



14(Closure Object)�1 = (� 7! [`i = (S; ς(xi)bi) i21::n]) :: �0 � =2 dom(�0)((S; [`i = ς(xi)bi i21::n]);�0) + (�;�1)(Closure Clone)((S; a);�0) + (�;�1) �1(�) = O �2 = (�0 7! O) :: �1 �0 =2 dom(�1)((S; clone(a));�0) + (�0;�2)(Closure Let)((S; a);�0) + (V;�1) x =2 dom(S) (((x 7! V ) :: S; b);�1) + (U;�2)((S; let x = a in b);�0) + (U;�2)(Closure Appl)((S; a);�0) + (U;�1) ((S; b);�1) + ((S 0; �(x)b0);�2) x =2 dom(S 0)(((x 7! U) :: S 0; b0);�2) + (V;�3)((S; b(a));�0) + (V;�3)These rules are almost identical to the ones from Chapter 10 of Abadi andCardelli (1996), except for the inclusion of functions and except that locationscontain objects in our semantics but methods in theirs, as discussed earlier(and in Section 4.6).The semantics does indeed relate initial and terminal con�gurations:Lemma 4 Whenever C + D, C is an initial con�guration and D is a ter-minal con�guration.Proof By induction on the derivation of C + D. 2To establish a correspondence between this closure-based semantics andthe substitution-based semantics of Section 2.3, we introduce several relationsthat unload the entities used in the closure-based semantics by turning clo-sures into substitutions. Let s range over a substitution of the form [vi=xi i21::n]where the xi are distinct and each vi is closed. We use the symbol ; foreach of �ve unloading relations.V ; v value unloadingS ; s stack unloadingO; o object unloading�; � store unloadingC ; c con�guration unloading



15(Value �)�; � (Value Fun)S ; s x =2 dom(S) fv(b) � dom(S) [ fxg locs(b) = ?(S; �(x)b); �(x)(bffsgg)(Stack [])[]; [] (Stack Object)V ; v x =2 dom(S) S ; s((x 7! V ) :: S); (v=x :: s)(Object Unload) (where `i distinct)Si ; si xi =2 dom(Si) fv(bi) � dom(Si) [ fxig locs(bi) = ? 8i 2 1::n[`i = (Si; ς(xi)bi) i21::n]; [`i = ς(xi)(biffsigg) i21::n](Store Unload) (where � = [�i 7! Oi i21::n], �i distinct)Oi ; oi 8i 2 1::n�; [�i 7! oi i21::n](Con�g Initial)S ; s �; � fv(a) � dom(S) locs(a) = ?((S; a);�); (affsgg; �) (Con�g Terminal)V ; v �; �(V;�); (v; �)We later need the following properties of the unloading relations.Proposition 4(1) Whenever V ; v, v is a closed value.(2) Whenever S ; s there are distinct variables xi and closed values visuch that s = [vi=xi i21::n] and dom(S) = fxi i21::ng.(3) Whenever O; o, object o is closed.(4) Whenever �; �, both dom(�) = dom(�) and ` � ok.(5) Whenever C ; c, ` c ok.Proof By simultaneous induction on the derivation of the unloading pred-icates. 2The side conditions concerning free and bound variables in (Value Fun),(Stack Object), (Object Unload) and (Con�g Initial) are needed to ensureproperty (2). This property allows the substitutions that arise from closuresto be manipulated easily in later proofs. All the terms manipulated by the



16closure-based evaluator are static terms; the side conditions concerning loca-tions in (Value Fun), (Object Unload) and (Con�g Initial) ensure that onlystatic terms arise in con�gurations.We consider a store � to be well formed if and only if there is a store� such that � ; �. Similarly, we consider a con�guration C to be wellformed if and only if there is a con�guration c such that C ; c. The onlyoccurrences of locations in a well formed con�guration are in the domain ofthe store and in the range of any stacks occurring in the con�guration.The unloading relations are in fact functional:Proposition 5 Whenever �;  0 and �;  00, then  0 =  00.Proof By induction on the derivation of � ;  0. The only interestingcases are (Con�g Initial) and (Con�g Terminal).(Con�g Initial) Here � = ((S; a);�) and  0 = (affs0gg; �0) where S ; s0,� ; �0, fv(a) � dom(S) and locs(a) = ?. The derivation of � ; �00can only have used (Con�g Initial) or (Con�g Terminal). In the for-mer case  0 =  00 follows easily from the induction hypothesis. Thelatter case can only arise when � is a terminal con�guration, that is,a is of the form �(x)b. We have  00 = (v00; �00) where �(x)b ; v00 and�; �00. The former judgment can only arise from (Value Fun). Tak-ing alpha-conversion into account, we may assume there is a variablex0 =2 fv(b) � fxg, so that �(x)b = �(x0)(bffx0=xgg) and that �(x)b ;v00 = �(x0)(bffx0=xggffs00gg) derives by (Value Fun) from S ; s00 giventhat x0 =2 dom(S), fv(bffx0=xgg) � dom(S) [ fx0g and locs(bffx0=xgg) = ?.By induction hypothesis, �0 = �00 and s0 = s00. By Proposition 4(2),there are distinct xi and closed values vi such that s0 = [vi=xi i21::n] anddom(S) = fxi i21::ng. Since x0 =2 dom(S), x0 6= xi for each i. Thereforewe can calculate the following,v00 = �(x0)(bffx0=xggffvi=xi i21::ngg)= �(x0)(bffx0=xgg)ffvi=xi i21::ngg= affs0ggwhich shows that  00 = (v00; �00) = (affs0gg; �0) =  0, as required.Case (Con�g Terminal) is similar. The other cases are simpler. 2To prove Theorem 2, which asserts the consistency of the two big-stepoperational semantics, we need the following two lemmas.Lemma 5 If C ; c and C + C 0 there is c0 such that C 0 ; c0 and c + c0.



17Proof By induction on the derivation of C + C 0. We show three typicalcases.(Closure Select) Here C = ((S; a:`j);�0), C 0 = (V;�2) and we have((S; a);�0) + (�;�1) (3)�1(�) = [`i = (Si; ς(xj)bi) i21::n] (4)(((xj 7! �) :: Sj; bj);�1) + (V;�2) (5)with j 2 1::n and xj =2 dom(Sj). From C ; c it follows there is �0 ands such that �0 ; �0, S ; s and c = (affsgg:`j; �0). So ((S; a);�0) ;(affsgg; �0). By the induction hypothesis and (3) there is c01 such that(affsgg; �0) + c01 (6)and (�;�1) ; c01. From the latter, there must be �1 with �1 ; �1and c01 = (�; �1). From (4) we know that � 2 dom(�1); from �1 ; �1,it follows that � 2 dom(�1) and �1(�) ; �1(�). It must be then that�1(�) ; �1(�), using (Object Unload). Given (4), for each i 2 1::nthere is si such that Si ; si and�1(�) = [`i = ς(xi)(biffsigg) i21::n] (7)Therefore (((xj 7! �) :: Sj; bj);�1) ; (bjff�=xjggffsjgg; �1). Since xj =2dom(Sj) and Sj ; sj, bjff�=xjggffsjgg = bjffsjggff�=xjgg. By the inductionhypothesis and (5) there is c0 such that(biffsjggff�=xjgg; �1) + c0 (8)and (V;�2); c0. Finally, by (Subst Select) we may derive c + c0 using(6), (7) and (8).(Closure Object) Here C = ((S; a);�0) and C 0 = (�;�1) with a = [`i =
ς(xi)bi i21::n], � =2 dom(�0), no xi 2 dom(S) and�1 = (� 7! [`i = (S; ς(xi)bi) i21::n]) :: �0:So c = (affsgg; �0) where �0 ; �0 and S ; s. Since the variables xi arebound, we may assume that no xi 2 dom(S). Therefore we can derivec + c0 where c0 = (�; �1) and�1 = (� 7! [`i = ς(xi)(biffsgg) i21::n]) :: �0and �1 ; �1.



18(Closure x) Here C = ((S; x);�) and C 0 = (V;�), with S(x) = V . FromC ; c it follows that c = (v; �) with � ; �,and S(x) ; v. So setc0 = c and we have c + c0 and C 0 ; c0.The other cases are similar. 2Lemma 6 Suppose C is an initial con�guration. Whenever C ; c andc + c0 there is terminal C 0 such that C 0 ; c0 and C + C 0.Proof By induction on the derivation of c + c0. Either the term in C is avariable, x say, or not. If so, suppose C = ((S; x);�). We must have S ; sand �; � with x 2 dom(S), and say S(x) = V ; v, so that c = (v; �) = c0.By (Closure x) we have ((S; x);�) + (V;�) as required. Otherwise, the termin C is not a variable and exactly one of the (Subst �) rules applies. Eachneeds to be considered in turn; we show just one case.(Subst Select) Here c = (a:`j; �0) and c0 = (v; �2) such that(a; �0) + (�; �1) (9)�1(�) = [`i = ς(xi)bi i21::n] (10)(bjff�=xjgg; �1) + c0 (11)with j 2 1::n. From C ; c it follows that C = ((S; a0:`j);�0) withS ; s, �0 ; �0 and a = a0ffsgg. By induction hypothesis and (9), thereis terminal C1 such that ((S; a0);�0) + C1 (12)and C1 ; (�; �1). We must have C1 = (�;�1) with �1 ; �1. By (10),�1(�); [`i = ς(xi)bi i21::n] and therefore�1(�) = [`i = (Si; ς(xi)b0i) i21::n] (13)with Sj ; sj, bj = b0jffsjgg and xj =2 dom(Sj). Now since we may derive(((xj 7! �) :: Sj; b0j);�1) ; (b0jff�=xjgg; �1), the induction hypothesis and(11) imply there is C 0 with(((xj 7! �) :: Sj; b0j);�1) + C 0 (14)and C 0 ; c0. Combining (12), (13) and (14) using (Closure Select) weobtain C + C 0 as required.The other cases are similar. 2



19Theorem 2 Suppose C and C 0 are initial and terminal con�gurations re-spectively, and that C ; c and C 0 ; c0. Then C + C 0 if and only if c + c0.Proof Suppose C + C 0. By Lemma 5 there is c00 with C 0 ; c00 and c + c00.By Proposition 5, c0 = c00. On the other hand, suppose c + c0. By Lemma 6,there is a terminal con�guration C 00 such that C 00 ; c0 and C + C 00. ByProposition 5, C 0 = C 00. 22.5 Discussion and Related WorkA big-step closure-based semantics, as in Section 2.4 or, say, the de�nition ofStandard ML, is attractive as a language de�nition because it directly yieldsan e�cient algorithm for interpreting the calculus. For instance, Cardelli(1995) implements Obliq in this way. On the other hand, substitution-basedsemantics are simpler to work with when reasoning about program equiva-lence; we apply the substitution-based semantics of Sections 2.2 and 2.3 inSections 4 and 5 respectively. In fact, either substitution-based semanticswould do alone; we include both for the sake of completeness.We do not present a small-step closure-based semantics for the imperativeobject calculus; this would amount to an SECD machine (Landin 1964) forthe calculus. The next section, however, contains a small-step closure-basedsemantics for an object-oriented abstract machine to which we compile theobject calculus.The technique used to prove Theorem 1, the consistency of the twosubstitution-based semantics is well-known. An analogous result is proved byPlotkin (Plotkin 1975), who also proves the consistency with the SECD ma-chine of what amounts to a big-step substitution-based operational semantics.On the other hand, the proof technique of Theorem 2, the consistency of thesubstitution-based and closure-based big-step semantics, appears to be new,though the idea of unloading a closure to a term goes back to Plotkin (Plotkin1975). There is a proof by Felleisen and Friedman (Felleisen and Friedman1989) of the equivalence of substitution-based and closure-based semanticsfor an imperative �-calculus, but they work with small-step rather than big-step semantics.3 Compilation to an Abstract MachineIn this section we present an abstract machine, based on the ZAM (Leroy1990), for the extended calculus of imperative objects, a compiler sending theobject calculus to the instruction set of the abstract machine and a correct-ness result, Theorem 3. The proof depends on an unloading procedure which



20converts con�gurations of the abstract machine back into con�gurations ofthe object calculus from Section 2. The unloading procedure depends on amodi�ed abstract machine whose argument stack and environment containobject calculus terms as well as locations.3.1 The Abstract MachineThe machine de�ned here is based on Leroy's ZAM. The ZAM was designedfor e�cient evaluation of curried functions. The machine con�guration con-sists of a state paired with a store. A store is a �nite map from locations tostored objects. A state is a quadruple, (ops; AS; E;RS), consisting of a listof instructions (or operations), ops, an argument stack, AS, an environment,E, and a return stack, RS. The instruction list is obtained from compilingsome source term. Each item on the argument stack is either a value, V , ora mark, }. A value is either the location, �, of an object in the store, or aclosure, (ops; E), which is an operation list ops paired with an environmentE. A mark is a special tag introduced by Leroy for e�cient evaluation offunctions. An environment is a list of values that represents the runtime val-ues assumed by variables free in the original source term. The return stackis a list of frames representing the currently active method invocations andfunction calls. A frame is simply a closure.To call a function a mark is pushed onto the stack, the arguments areevaluated and pushed onto the stack and the code for the function body iscalled. The body of the function can read in (curried) arguments o� thestack, and discovers when it has consumed all its arguments when it �ndsthe mark. If the function returns (on executing a return instruction) andthere are more arguments to consume, the result of the function (which mustitself be a function if execution is to proceed) is called, and will consume theextra arguments that are available.The instruction set of our abstract machine consists of the following op-erations.op ::= operationaccess i variable accessobject[(`i; opsi) i21::n] object constructionselect ` method invocationupdate(`; ops) method updatelet ops letcur ops build function closureapply apply functiongrab get curried argument



21pushmark push mark onto stackreturn return from functionops ::= [] j op :: opsWe describe the workings of our machine informally as follows:� The instruction access i fetches the ith value in the current environ-ment, and pushes it onto the argument stack. It is used for looking upthe value of a variable.� The instruction object[(`i; ops i)i21::n] creates a new object in the store,and pushes the location of the newly created object onto the argumentstack. The `i are method labels and the ops i are the correspondingcompiled methods.� The instruction select` pops the location of an object o� the argumentstack, and loads from the object the method closure (ops; E) labelled`. The current operation list and environment are saved by pushingthem as a pair onto the return stack, and then are replaced by the newoperation list ops and the new environment E.� The instruction update(`; ops) pops the location of an object o� theargument stack, and updates the method closure labelled ` in thatobject with the closure (ops; E), where E is the current environment.� The instruction let ops pops a value o� the argument stack, and addsit to the environment. The instructions ops are then executed in thenew environment. A frame built from the remainder of the operationlist and the current environment is pushed onto the return stack, to beexecuted once the instructions ops have been completed.� The instruction cur ops pushes a function closure onto the argumentstack. The closure is built by pairing the compiled function body, ops,with the current environment.� The instruction apply pops a function closure and value o� the argu-ment stack. The current operation list and environment are pushedas a frame onto the return stack, and the closure is executed with thevalue (the argument to the function) added to its environment.� The instruction pushmark pushes a mark, }, onto the argument stack.This instruction is used to delimit a series of curried arguments to afunction.



22 � The instruction grab examines the top of the argument stack. If thetop of the argument stack is a mark, }, the grab instruction buildsthe current state into a closure and returns to the function caller bypopping a frame o� the return stack. Otherwise, if the top of theargument stack is a value, the value is added to the environment andthe execution of the function proceeds. The grab instruction startsthe compiled form of a nested function. For example, in the term�(x)�(y)a, the compilation of the �(y)a term will start with a grabinstruction.� The instruction return can be considered a dual to grab. Whenreturn is executed (at the end of a function call), the value the func-tion is returning is on the top of the argument stack. If the returnvalue is a function, and this function is being applied directly to anargument, the value will be second on the argument stack. In thiscase, return will perform the function application without returningto the original function caller. On the other hand, if the return valueis not being applied to an argument, a mark, }, will be second on theargument stack. In this case, the mark is removed and the functioncaller is popped back o� the return stack.We now give a formal de�nition of the abstract machine. An abstractmachine con�guration, C or D, is a pair (P;�), where P is a state and � isa store, given as follows:P;Q ::= (ops; E; AS;RS) machine stateU; V ::= � j fun(ops; E) valueU}; V } ::= U j } value or markE ::= [Ui i21::n] environmentAS ::= [U}i i21::n] argument stackRS ::= [Fi i21::n] return stackF ::= (ops; E) closure or frameO ::= [(`i; Fi) i21::n] stored object (`i distinct)� ::= [�i 7! Oi i21::n] store (�i distinct)In a con�guration ((ops; E; AS;RS);�), ops is the current program. En-vironment E contains variable bindings. Argument stack AS contains resultsof evaluating terms and control 
ow information in the form of marks, }.Return stack RS holds return addresses during function calls and methodinvocations. Store � associates locations with objects.Two transition relations, given next, represent execution of the abstractmachine. A �-transition, P ��! Q, corresponds directly to a reduction in the



23object calculus. A � -transition, P ��! Q, is an internal step of the abstractmachine, for example a method return or a variable lookup. Lemma 17 relatesreductions of the object calculus and transitions of the abstract machine.(� Return) (([]; E; AS; (ops; E 0) ::RS);�) ��! ((ops; E 0; AS;RS);�).(� Function Return) (([return]; E; U ::} :: AS; (ops; E 0) :: RS);�) ��!((ops; E 0; U :: AS;RS);�).(� Function Return) (([return]; E; fun(ops; E 0) :: U :: AS;RS);�) ��!((ops; U :: E 0; AS;RS);�).(� Grab) ((grab :: ops; E;} :: AS; (ops 0; E 0) :: RS);�) ��!((ops 0; E 0; fun(ops; E) :: AS;RS);�).(� Grab) ((grab :: ops; E; U :: AS;RS);�) ��! ((ops; U :: E;AS;RS);�).(� Access) ((access j :: ops; E; AS;RS);�) ��! ((ops; E; Uj ::AS;RS);�)if E = [Ui i21::n] and j 2 1::n.(� Pushmark)((pushmark :: ops; E; AS;RS);�) ��! ((ops; E;} :: AS;RS);�).(� Cur) ((cur ops :: ops 0; E; AS;RS);�) ��!((ops 0; E; fun(ops; E) :: AS;RS);�).(� Clone) ((clone :: ops; E; � :: AS;RS);�) ��! ((ops; E; �0 :: AS;RS);�0)if �(�) = O and �0 = (�0 7! O) :: � and �0 =2 dom(�).(� Object) ((object[(`i; opsi) i21::n] :: ops; E; AS;RS);�) ��!((ops; E; � :: AS;RS); (� 7! [(`i(ops i; E)) i21::n]) :: �) if � =2 dom(�).(� Select) ((select `j :: ops; E; � :: AS;RS);�) ��!((opsj; � :: Ej; AS; (ops; E) ::RS);�)if �(�) = [(`i; (ops i; Ei)) i21::n] and j 2 1::n.(� Update)((update(`; ops 0) :: ops; E; � ::AS;RS);�) ��! ((ops; E; � ::AS;RS);�0)if �(�) = O@[(`; F )]@O0 and �0 = � + (� 7! O@[(`; (ops 0; E))]@O0).(� Let) ((let ops 0 :: ops; E; U :: AS;RS);�) ��!((ops 0; U :: E;AS; (ops; E) ::RS);�).



24(� Apply) ((apply :: ops; E; fun(ops 0; E 0) :: U :: AS;RS);�) ��!((ops 0; U :: E 0; AS; (ops; E) ::RS);�).Let C ���! D if C ��! D or C ��! D.We now describe compilation of the object calculus to the instruction setof our abstract machine. We use the notation grabn for the list [grab; grab;: : : ; grab] consisting of n grab instructions, and the notation �(x1x2 : : : xn)afor the term �(x1)�(x2) : : : �(xn)a when n > 0 and a when n = 0. Werepresent compilation of a term a to an operation list ops by the judgmentxs ` a ) ops, de�ned by the following rules. The variable list xs includesall the free variables of a; it is needed to compute the de Bruijn index of eachvariable occurring in a.(Trans Var) [xi i21::n] ` xj ) [access j] if j 2 1::n.(Trans Object) xs ` [`i = ς(yi)ai i21::n]) [object[(`i; ops i) i21::n]]if yi :: xs ` ai ) ops i and yi =2 xs for all i 2 1::n.(Trans Select) xs ` a:`) ops@[select `] if xs ` a) ops.(Trans Update) xs ` (a:`( ς(x)a0)) ops@[update(`; ops 0)]if xs ` a) ops and x :: xs ` a0 ) ops 0 and x =2 xs.(Trans Clone) xs ` clone(a)) ops@[clone] if xs ` a) ops.(Trans Let) xs ` let x = a in a0 ) ops@[let ops 0]if xs ` a) ops and x :: xs ` a0 ) ops 0 and x =2 xs.(Trans Apply) xs ` (a1a2 : : : an) ) pushmark :: opsn @ opsn�1 @ : : : @ops1@[apply]if xs ` ai ) ops i for all i 2 1::n and a1 is not a function application.(Trans Function) xs ` �(xn+1xn : : : x1)a) [cur(grabn@ ops @ [return])]if xi =2 xs for all i 2 1::n+ 1, all the xi are distinct, a is not a �abstraction and [xi i21::n+1]@xs ` a) ops.3.2 Examples of Compilation and ExecutionWe illustrate compilation and execution via three examples.



25Example 1: Method invocationAs a �rst example, let the term a = pair([]; []):fst , (pair was de�ned inSection 2.1). We have [] ` a) ops, where the operation list ops is given by:ops = [object[(fst ; ops1); (snd ; ops2); (swap; ops3)]; select fst ]ops1 = [object[]]ops2 = [object[]]ops3 = [access 1; select fst ; let ops4]ops4 = [access 2; select snd ; let ops5]ops5 = [access 3; update(fst ; [access 2]); update(snd ; [access 3])]If we load ops into an empty machine con�guration we get the followingcomputation.((ops; []; []; []); [])��! (([select fst ]; []; [�1]; []);�1) by (� Object)where �1 = [�1 7! [(fst ; ops1); (snd ; ops2); (swap; ops3)]]��! ((ops1; [�1]; []; [([]; [])]);�1) by (� Select)��! (([]; [�1]; [�2]; [([]; [])]);�2) by (� Object)where �2 = (�2 7! []) :: �1��! (([]; []; [�2]; []);�2) by (� Return)When the abstract machine terminates, the answer to the computationcan be found as the single item on the argument stack. In this case, theterminal con�guration (([]; []; [�2]; []);�2). The location �2 returned on theargument stack references an empty object in the store.Example 2: ZAM-Style Function CallAs a second example, let the term a = (�(x)x)(�(x)[])[]. We have [] ` a )ops, where the operation list ops is given by:ops = [pushmark; object[]; cur ops2; cur ops1; apply]ops1 = [access 1; return]ops2 = [object[]; return]If we load ops into an empty machine con�guration we get the followingcomputation.((ops; []; []; []); [])



26 ��! (([object[]; cur ops2; cur ops1; apply]; []; [}]; []); [])by (� Pushmark)��! (([cur ops2; cur ops1; apply]; []; [�1;}]; []);�1 def= [�1 7! []])by (� Object)��! (([cur ops1; apply]; []; [fun(ops2; []); �1;}]; []);�1)by (� Cur)��! (([apply]; []; [fun(ops1; []); fun(ops2; []); �1;}]; []);�1)by (� Cur)��! ((ops1; [fun(ops2; [])]; [�1;}]; [([]; [])]);�1) by (� Apply)��! (([return]; [fun(ops2; [])]; [fun(ops2; []); �1;}]; [([]; [])]);�1)by (� Access)��! ((ops2; [�1]; [}]; [([]; [])]);�1) by (� Function Return)��! (([return]; [�1]; [�2;}]; [([]; [])]);�2 def= (�2 7! []) :: �1)by (� Object)��! (([]; []; [�2]; []);�2) by (� Function Return)We see in this example the mechanism for function application, and inparticular how, like the ZAM, our abstract machine uses a mark on the stackto delimit a series of arguments to a function.The function call begins with the (� Pushmark) � -transition. The ab-stract machine evaluates applications in a right-to-left fashion, pushing theresults of evaluating the arguments onto the argument stack. The closurerepresenting the function to be called is pushed onto the argument stack,and the (� Apply) �-transition starts the body of the function �(x)x appliedto the �rst argument and pushes an entry on the return stack. During the(� Function Return) �-transition, which does not touch the return stack,the outcome of this application gets applied to the second curried argument.The (� Function Return) � -transition completes the application by poppingthe entry o� the return stack.In the terminal con�guration, (([]; []; [�2]; []);�2) we have a location �2 onthe argument stack. At location �2 in the store �2 is an empty object []. Thisevaluation produces some garbage in the store, at location �1.Example 3: ZAM-Style Curried Function CallAs a third example, let the term a = (�(xyz)x)[][]. We have [] ` a ) ops,where the operation list ops is given by:ops = [pushmark; object[]; object[]; cur(ops1); apply]ops1 = [grab; grab; access 3; return]



27If we load ops into an empty machine con�guration we get the followingcomputation.((ops; []; []; []); [])��! (([object[]; object[]; cur(ops1); apply]; []; [}]; []); [])by (� Pushmark)��! (([object[]; cur(ops1); apply]; []; [�1;}]; []);�1) by (� Object)where �1 = [�1 7! []]��! (([cur(ops1); apply]; []; [�2; �1;}]; []);�2) by (� Object)where �2 = [�1 7! []; �2 7! []]��! (([apply]; []; [fun(ops1; []); �2; �1;}]; []);�2) by (� Cur)��! ((ops1; [�2]; [�1;}]; [([]; [])]);�2) by (� Apply)��! (([grab; access 3; return]; [�1; �2]; [}]; [([]; [])]);�2) by (� Grab)��! (([]; []; [fun([access 3; return]; [�1; �2])]; []);�2) by (� Grab)Consider the transitions corresponding to the application of the func-tion �(xyz)x to its two curried arguments [] and []. The curried call beginswith the (� Pushmark) � -transition, which pushes a mark, }, onto the ar-gument stack. After the two arguments have been evaluated, the (� Apply)�-transition starts the body of the function �(xyz)x applied to the �rst cur-ried argument, [], and pushes an entry on the return stack. The (� Grab)�-transition applies the curried function �(yz)x to the second argument, [].The second grab instruction �nds a mark on the stack indicating there areno more arguments to be consumed, so causes a (� Grab) � -transition, whichbuilds a closure and returns, popping an entry o� the return stack.The terminal con�guration is:(([]; []; [fun([access 3; return]; [�1; �2])]; []);�2)We will show formally in Section 3.4 that the function closure returned onthe argument stack, fun([access 3; return]; [�1; �2]), represents the function�(z)�2.3.3 The Unloading MachineTo prove the abstract machine and compiler correct, we need to convertback from a machine state to an object calculus term. To do so, we load thestate into a modi�ed abstract machine, the unloading machine, and whenthis unloading machine terminates, its argument stack contains a single termthat is a decompiled version of the original state.



28 The unloading machine is like the abstract machine, except that insteadof executing each instruction, it reconstructs the corresponding source term.Since no store lookups or updates are performed, the unloading machinedoes not act on a store. An unloading machine state is like an abstractmachine state, except that values are generalised to arbitrary terms. Let anunloading machine state, p or q, be a quadruple (ops; e; as; RS) where e andas are de�ned as follows:e ::= [ai i21::n] unloading environmenta}; b} ::= a j } term or markas ::= [a}i i21::n] unloading stackNext we make a simultaneous inductive de�nition of a u-transition rela-tion p u�! p0, and three unloading relations: (ops; e); (x)b, that unloads amethod closure to a method, fun(ops; e) ; �(x)b, that unloads a functionclosure to a �-abstraction and [U}i i21::n]; [a}i i21::n], that unloads a list.(u Access) (access j :: ops 0; e; as; RS) u�! (ops 0; e; aj :: as; RS)if j 2 1::n and e = [ai i21::n].(u Object) (object[(`i; opsi) i21::n] :: ops 0; e; as; RS) u�!(ops 0; e; [`i = ς(xi)bi i21::n]::as; RS) if (ops i; e); (xi)bi for each i 2 1::n.(u Clone) (clone :: ops 0; e; a :: as; RS) u�! (ops 0; e; (clone(a)) :: as; RS).(u Select) (select ` :: ops 0; e; a :: as; RS) u�! (ops 0; e; (a:`) :: as; RS).(u Update) (update(`; ops) :: ops 0; e; a :: as; RS) u�!(ops 0; e; (a:`( ς(x)b) :: as; RS) if (ops; e); (x)b.(u Let) (let(ops 0)::ops 00; e; a::as; RS) u�! (ops 00; e; (let x = a in b)::as; RS)if (ops 0; e); (x)b.(u Return) ([]; e; as; (ops; E) :: RS) u�! (ops; e0; as; RS)if E ; e0.(u Cur) (cur ops :: ops 0; e; as; RS) u�! (ops 0; e; (�(x)a) :: as; RS)if fun(ops; e); �(x)a.(u Function Return) ([return]; e; [ai i21::n]@[}]@as; RS) u�!([]; e; (a1(a2) � � � (an)) :: as; RS).(u Grab) (grab :: ops; e; as; RS) u�! ([return]; e; (�(x)a) :: as; RS)if fun(ops; e); �(x)a.



29(u Apply) (apply :: ops; e; [ai i21::n]@[}]@as; RS) u�!(ops; e; (a1a2 : : : an) :: as; RS).(u Pushmark) (pushmark :: ops; e; as; RS) u�! (ops; e;} :: as; RS).(Unload Abstraction) (ops; e); (x)bif x =2 fv(e) and (ops; x :: e; []; []) u�!� ([]; e0; [b]; []).(Unload Closure) fun(ops; e); �(x)bif x =2 fv(e) and (ops; x :: e; [}]; []) u�!� ([]; e0; [b]; []).(Unload List Empty) []; [].(Unload List Loc) � :: [U}i i21::n]; � :: [a}i i21::n]if [U}i i21::n]; [a}i i21::n].(Unload List Closure) fun(ops; E) :: [U}i i21::n]; (�(x)a) :: [a}i i21::n]if [U}i i21::n]; [a}i i21::n], E ; e and fun(ops; e); �(x)a.(Unload List Mark) } :: [U}i i21::n]; } :: [a}i i21::n]if [U}i i21::n]; [a}i i21::n].We complete the machine with the following unloading relations: O; o(on objects), �; � (on stores) and C ; c (on con�gurations).(Unload Object) [(`i; (ops i; Ei)) i21::n]; [`i = ς(xi)bi i21::n]if Ei ; ei and (ops i; ei); (xi)bi for all i 2 1::n.(Unload Store) [�i 7! Oi i21::n]; [�i 7! oi i21::n] if Oi ; oi for all i 2 1::n.(Unload Con�g) ((ops; E; AS;RS);�); (a; �)if �; �, E ; e, AS ; as and (ops; e; as; RS) u�!� ([]; e0; [a]; []).Let p ; a if and only if there is e such that p u�!� ([]; e; [a]; []). We sayP # p if P = (ops; E; AS;RS), p = (ops; e; as; RS), E ; e and AS ; as.Therefore (P;�); (a; �) if and only if P # p, p; a and �; �.3.4 Examples of UnloadingTo clarify the workings of the unloading machine, we present some examples.We unload some of the abstract machine states of the examples in Section 3.2.



30Example 1: Unloading a Compiled TermRecall from Example 3 of Section 3.2 the con�guration ((ops; []; []; []); []),where ops = [pushmark; object[]; object[]; cur(ops1); apply]ops1 = [grab; grab; access 3; return]We know already that [] ` (�(xyz)x)[][]) ops.We aim to prove ((ops; []; []; []); []) ; ((�(xyz)x)[][]; []). We build up tothis result in four steps. The �rst step corresponds to unloading the body ofthe function �(xyz)x and each subsequent step will build a function whosebody is the result of the previous step. Bound names are lost in translation,but since we identify terms up to alpha conversion, we choose variables inthis example so that the unloaded term is the same as the original term.(1) We compute:([access 3; return]; [z; y; x]; [}]; [])u�! ([return]; [z; y; x]; [x;}]; []) by (u Access)u�! ([]; [z; y; x]; [x]; []) by (u Function Return)By rule (Unload Closure), we get:fun([access 3; return]; [y; x]); �(z)x(2) Hence, we compute:([grab; access 3; return]; [y; x]; [}]; [])u�! ([return]; [y; x]; [�(z)x;}]; []) by (u Grab)u�! ([]; [y; x]; [�(z)x]; []) by (u Function Return)By (Unload Closure), we get:fun([grab; access 3; return]; [x]); �(yz)x(3) Hence, we compute:(ops1; [x]; [}]; [])u�! ([return]; [x]; [(�(yz)x);}]; []) by (u Grab)u�! ([]; [x]; [�(yz)x]; []) by (u Function Return)Again by (Unload Closure), we get:fun([grab; grab; access 3; return]; []); �(xyz)x



31(4) Below, the result of step (3) is used in the (u Cur) step:(ops; []; []; [])u�! ([object[]; object[]; cur(ops1); apply]; []; [}]; [])by (u Pushmark)u�! ([object[]; cur(ops1); apply]; []; [[];}]; []) by (u Object)u�! ([cur(ops1); apply]; []; [[]; [];}]; []) by (u Object)u�! ([apply]; []; [(�(xyz)x); []; [];}]; []) by (u Cur)u�! ([]; []; [(�(xyz)x)[][]]; []) by (u Apply)The terminal con�guration of the unloading machine has our original ex-pression (�(xyz)x)[][] on the stack. Hence by (Unload Con�g) we have((ops; []; []; []); []); ((�(xyz)x)[][]; []) as desired.Example 2: Unloading a Terminal Con�gurationFor the next example, we unload the terminal con�guration of Example 3of Section 3.2, (([]; []; [fun([access 3; return]; [�1; �2])]; []);�2), where �2 =[�1 7! []; �2 7! []].From rule (Unload Store) we have �2 ; �2 = [�1 7! []; �2 7! []]. To unloadthe closure fun([access 3; return]; [�1; �2]), we calculate:([access 3; return]; [z; �1; �2]; [}]; [])u�! ([return]; [z; �1; �2]; [�2;}]; []) by (u Access)u�! ([]; [z; �1; �2]; [�2]; []) by (u Function Return)By rule (Unload Closure) we get:fun([access 3; return]; [�1; �2]); �(z)�2From rules (Unload List Closure) and (Unload List Empty) we get that theargument stack unloads as follows:[fun([access 3; return]; [�1; �2])]; [�(z)�2]Finally, by (Unload Con�g) we deduce:(([]; []; [fun([access 3; return]; [�1; �2])]; []);�2); (�(z)�2; �2)Combining the working from this section and Section 3.2, we have shownthat unloading the outcome of compiling and executing the term (�(xyz)x)[][],yields the con�guration (�(z)�2; [�1 7! []; �2 7! []]).



32Example 3: Unloading an Intermediate Con�gurationFor a �nal example, we consider an intermediate con�guration obtained fromthe evaluation of (�(x)x:`)[` = ς(s)�(y)y][] in the abstract machine. Thecon�guration we will unload is:(([select `; return]; [�2]; [�2; �1;}]; [([]; [])]);�2)where �2 = [�1 7! []; �2 7! [(`; ([cur([access 1; return])]; []))]]We �rst unload the store:� We compute:([access 1; return]; [y; s]; [}]; [])u�! ([return]; [y; s]; [y;}]; []) by (u Access)u�! ([]; [y; s]; [y]; []) by (u Function Return)So by rule (Unload Closure), fun([access 1; return]; [s]); �(y)y.� Hence, we get:([cur([access 1; return])]; [s]; []; []) u�! ([]; [s]; [�(y)y]; [])By (Unload Abstraction) we get:([cur([access 1; return])]; []); (s)�(y)y� Hence by rule (Unload Store):�2 ; [�1 7! []; �2 7! [` = ς(s)�(y)y]]To unload the other component of the con�guration, we compute:([select `; return]; [�2]; [�2; �1;}]; [([]; [])])u�! ([return]; [�2]; [�2:`; �1;}]; [([]; [])]) by (u Select)u�! ([]; [�2]; [(�2:`)�1]; [([]; [])]) by (u Function Return)u�! ([]; []; [(�2:`)�1]; []) by (u Return)By rule (Unload Con�g) we deduce:(([select `; return]; [�2]; [�2; �1;}]; [([]; [])]);�2); ((�2:`)�1; [�1 7! []; �2 7! [` = ς(s)�(y)y]])



333.5 Correctness of the Abstract MachineWe start with a lemma which shows that the unloading machine is indepen-dent of the terms in its environment and on its stack. De�ne the shape of(ops; e; as0; RS) to be the quadruple (ops; jej; jasj; RS), and write shape p forthe shape of p. We say two stacks [a}i i21::n] and [b}i i21::m] are mark-equivalentif and only if n = m and a}j = } if and only if b}j = }. We say p and q areshape-mark-equivalent if shape p = shape q and the argument stack of p ismark-equivalent to that of q.Lemma 7 If p u�! p0 and p is shape-mark-equivalent to q then there is a q0with q u�! q0 and p0 is shape-mark-equivalent to q0.Proof This is proved by induction on the derivation of p u�! p0. For exam-ple, if p = (let ops 0 :: ops 00; e; a :: as; RS) then p0 = (ops 00; e; [let x = a in b] ::as; RS) where (ops 00; e); (x)b. Let q = (letops 0::ops 00; e0; a0::as0; RS) whereje0j = jej, jasj = jas0j and as is mark-equivalent to as0. (ops 00; e) ; (x)bmeans that there are pj for j 2 1::n with p1 = (ops 00; x :: e; []; []), pn =([]; e00; [b]; []) and for all j 2 1::n� 1 pj u�! pj+1. Then we can apply theinductive hypothesis to get qi for j 2 1::n with q1 = (ops 00; x :: e0; []; []), qn =([]; e000; [b0]; []) and for all j 2 1::n� 1 qj u�! qj+1. Hence (ops 00; e0) ; (x)b0.By (u Let) q u�! q0 = (ops 00; e0; [let x = a0 in b0] :: as0; RS) and p0 is shape-mark-equivalent to q0. 2A corollary of Lemma 7 is the following:Lemma 8 If p; a then for all q with p and q shape-mark-equivalent, thereis an a0 with q ; a0.Proof p; a means that there is a sequence of reductionsp u�! p1 u�! � � � u�! pnwhere pn is of the form ([]; e; [a]; []). Applying Lemma 7 inductively to thischain gives a new chain of reductionsq u�! q1 u�! � � � u�! qnwhere qn is of the form ([]; e0; [a0]; []), and hence q ; a0. 2The following lemma describes some of the behaviour of the stacks of theunloading machine.



34Lemma 9(1) If (ops; e; as; []) u�! (ops 0; e0; as0; []) then for all as00 and for all RS,(ops; e; as@as00; RS) u�! (ops 0; e0; as0@as00; RS).(2) For all ops and op 6= grab, ([op]; e; as; []) u�! ([]; e0; as0; []) if and onlyif we have the transition (op :: ops; e; as; []) u�! (ops; e0; as0; []).(3) If ([opi i21::n]; e; as; []) u�!� ([]; e1; as1; []) and opi = grab for no i 2 1::n,then ([opi i21::n]@ops 0; e; as; []) u�!� (ops 0; e; as1; []).Proof Inspecting the rules for u transitions gives (1) and (2). To prove(3), we note that no u-transition increases RS, and induct on n, applying(2). 2To assist in the use of part (3) of the previous lemma, we have a lemmalimiting the occurrences of grab instructions. In particular, it says no grabinstruction can occur at the top level.Lemma 10 If xs ` a) [opi i21::n] then opi = grab for no i 2 1::n.Proof Immediate from the de�nition of the xs ` a) ops predicate. 2We aim to show that unloading is an inverse to compilation. We prove amore general fact �rst.Lemma 11 If xi i21::n ` a) ops then for all bi i21::n(ops; [bi i21::n]; []; []) u�!� ([]; [bi i21::n]; [affbi=xii21::ngg]; [])Proof We prove this by induction on the derivation of xi i21::n ` a) ops,considering each of the Trans rules individually. Consider any terms b1 : : : bn.(Trans Var) Here a = xj, where j 2 1::n. Then xi i21::n ` a ) [access j]and ([access j]; [bi i21::n]; []; []) u�! ([]; [bi i21::n]; [bj]; [])(Trans Select) Here a = a0:`. We have an ops 0 with xi i21::n ` a0 ) ops 0.Then xi i21::n ` a ) ops 0@[select `]. By rule induction we have that(ops 0; [bi i21::n]; []; []) u�!� ([]; [bi i21::n]; [a00]; []), where a00 = a0ffbi=xii21::ngg.We calculate:(ops 0@[select `]; [bi i21::n]; []; [])u�!� ([select `]; [bi i21::n]; [a00]; []) by Lemmas 9(3) and 10u�! ([]; [bi i21::n]; [a00:`]; []) by (u Select)This su�ces, since we have a00:` = (a0ffbi=xii21::ngg):` = (a0:`)ffbi=xii21::ngg.



35(Trans Let) Here a = (let x = a1 in a2). Since x is bound, we may assumex =2 fv(bi) for each i. We have ops1; ops2 with xi i21::n ` a1 ) ops1and x :: [xi i21::n] ` a2 ) ops2 (where x =2 fxi i21::ng). Then xi i21::n `a ) ops1@[let(ops2)]. From the induction hypothesis, [xi i21::n] `a1 ) ops1 implies (ops1; [bi i21::n]; []; []) u�!� ([]; [bi i21::n]; [a01]; []) wherea01 = a1ffbi=xii21::ngg. The induction hypothesis applied to x :: [xi i21::n] `a2 ) ops2 gives (ops2; x::[bii21::n]; []; []) u�!�([]; x::[bi i21::n]; [a02]; []) wherea02 = a2ffx=xggffbi=xii21::ngg. By (Unload Abstraction), (ops2; [bi i21::n]) ;(x)a02. Applying Lemma 9(3) and Lemma 10, we can derive:(ops1@[let(ops2)]; [bi i21::n]; []; [])u�!� ([let(ops2)]; [bi i21::n]; [a01]; [])u�! ([]; [bi i21::n]; [let x = a01 in a02]; []) by (u Let)This is su�cient, since (let x = a01 in a02) = affbi=xii21::ngg, becausex =2 fv(bi) for all i.(Trans Clone) Here a = clone(a0). This follows in the same way as the(Trans Select) case.(Trans Update) Here a = (a1:` ( ς(x)a2). Derived from xi i21::n ` a1 )ops1 and x :: [xi i21::n] ` a2 ) ops2, where x =2 xs, we have xi i21::n `a ) ops1@[update(`; ops2)]. Via reasoning similar to the case of(Trans Let), we calculate: (ops1@[update(`; ops2)]; [bi i21::n]; []; []) u�!�([]; [bi i21::n]; [(a01` ( ς(x)a02)]; []) where a01 = a1ffbi=xii21::ngg and a02 =a2ffx :: [bi i21::n]=x :: [xi i21::n]gg. This is su�cient, since affbi=xii21::ngg =(a01:`( ς(x)a02).(Trans Object) Here a = [(`i; ς(yi)ai) i21::n]. If yi :: [xi i21::n] ` ai ) ops ithen xi i21::n ` a) [object[(`i; ops i) i21::n]]. By rule induction we havethat for all i, (ops i; yi :: [bj j21::n]); (yi)a0i where a0i = aiffbj=xjj21::ngg andhence that ([object[(`i; ops i)i21::n]]; [bi i21::n]; []; []) u�! ([]; [bi i21::n]; [`i =
ς(yi)a0i]; []) as required.(Trans Function) Here a = �(ym+1 : : : y1)b where b is not a function, yi =2fxj j21::ng for each i 2 1::m+ 1, [yi i21::m+1] @ xs ` b ) ops andxs ` a) [cur(grabm @ ops @ [return])], where xs = [xi i21::n].Let bs = [bi i21::n] and ek = [yi i2k::m+1]@bs for each k 2 1::m+ 1. Weprove by an inner induction on k that for k 2 0::m,([grabk @ ops @ [return]]; ek+1; [}]; []) u�!� ([]; ek+1; [�(yk : : : y1)b0]; [])



36 Base case, k = 0: By the outer induction hypothesis of the lemma,[yi i21::m+1] @ xs ` b) ops implies(ops; e1; []; []) u�!� ([]; e1; [b0]; [])where b0 = bffyi=yii21::m+1ggffbj=xjj21::ngg = bffbj=xjj21::ngg. We calcu-late:(ops @ [return]; e1; [}]; [])u�!� ([return]; e1; [b0;}]; []) by Lemma 9(1 and 3)u�! ([]; e1; [b0]; []) by (u Function Return)Induction case: We assume for the induction, that ([grabk @ ops @[return]]; ek+1; [}]; []) u�!� ([]; ek+1; [�(yk : : : y1)b0]; []).Now, ek+1 = yk+1 :: ek+2, so by (Unload Closure):fun([grabk @ ops @ [return]]; ek+2); �(yk+1)�(yk : : : y1)b0Hence([grabk+1 @ ops @ [return]]; ek+2; [}]; [])u�! ([return]; ek+2; [�(yk+1 : : : y1)b0;}]; []) by (u Grab)u�! ([]; ek+2; [�(yk+1 : : : y1)b0]; []) by (u Function Return)The k = m case gives ([grabm @ ops @ [return]]; ym+1 :: bs; [}]; []) u�!�([]; ym+1 ::bs; [�(ym : : : y1)b0]; []) , so by (u Cur) we deduce ([cur[grabm@ops; [return]]]; bs; []; []) u�! ([]; bs; [�(ym+1 : : : y1)b0]; []) as required.(Trans Apply) Here a = (a1a2 : : : am), and [xi i21::n] ` a ) pushmark ::opsm@opsm�1@ : : :@ops1@ [apply] where for each j 2 1::m [xi i21::n] `aj ) opsj. The induction hypothesis says that for each j 2 1::m wehave (opsj; [bi i21::n]; []; []); ajffbi=xii21::ngg. Lemmas 9(1) and 9(3) givethat (pushmark :: opsm @ : : : @ ops1 @ [apply]; [bi i21::n]; []; []) u�!� p =([apply]; [bi i21::n]; [a01; : : : ; a0m;}]; []) where a0j = ajffbi=xii21::ngg. p u�!([]; [bi i21::n]; [a0]; []) where a0 = affbi=xii21::ngg as required. 2As a corollary we have that unloading is an inverse to compilation:Proposition 6 Whenever [] ` a) ops then ((ops; []; []; []); []); (a; []).The unloading machine preserves substitutions:



37Lemma 12 If p u�! q then pffa=xgg u�! qffa=xgg.Proof By inspecting the u-transition rules. For example, if p = (access j ::ops; [ai i21::n]; as; RS) and p u�! q = (ops; [ai i21::n]; aj ::as; RS), then pffa=xgg =(access j :: ops; [aiffa=xgg i21::n]; asffa=xgg; RS) and by (u Access), pffa=xgg u�!qffa=xgg = (ops; [aiffa=xgg i21::n]; (ajffa=xgg) :: asffa=xgg; RS). 2Lemma 13(1) If p u�! q then fv(q) � fv(p).(2) If (ops; e); (x)b then fv(b)� fxg � fv(e).(3) If fun(ops; e); �(x)b then fv(b)� fxg � fv(e).Proof We prove these simultaneously by inducting on the derivation ofp u�! q, (ops; e) ; (x)b or fun(ops; e) ; �(x)b. For example, if p =(let ops ::ops 0; e; a ::as; RS) and p u�! q = (ops 0; e; (let x = a in b) ::as; RS)where (ops; e); (x)b then by induction, fv(b)�fxg � fv(e), and so fv(q) =fv(as) [ fv(e) [ fv(let x = a in b) � fv(as)fv(e) [ fv(a) = fv(p). 2Next, we show that no u transition can prevent unloading, and that theunloading relation ; is deterministic.Lemma 14 Suppose p u�! q. Then for all a, p; a if and only if q ; a.Proof By determinacy of u�!. 2Lemma 15 Whenever p; a and p; a0, a = a0.Proof Assume p ; a and p ; a0. p ; a0 means p u�!� q = ([]; e; [a0]; []).By Lemma 14, q ; a. But q cannot perform a u-transition (by inspectionof the u-transition rules) and so q ; a0 only. Hence a = a0. 2We now show that the unloading machine preserves reduction contextsunder certain conditions. We use u} and v} to stand for terms which areeither locations, functions or marks (}).Lemma 16 If (ops; e; as; RS) u�! (ops 0; e0; as0; RS 0) and as = [a}i i21::n;R;u}j i21::m] where � =2 fv(e) then � =2 fv(e0) and as0 = [b}i i21::n0;R0; v}j j21::m0]for some R0, b}i and v}j (with i 2 1::n0; j 2 1::m0).Proof We consider each u-transition in turn.



38(u Access) This step pushes a term onto the front of the argument stack,leaving the environment and the remainder of the stack unchanged.(u Object), (u Cur), (u Pushmark), (u Grab) Similar to (u Access).(u Clone) Here ops = clone :: ops 0. If n = 0, so as = [R; u}1 ; : : : ; u}m]then (ops; e; as; RS) u�! (ops 0; e; [clone(R); u}1 ; : : : ; u}m]; RS) and sinceclone(R) is a reduction context this satis�es the conditions of thelemma. Otherwise, in the case n > 0, we have that (ops; e; as; RS) u�!(ops 0; e; [clone(a}1 ); a}2 ; : : : ; a}n ;R; u}j j21::m]; RS).(u Select) Here ops = select ` :: ops 0. Similarly to the (u Clone) case, ifn > 0 the conditions are easily satis�ed. Otherwise, when n = 0, as =[R; u}1 ; : : : ; u}m] and (ops; e; as; RS) u�! (ops 0; e; [R:`; u}1 ; : : : ; u}m]; RS),su�cient since R:` is a reduction context.(u Let) Here ops = let ops 0 :: ops 00. Again, for the n = 0 case, by (u Let)we have (ops 0; e) ; (x)b, and as0 = [let x = R in b; u}1 ; : : : ; u}m]. Thisis su�cient, because (let x = R in b) is a reduction context, since� =2 fv(b) by Lemma 13.(u Update) Similar to (u Let).(u Return) The reduction ([]; e; as; (ops; E 0) :: RS) u�! (ops; e0; as; RS)(where E 0 ; e0) leaves the argument stack unchanged, and � =2 fv(e0)by Lemma 13.(u Function Return) Let p = ([return]; e; as; RS) where we have as =[a}i i21::n;R; u}j j21::m]. If a}k = } and a}i 6= } for i < k, then we havethat p u�! p0 = ([]; e; (a}1 : : : a}k�1) :: [u}k+1; u}k+2; : : : ;R; u}j j21::m]; RS).The conditions of the lemma are satis�ed by p0.Otherwise, if a}i 6= } for each i 2 1::n, then it must be that u}k = }for some k 2 1::m since we are assuming (u Function Return) can beapplied to p. We can pick the least such k, so that u}i 6= } for i < kand u}k = }. Now, p u�! p0 = ([]; e; as0 = (a}1 : : : a}nRu}1 : : : u}k�1) ::[u}k+1; : : : ; u}m]; RS). The term at the head of as0 is a reduction context(since we evaluate right-to-left in applications), so the conditions of thelemma are satis�ed.(u Apply) Similar to (u Function Return) 2We now show that the head of the argument stack corresponds to thepart of the source expression which is currently evaluating.



39Proposition 7 Whenever (ops; e; a :: [u}i i21::n]; RS) ; b, where � =2 fv(e),there is a reduction context, R, such that (ops; e; a0 :: [u}i i21::n]; RS); R[a0]for any a0.Proof If (ops; e; a :: [u}i i21::n]; RS) ; b there is a b0 such that (ops; e; � ::[u}i i21::n]; RS); b0 (by Lemma 8). This means (ops; e; �::[u}i i21::n]; RS) u�!k([]; e0; [b0]; []) for some k. Since � is a reduction context, applying Lemma 16k times tells us that b0 = R for some R. Since � =2 fv(e), Lemma 12 implies(ops; e; a0::[u}i i21::n]; RS); R[a0] (because a0 = �ffa0=�gg andR[a0] = Rffa0=�gg).2We show that � transitions of the abstract machine correspond to reduc-tions in our extended object calculus, and that � transitions are not re
ectedin the source level reductions:Lemma 17(1) If C ; c and C ��! D then D ; c.(2) If C ; c and C ��! D then there is a d such that D; d and c! d.Proof(1) The proof for each of the � transitions is similar. We detail only the (�Access) case.(� Access) Here C = (P;�), where P = (access j :: ops; E; AS;RS),E = [Ui i21::n], j 2 1::n, C ; c = (a; �) and C ��! D = (Q;�)where Q = (ops; E; Uj :: AS;RS). Now, P # p = (access j ::ops; e; as; RS) where E ; e, e = [ai i21::n], Ui ; ai and AS ; as.Similarly Q # q = (ops; e; aj :: as; RS). Since C ; (a; �), and pis unique, p ; a (from the de�nition of (Unload Con�g)). By (uAccess), p u�! q, so by Lemma 14 and p; a we have q ; a. SoD; (a; �) as required.(2) We examine each rule that may derive C ��! D.(� Clone) Here C = (P;�), where P = (clone :: ops; E; � :: AS;RS),and C ��! D = (Q;�0) where Q = (ops; E; �0 :: AS;RS), �0 =(�0 7! �(�)) :: � and �0 =2 dom(�). We have C ; c = (a; �) also,where P # p = (clone::ops; e; �::as; RS), E ; e, AS ; as, p; aand � ; �. By (u Clone), p u�! (ops; e; (clone(�)) :: as; RS).Hence by Lemma 14, (ops; e; (clone(�)) :: as; RS); a. Therefore



40 by Proposition 7, there is a reduction context R such that for alla0, (ops; e; a0::as; RS); R[a0]; by Lemma 15, a = R[clone(�)] andq = (ops; e; �0 :: as; RS) ; R[�0]. Let �0 = (�0 7! �(�)) :: � so that�0 ; �0 by (Unload Store). Let d = (R[�0]; �0). Q # q ; R[�0], soD = (Q;�0); d. Finally, we have c! d using (Red Clone).(� Object), (� Update) These cases work similarly.(� Select) Here C = (P;�), and C ��! D = (Q;�) where P =(select `j :: ops; E; � :: AS;RS), Q = (opsj; � :: Ej; AS; (ops; E) ::bRS) and �(�) = [(`i; (opsi; Ei)) i21::n]. We have C ; c = (a; �)also, where C # (p; �), p = (select `j :: ops; e; � :: as; RS), E ; e,AS ; as, p ; a and � ; �. Also, D # (q; �) where q =(opsj; � :: ej; as; (ops; E) ::RS) and Ej ; ej.By (u Select), p u�! p0 where p0 = (ops; e; (�:`j) :: as; RS). By(Unload Object), �; � and �(�) = [(`i; (opsi; Ei)) i21::n] we havethat Ej ; ej and (opsj; ej) ; (yj)aj for some aj. By (UnloadAbstraction) this means (opsj; yj :: ej; []; []) u�!� ([]; e0; [aj]; []) forsome e0. Hence by Lemma 12 we have (opsj; � :: ej; []; []) u�!�([]; e0ff�=yigg; [aiff�=yigg]; RS). By Lemma 9(1) we have q u�!� q00 =([]; e0ff�=yjgg; (ajff�=yjgg) ::as; (ops; E) ::RS) and by (� Return) q00 u�!q0 = (ops; e; (ajff�=yjgg) :: as; RS) where E ; e. By Proposition 7there is a reduction context R such that for all a0, (ops; e; a0 ::as; RS) ; R[a0]. Applying this to p0 and q0 we get p0 ; R[�:`j]and q0 ; R[ajff�=yjgg]. Since p u�! p0, Lemmas 15 and 14 give usa = R[�:`j]. Let d = (R[ajff�=yjgg]; �). Then c! d and D; d.(� Function Return), (� Apply), (� Let), (� Grab)These work in a similar way to (� Select). 2To prove that the abstract machine simulates the object calculus seman-tics, we �rst need to prove some technical lemmas. We show that the numberof � transitions is bounded for a given state, that if a state unloads to a valuethen its form is restricted, and that if the abstract machine is stuck then sois its unloaded source term.Lemma 18 For all con�gurations C there is a D with C ��!� D and notD ��!.Proof Every ��! step either decreases jRSj or keeps RS constant, andconsumes an instruction.The function f : (ops; E; AS;RS) 7! (jRSj; jopsj) from states to N � Nis such that if C ��! D then f(D) < f(C) in the lexicographic ordering on



41N � N , namely (x; y) < (x0; y0) if x < x0 or x = x0 and y < y0. An in�nitechain C1 ��! C2 ��! ::: would give an in�nite descending chain in N � N , acontradiction since the lexicographic ordering is a well-ordering. 2Lemma 19(1) If D; (�; �) and not D ��! then D = (([]; E; [�]; []);�) for some E;�.(2) If D; (�(x)a; �) and not D ��! then D = (([]; E; [fun(ops; E 0)]; []);�)for some E;� and some ops; E 0 such that fun(ops; E 0); �(x)a.Proof(1) We have that not D ��! since by Lemma 17 we would have a c with(�; �) ! c. Suppose D = ((ops; E; AS;RS);�). By (Unload Con�g)we have �; �, E ; e, AS ; as and (ops; e; as; RS) u�!� ([]; e0; [�]; [])for some e0. First we note that ops = [] since otherwise (by examiningcases) either D would not unload, or could make a � or a � reduction.Similarly, RS = [] since otherwise (since ops = []) D could make a (�Return) transition. Now, ([]; e; as; []) cannot perform a u transition,but ([]; e; as; []) u�!� ([]; e0; [�]; []).Hence, e = e0 and as = �. Since AS ;as = [�] we have AS = [�] by (Unload List Location). Hence D =(([]; E; [�]; []);�).(2) A similar argument shows that D = (([]; E; [fun(ops; E 0)]; []);�) where�; � and fun(ops; E 0); �(x)a. 2Lemma 20 If C ; c and there is no D with C ���! D then there is no dwith c! d.Proof Let C = (P;�), where P = (ops; E; AS;RS). Now, C ; c meansP # p, �; �, p u�!� ([]; e0; [a]; []) (for some e0), and c = (a; �).For a contradiction, suppose that there is no D such that C ���! D,but there is d such that c ! d. Given that p u�!� ([]; e0; [a]; []), either (1)p = ([]; e0; [a]; []) or (2) there is p0 such that p u�! p0 and p0 u�!� ([]; e0; [a]; []).In case (1), a must either be a function or a location, from the de�nitionof AS ; as which forms part of the P # p judgment. Then c = (a; �) is avalue, so there is no d with c! d.In case (2), we consider two of the rules capable of deriving p u�! p0. Thecases for the other rules are similar.



42(u Access) Here p = (access j ::ops; e; as; RS) and p0 = (ops; e; uj ::as; RS)where e = [ui i21::n] and j 2 1::n. Now, P # p means P = (access j ::ops; [Ui i21::n]; AS;RS), Ui ; ui for i 2 1::n and AS ; as. But thenC = (P;�) ��! ((ops; [Ui i21::n]; Uj :: AS;RS);�) by rule (� Access)contradicting the non-existence of D with C ���! D.(u Select) Here p = (select ` :: ops; e; u :: as0; RS) and p0 = (ops; e; (u:`) ::as0; RS). Now, p0 !� ([]; e0; [a]; []) means p0 ; a. From P # p, wededuce E ; e. We note that none of the unloading rules introduces afree variable without binding it, so fv(e) = ?; in particular this implies� =2 fv(e). Hence we may apply Proposition 7 to p0 = (ops; e; (u:`) ::as0; RS) to infer the existence of a reduction context R such that p0 ;R[u:`]. Lemma 14 with p0 ; R[u:`] and p0 ; a implies a = R[u:`]and c = (R[u:`]; �). If c ! d then the only rule that can apply is(Red Select); hence u = � and �(�) = o@[` = ς(x)b]@o0. From P # pwe derive AS ; � :: as0 and E ; e. From AS ; � :: as0 and (UnloadList Loc) we see that AS = � :: AS 0 where AS 0 ; as0. From � ;�, �(�) = o@[` = ς(x)b]@o0, (Unload Store) and (Unload Object) wededuce �(�) = O@[` = (ops 0; E 00)]@O0 where E 00 ; e00 and (ops 0; e00);(x)b. Hence C = ((select ` :: ops; E; � ::AS 0; RS);�). Finally, by rule(� Select), we may derive C ��! ((ops 0; � :: E 00; AS 0; RS);�) and hencea contradiction. 2We are now in a position to show that the abstract machine semanticssimulates the semantics of the object calculus:Lemma 21 If C ; c and c ! d then there are D, D0 with C ��!� D0,D0 ��! D and D ; d.Proof By Lemma 18 we have a D0 with C ��!� D0 and not D0 ��!. Ifthere is no D00 with D0 ��! D00 then by Lemma 20 there is no d with c! d,contradicting the assumption of this lemma. So D0 ��! D00 for some D00. Weconsider each of the �-transitions in turn.(� Select) Here D0 = ((select ` :: ops; E; � :: AS;RS);�) where �(�) =O @ [(`; (ops 0; E 0))] @ O0. Moreover, D0 # (p; �) where p = (select ` ::ops; e; � :: as; RS), E ; e, AS ; as, �; �. Then p u�! (ops; e; (�:`) ::as; RS), and by Proposition 7 there is a reduction context R such thatp; R[�:`]. Hence, c = (R[�:`]; �) and if c! d0 then d = d0, since (RedSelect) is the unique rule which can derive c ! d0 and gives a uniqued0.



43(� Let), (� Update), (� Function Return), (� Apply), (� Grab)Similar to (� Select).(� Clone) Here D0 = (P;�) = ((clone :: ops; E; � :: AS;RS);�) where�(�) = O. By (u Clone), (Unload Store) and Proposition 7, D0 ; c =(R[clone(�)]; �) where �(�) = o and O ; o. Now d = (R[�0]; � + (�0 7!o)) where �0 =2 dom(�). By (Unload Store) �0 =2 dom(�) so by (� Clone)D0 ��! D = ((ops; E; �0 :: AS;RS);� + (�0 7! O)). Invoking Proposi-tion 7 again, we get D ; (R[�0]; � + (�0 7! o)) = d as required.(� Object) Similar to (� Clone). 2We combine Lemmas 17 and 21 to show that the semantics of the ab-stract machine and that of our extended object calculus are related via theunloading relation.Let C & D if C ���!� D and D is of the form (([]; E; [V ]; []);�) for someE, V and �. Such a D we call terminal.Lemma 22(1) If C ; c and C & D then there is a d with D; d and c& d.(2) If C ; c and c& d then there is a D with D; d and C & D.Proof For Part (1) we note that if C !� D and C ; c then by repeatedapplication of Lemma 17 we have that D ; d and c!� d. It remains to notethat if C & D then D is a terminal con�guration, and (since it unloads) itunloads to a value, so c& d.For (2), we note that c& d means c!� d and d = (v; �). By Lemma 21,we have a D0 with C !� D0 and D0 ; (v; �). By Lemma 18 there is a D suchthat D0 ��!� D and not D ��!. By Lemma 17(1) we know D ; (v; �) = d,and by Lemma 19 we get that D is of the form ([]; E; [V ]; []);�) for someE; V;� as required for C & D. 2We are now in a position to prove the main result:Theorem 3 Suppose that [] ` a ) ops. Then, for all d, (a; []) & d if andonly if there is a D with ((ops; []; []; []); [])& D and D; d.Proof Given [] ` a) ops, Proposition 6 implies that ((ops; []; []; []); []);(a; []). Suppose (a; [])& d. By Lemma 22(2), there isD such thatD ; d and((ops; []; []; []); [])& D. Conversely, consider a D with ((ops; []; []; []); [])& Dand D ; d. By Lemma 22(1), there is d0 such that D; d0 and (a; [])& d0.A corollary of Lemma 15 is that D ; d and D ; d0 imply that d = d0.Therefore, we have (a; [])& d, as desired. 2



443.6 Discussion and Related WorkWe have proved correct a machine based on the machine used in our imple-mentation. The machine could be described as a ZAM (Leroy 1990) plusobjects, but without some of the ZAM's tail-recursion optimisations. Be-cause of this, the proof given here can be considered as a correctness proofof a simpli�ed ZAM, and we are sure that the proof could be scaled up tothe full ZAM.There is a large literature on proofs of interpreters based on abstract ma-chines, such as Landin's SECD machine (Hannan and Miller 1992; Plotkin1975; Sestoft 1997). Since no compiled machine code is involved, unloadingsuch abstract machines is easier than unloading an abstract machine basedon compiled code. The VLISP project (Guttman, Swarup, and Ramsdell1995), using denotational semantics as a metalanguage, is the most am-bitious veri�cation to date of a compiler-based abstract machine. Otherwork on compilers deploys metalanguages such as calculi of explicit substitu-tions (Hardin, Maranget, and Pagano 1998) or process calculi (Wand 1995).Rather than introduce a metalanguage, we prove correctness of our abstractmachine directly from its operational semantics. We adopted Rittri's idea(Rittri 1990) of unloading a machine state to a term via a specialised unload-ing machine. Rittri uses a generic framework based on bisimulation to provecorrectness of both a machine for evaluating arithmetic expressions, and theSECD machine. Our work goes beyond Rittri's by dealing with state andobjects. We found it simpler to write a direct proof than to appeal to hisgeneric framework.There are di�erences, of course, between our formal model of the abstractmachine and our actual implementation. One di�erence is that we havemodelled programs as �nitely branching trees, whereas in the implementa-tion programs are bytecode arrays indexed by a program counter. Anotherdi�erence is that our model omits garbage collection, which is essential tothe implementation. Therefore Theorem 3 only implies that the compilationstrategy is correct; bugs may remain in its implementation.4 Operational EquivalenceWe now develop a theory of operational equivalence for the imperative objectcalculus. We consider only the core object calculus, not the calculus extendedwith functions. The standard de�nition of operational equivalence betweenterms is that of contextual equivalence (Morris 1968; Plotkin 1977): twoterms are equivalent if and only if they are interchangeable in any program



45context without any observable di�erence; the observations are typically theprograms' termination behaviour. Contextual equivalence is the largest con-gruence relation that distinguishes observably di�erent programs. Terms areequivalent if and only if no amount of programming can tell them apart.This is a robust and reasonable de�nition of semantic equivalence.Mason and Talcott (1991) have shown a useful context lemma for func-tional languages with state. It asserts that contextual equivalence coincideswith so-called CIU (\Closed Instances of Use") equivalence. Informally, toprove two terms are CIU equivalent, one needs to show that they have iden-tical termination behaviour when placed in the redex position in an arbitrarycon�guration and locations are substituted for the free variables. Althoughcontextual equivalence and CIU equivalence are the same relation, the de�-nition of the latter is typically easier to use in proofs.We take CIU equivalence as our de�nition of operational equivalence forimperative objects and we establish some useful equivalence laws. Further-more, we show that operational equivalence is a congruence, allowing com-positional equational reasoning and a proof that it coincides with contextualequivalence. The congruence proof is adapted from the corresponding con-gruence proof for a �-calculus with references by Honsell, Mason, Smith, andTalcott (1993).We take a modular approach to formulating CIU equivalence. In Sec-tion 4.1, we introduce experimental equivalence, an auxiliary relation oncon�gurations. In Section 4.2, we phrase our de�nition of operational equiv-alence in terms of experimental equivalence, but prove our formulation isequivalent to the one of Mason and Talcott (1991). We derive a variety ofequational laws for imperative objects in Section 4.3. Section 4.4 containsour congruence proof for operational equivalence, which we use in Section 4.5to show that operational and contextual equivalence are the same.4.1 Experimental EquivalenceFor con�gurations c and c0, we write c l c0 to mean that either both convergeor neither of them converges, that is, c# if and only if c0#.We de�ne a family of relations on con�gurations, called experimentalequivalence. Recall that w ranges over �nite sets of locations. Two con-�gurations (a; �) and (a0; �0) are experimentally equivalent at index set w,written (a; �) �w (a0; �0), if and only if `w (a; �) ok , `w (a0; �0) ok and, for allreduction contexts with locs(R) � w and fv(R) = f�g, (R[a]; �) l (R[a0]; �0).We may regard experimental equivalence at w as a kind of testing equiv-alence. Let a w-test be a reduction context R such that locs(R) � w andfv(R) = f�g. Let a con�guration (a; �) pass a w-test, R, if and only if



46(R[a]; �)#. Then two con�gurations c and c0 are experimentally equivalentat w if and only if `w c ok , `w c0 ok and they pass the same w-tests.The index set w is a view into the con�gurations: the locations in thestores that R may directly inspect. Other locations in the stores may onlybe inspected indirectly.For every index set w, experimental equivalence is an equivalence rela-tion (re
exive, transitive and symmetric) on con�gurations, and it is anti-monotone in the index set w:(� Re
)`w c okc �w c (� Trans)c �w c00 c00 �w c0c �w c0 (� Symm)c �w c0c0 �w c (� Anti)c �w0 c0 w � w0c �w c0The following, easily proved facts about the interaction between reductioncontexts and reduction facilitate operational arguments involving reductioncontexts.Lemma 23 For every closed reduction context R with locs(R) � dom(�),(1) (a; �) ! (a0; �0) if and only if (R[a]; �) ! (R[a0]; �0), if a is not avalue, and(2) (R[a]; �) !� (v; �0) if and only if there is a con�guration (v0; �00) suchthat (a; �)!� (v0; �00) and (R[v0]; �00)!� (v; �0).Part (2) implies that if (a; �) goes wrong or diverges, so does (R[a]; �).We can prove that reduction is sound with respect to experimental equiv-alence:Lemma 24 If `w c ok and c! c0, then c �w c0.Proof Suppose `w (a; �) ok and (a; �) ! (a0; �0). Then `w (a0; �0) okholds by Lemma 1. Further, suppose locs(R) � w and fv(R) = f�g. FromLemma 23(1) we get that (R[a]; �)! (R[a0]; �0). Clearly, (R[a0]; �0)# implies(R[a]; �)# because any converging reduction sequence from (R[a0]; �0) extendsto a converging reduction sequence from (R[a]; �). The reverse implicationfollows because reduction is deterministic up to structural equivalence atw, that is, by a combination of Proposition 1 and Lemma 3. We conclude(a; �) �w (a0; �0), as required. 2Moreover, up to experimental equivalence, all that matters about a con-�guration is whether it converges, and if so, to which terminal con�gurationit converges:



47Lemma 25 Suppose `w c ok and `w c0 ok. Then c �w c0 if and only if either(1) both c and c0 converge, that is, there are terminal d and d0 such thatc!� d and c0 !� d0, and moreover d �w d0, or(2) neither c nor c0 converges.Proof For the forwards direction, suppose c = (a; �) and c0 = (a0; �0). Weproceed by considering whether or not c converges, that is, whether or notthere is a terminal d with c!� d. If so, letR = � so that (R[a]; �) = c. Since(R[a]; �)#, c �w c0 implies c0 = (R[a0]; �0)#, that is, there is terminal d0 withc0 !� d0. Lemma 24 implies that c �w d and c0 �w d0. These two equivalencestogether with c �w c0 imply d �w d0 by (� Symm) and (� Trans). On theother hand, if c does not converge, neither does c0, since c �w c0 implies thatif c0 converges so does c. In all, we have shown that condition (1) holds if cconverges, and that condition (2) holds if c does not.For the backwards implication, we must show that conditions (1) and(2) both imply that c �w c0. Given condition (1), Lemma 24 asserts thatc �w d and c0 �w d0. These two equivalences, with d �w d0, (� Symm) and(� Trans) imply c �w c0. Finally, condition (2) implies c �w c0 by de�nitionof experimental equivalence and Lemma 23(2). 2It is possible to formulate garbage collection principles for unused ob-jects in terms of experimental equivalences. We call a location � garbage in(a; �@[� 7! o]@�0) if the con�guration is well formed, ` (a; �@[� 7! o]@�0) ok ,and it is also well formed without (� 7! o) in the store, ` (a; �@�0) ok ; thatis, a and �@�0 make no reference to �. Reduction is independent of garbage:Lemma 26 Suppose � is garbage in (a; �@[� 7! o]@�0). Then (a; �@[� 7!o]@�0) !n (v; �n@[� 7! on]@�0n) if and only if o = on, � =2 dom(�n@�0n), and(a; �@�0)!n (v; �n@�0n).Proof By inspection of the reduction rules we see that (a; �@[� 7! o]@�0)!(a1; �1@[� 7! o1]@�01) if and only if o = o1, � =2 dom(�1@�01), and (a; �@�0)!(a1; �1@�01). Furthermore, for any such transition, � is again garbage in(a1; �1@[� 7! o1]@�01). The result follows by induction on the length of thecomputations. 2We use the lemma to obtain the following garbage collection law whichsays that if � is garbage in a con�guration c, it can be garbage collected upto experimental equivalence at any w such that `w c ok and � =2 w.



48Lemma 27 Suppose � is garbage in (a; �@[� 7! o]@�0). If `w (a; �@�0) okthen (a; �@[� 7! o]@�0) �w (a; �@�0).Proof For every R with locs(R) � w and fv(R) = f�g, � is garbage in(R[a]; �@[� 7! o]@�0). Therefore (R[a]; �@[� 7! o]@�0) l (R[a]; �@�0) followsfrom the preceding lemma. 2Experimental equivalence is only an auxiliary relation. Our main inter-est is operational equivalence for static terms which we introduce below.However, the experimental equivalence relation on con�gurations is usefulbecause some facts about reduction, such as Lemmas 24, 25 and 27, are bestexpressed as equivalences between con�gurations.4.2 Operational EquivalenceFrom experimental equivalence on con�gurations we derive an equivalencerelation on static terms, operational equivalence. First, let a substitution, �,be a �nite map from variables to locations; we write � : fx1; : : : ; xng ! wwhenever � = [xi 7! �i i21::n] and �i 2 w for all i 2 1::n. Let a� be the termobtained from a static term a by substituting �(x) for x for every x 2 dom(�).(These substitutions denoted by � are a special case of the substitutionsdenoted by s in Section 2.4.) Now, we de�ne two static terms a and a0 to beoperationally equivalent, written a � a0, if and only if (a�; �) �dom(�) (a0�; �)holds for all well formed stores � and substitutions � : fv(a) [ fv(a0) !dom(�).Operational equivalence is an equivalence relation on static terms:(� Re
)locs(a) = ?a � a (� Trans)a � a00 a00 � a0a � a0 (� Symm)a � a0a0 � aWe de�ne operational equivalence only for static terms because we wantto study program equivalences that programmers can use for manipulationsof program text. Also, most automatic program transformations, as maytake place in compilers, deal with static program text or code. Locationsare dynamic entities, created during reduction of con�gurations. A locationonly carries meaning in the context of a particular store. Therefore we onlyconsider locations in connection with con�gurations and experimental equiv-alence. Our modular formulation of operational equivalence on static termsvia experimental equivalence on con�gurations is often convenient for proofs:after instantiation of static terms a and a0 into con�gurations (a�; �) and(a0�; �), one can apply the simpler theory of experimental equivalence.



49The following lemma asserts that operational equivalence is Mason andTalcott's CIU equivalence: static terms a and a0 are equivalent if and only ifall `closed instantiations' (variable substitutions � and stores �) of all `uses'(reduction contexts R) either both converge or neither converges.Lemma 28 For all static terms a and a0, a � a0 if and only if (R[a]�; �) l(R[a0]�; �), for all static reduction contexts R, well formed stores �, andsubstitutions � : fv(R[a]) [ fv(R[a0])! dom(�).Proof Follows straightforwardly from the de�nition of � and �. For theforward implication, we use the fact that R[a]� = (R�)[a�] and R� is againa reduction context. For the reverse implication, note that any reductioncontext R0 can be written in the form R�, for some static reduction contextR and substitution �. 2An easy consequence of Lemma 28 is that operational equivalence is pre-served by static reduction contexts:Lemma 29 If a � a0 then R[a] � R[a0], for all static reduction contexts R.So equivalent terms in identical static reduction contexts are again equiv-alent. Conversely, identical static terms in equivalent reduction contexts arealso equivalent:Lemma 30 If R[x] � R0[x] and x =2 fv(R) [ fv(R0), then R[a] � R0[a], forall static terms a.Proof We must show(R[a]�; �) �dom(�) (R0[a]�; �) (15)whenever ` � ok and � : fv(R[a]) [ fv(R0[a])! dom(�). Note that R[a]� =(R�)[a�] and R0[a]� = (R0�)[a�].If (a�; �)# does not hold, then both (R[a]�; �)# and (R0[a]�; �)# are false,by Lemma 23(2), hence (15) holds by Lemma 25.Otherwise assume (a�; �)!� (�; �0), for some � and �0. Then (R[a]�; �)!�((R�)[�]; �0) and (R0[a]�; �) !� ((R0�)[�]; �0). Now (15) follows by repeatedapplications of Lemma 24 if((R�)[�]; �0) �dom(�) ((R0�)[�]; �0) (16)But note that (R�)[�] = R[x]�0 and (R0�)[�] = R0[x]�0 if �0 = (x 7! �) :: �.Therefore, by the assumption R[x] � R0[x] and by de�nition of �, we have(R[x]�0; �0) �dom(�0) (R0[x]�0; �0)hence also (16) holds, by Lemma 1 and (� Anti). 2



504.3 Laws of Operational EquivalenceFrom Lemma 30 and the de�nition of operational equivalence, combined withthe laws for experimental equivalence above, it is possible to show a multitudeof laws of operational equivalence for the constructs of the calculus. We nowshow a selection of such laws and we give an equational proof of �v-reductionfor the encoding of call-by-value functions from Section 2.The let construct satis�es laws corresponding to those of Moggi's compu-tational �-calculus (Moggi 1989), presented here in the form given by Talcott(1998):Proposition 8(1) (let x = y in b) � bffy=xgg(2) (let x = a in R[x]) � R[a], if x =2 fv(R)Proof Part (1) is immediate from de�nition of � and Lemma 24. For(2), by Lemma 30 it su�ces to show (let x = x in R[x]) � R[x] which isimmediate from (1). 2Moggi's eta law is just Proposition 8(2) with R = �. To prove associa-tivity: let x = a in (let x = a0 in b) � let x = (let x = a in a0) in b (17)we �rst use Proposition 8(1), Lemma 29 and Lemma 30 to rewrite the lefthand side to let x = a in (let x = (let x = x in a0) in b)which, by Proposition 8(2) with R = (let x = (let x = � in a0) in b), rewritesto the right hand side of (17).The e�ect of invoking a method that has just been updated is the sameas running the method body of the update with the self parameter bound tothe updated object:Proposition 9(let x = a:`( ς(x)b in R[x:`]) � (let x = a:`( ς(x)b in R[b])Proof By Lemma 30 it su�ces to show the law for some y =2 fv(b) in placeof a. This case holds by de�nition of � and, if y is instantiated to a locationpointing to an object with an ` method, by �ve applications of Lemma 24;if the object has no ` method, neither side of the equation converges. 2



51There are laws for object constants and their interaction with the otherconstructs of the calculus:Proposition 10 Suppose o = [`i = ς(xi)bi i21::n] and j 2 1::n.(1) (let xj = o in R[xj :`j]) � (let xj = o in R[bj ])(2) o:`j � (let xj = o in bj)(3) (o:`j ( ς(x)b) � [`i = ς(xi)bi i21::j�1; `j = ς(x)b; `i = ς(xi)bi i2j+1::n](4) clone(o) � o(5) (let x = o in R[clone(x)]) � (let x = o in R[o]), if x =2 fv(o)(6) (let x = o in b) � b, if x =2 fv(b)(7) (let x = a in let y = o in b) � (let y = o in let x = a in b), if x =2 fv(o)and y =2 fv(a)Proof Parts (3) and (5) are immediate from de�nition of � and a fewapplications of Lemma 24.Part (1) is established by Proposition 9 together with (3) and Lemma 29:let xj = o in R[xj:`j] � let xj = o:`j ( ς(xj)bj in R[xj:`j]� let xj = o:`j ( ς(xj)bj in R[bj]� let xj = o in R[bj]Part (2) is immediate from (1) and Proposition 8(2).Part (4) follows from Proposition 8(2), (5) and (6):clone(o) � let x = o in clone(x) where x =2 fv(o)� let x = o in o� oPart (6) is direct from the de�nition of �, Lemma 24 and Lemma 27.Part (7) requires a more elaborate argument, �rst expanding the de�nitionof � and then analysing the possible reduction sequences of arbitrary closedinstances, exploiting that reduction is independent of garbage, Lemma 26.Suppose ` � ok and � : fv(let x = a in let y = o in b)! dom(�). We mustshow((let x = a in let y = o in b)�; �) �dom(�) ((let y = o in let x = a in b)�; �)(18)



52First observe that((let y = o in let x = a in b)�; �)! ((let x = a in b)�0; (� 7! o�) :: �)where �0 = (y 7! �) :: �, for some � =2 dom(�). Note that a�0 = a� and� is garbage in (a�; (� 7! o�) :: �). Therefore, by Lemma 26, either both(a�0; (� 7! o�) :: �) and (a�; �) go wrong or diverge, or (a�0; (� 7! o�) :: �)!n(�0; �n@[� 7! o�]@�0n) and (a�; �) !n (�0; �n@�0n), for some n, �0, �n and �0n.If they go wrong or diverge, (18) holds by Lemma 23(2) and Lemma 25.Otherwise, again by Lemma 23,((let x = a in b)�0; (� 7! o�) :: �)!n ((let x = �0 in b)�0; �n@[� 7! o�]@�0n)((let x = a in let y = o in b)�; �)!n ((let x = �0 in let y = o in b)�; �n@�0n)Each reduces further to (b�00; �n@[� 7! o�]@�0n), where �00 = (x 7! �0) :: �0. Byrepeated applications of Lemma 24, we conclude (18). 2The next proposition gives laws for method update and its interactionwith method selection and cloning.Proposition 11 Let notation a;b abbreviate let x = a in b where x =2 fv(b).(1) (let x = a:`( ς(x)b in R[x]) � (let x = a in R[x:`( ς(x)b])(2) (a:`( ς(x)b):`( ς(x0)b0 � a:`( ς(x0)b0(3) (y:` ( ς(x)b); (z:`0 ( ς(x0)b0); a � (z:`0 ( ς(x0)b0); (y:` ( ς(x)b); a, if` 6= `0(4) clone(y:`( ς(x)b) � (let z = clone(y) in (y:`( ς(x)b); z:`( ς(x)b)Proof Similar to the proof of Proposition 9. 2Let us look at two examples of equational reasoning using the laws above.Example 1: PairsRecall that pair(a; b) is the object:[fst = ς(s)a; snd = ς(s)b; swap = ς(s)let x = s:fst in let y = s:snd in(s:fst ( ς(s0)y):snd ( ς(s0)x]for some s =2 fv(a) [ fv(b). First, let us prove that the fst and snd methodswork as projections:pair(a; b):fst � let s = pair(a; b) in a by Prop. 10(2)� a by Prop. 10(6)



53Analogously, we derive that pair(a; b):snd � b.To show that the swap method indeed swaps the components of a pair,we can argue as follows:pair(x; y):swap� let s = pair(x; y) inlet x0 = s:fst in let y0 = s:snd in(s:fst ( ς(s0)y0):snd ( ς(s0)x0 by Prop. 10(2)� let s = pair(x; y) inlet x0 = x in let y0 = s:snd in(s:fst ( ς(s0)y0):snd ( ς(s0)x0 by Prop. 10(1)� let s = pair(x; y) inlet y0 = s:snd in(s:fst ( ς(s0)y0):snd ( ς(s0)x by Prop. 10(7) and 8(1)� let s = pair(x; y) inlet y0 = y in(s:fst ( ς(s0)y0):snd ( ς(s0)x by Prop. 10(1)� let s = pair(x; y) in(s:fst ( ς(s0)y):snd ( ς(s0)x by Prop. 10(7) and 8(1)� (pair(x; y):fst ( ς(s0)y):snd ( ς(s0)x by Prop. 8(2)� pair(y; y):snd ( ς(s0)x by Prop. 10(3)� pair(y; x) by Prop. 10(3)We note that pair(a; b):swap � pair(b; a) fails in general, for instance if aor b diverges, because a and b are evaluated in the course of the swap on theleft hand side and they are not evaluated on the right hand side. However,by an elaboration of the previous derivation, we can show:pair(a; b):swap � let x = a in let y = b in pair(y; x)for arbitrary static terms a and b with x =2 fv(b).Example 2: FunctionsFor the second example, recall the encoding of call-by-value functions fromSection 2.1:�(x)b def= [arg = ς(z)z:arg ; val = ς(s)let x = s:arg in b]b(a) def= let y = a in (b:arg ( ς(z)y):valwhere s; y =2 fv(b) and y 6= z =2 fv(a). From the laws for let and for objectconstants, we can show that �v-reduction is valid:(�(x)b)(y) � bffy=xgg (19)



54Let o = [arg = ς(z)y; val = ς(s)let x = s:arg in b], then(�(x)b)(y)� ((�(x)b):arg ( ς(z)y):val by Prop. 8(1)� o:val by Prop. 10(3) and Lemma 29� let s = o in let x = s:arg in b by Prop. 10(2)� let x = o:arg in b by Prop. 8(2)� let x = (let z = o in y) in b by Prop. 10(2) and Lemma 29� let x = y in b by Prop. 10(6) and Lemma 29� bffy=xgg by Prop. 8(1)These examples as well as the derivations of some of the laws abovesuggest the usefulness of equational reasoning for understanding and manip-ulating imperative object programs.4.4 CongruenceThe derivation of (19) used the fact that operational equivalence is preservedby reduction contexts, Lemma 29. More generally, in order to exercise com-positional equational reasoning it is necessary that operational equivalence ispreserved by arbitrary term constructs. This property can be formalised interms of compatible re�nement (Gordon 1994). Given a relation on terms S,its compatible re�nement, bS, relates terms with identical outermost syntacticconstructors and with immediate subterms pairwise related by S, as de�nedby the following axiom schemes.(Comp x) x bS x.(Comp Object) [`i = ς(xi)bi i21::n] bS [`i = ς(xi)b0i i21::n] if bi S b0i for i 2 1::n.(Comp Select) a:` bS a0:` if a S a0.(Comp Update) a:`( ς(x)b bS a0:`( ς(x)b0 if a S a0 and b S b0.(Comp Clone) clone(a) bS clone(a0) if a S a0.(Comp Let) let x = a in b bS let x = a0 in b0 if a S a0 and b S b0.Let a relation be compatible if and only if it contains its compatible re-�nement. Let a congruence be a compatible equivalence relation.Proposition 12 Operational equivalence is a congruence.



55Proof Operational equivalence is an equivalence relation, so it remains toshow that it is compatible, that is, a b�a0 implies a � a0. The proof is adaptedfrom the corresponding congruence proof for a �-calculus with references in(Honsell, Mason, Smith, and Talcott 1993). We prove a � a0 by case analysisof the derivation of a b� a0.(Comp x) Here a = a0 = x, for some variable x, and a � a0 holds because� is re
exive, (� Re
).(Comp Clone) Here a = clone(a0), a0 = clone(a00), and a0 � a00. But thena � a0 is immediate from Lemma 29 with R = clone(�).(Comp Select) Immediate from Lemma 29 as in the previous case.(Comp Update) Here a = a0:` ( ς(x)b, a0 = a00:` ( ς(x)b0, a0 � a00 andb � b0. By Lemma 29, a0 � a00 implies a0:` ( ς(x)b � a00:` ( ς(x)b.Because � is transitive the result follows if a00:` ( ς(x)b � a00:` (
ς(x)b0. By Lemma 30, this again follows ify:`( ς(x)b � y:`( ς(x)b0for some y =2 fv(b). Consider any � and � such that ` � ok and� : (fyg [ fv(b) [ fv(b0)� fxg)! dom(�). We must show that(�:`( ς(x)b�; �) �dom(�) (�:`( ς(x)b0�; �)where � = �(y). If the object �(�) has no ` method, both con�gurationsare stuck and the equivalence holds by Lemma 25. Otherwise it followsby Lemma 24 if (�; �1) �dom(�) (�; �01)where �1 and �01 are the updated stores obtained from � by replacingthe method at label ` in �(�) by methods ` = ς(x)b� and ` = ς(x)b0�,respectively. To prove this, we must show that(R[�]; �1) l (R[�]; �01)for all R with locs(R) � dom(�) and fv(R) = f�g. Let relation Trelate stores with identical domains and with objects pairwise identicalor having ` methods ` = ς(x)b� and ` = ς(x)b0�, respectively, and allother methods identical. In particular, �1 T �01. We shall argue that(a; �) l (a; �0) for all a, � and �0 such that � T �0



56 Suppose (a; �)#, that is, there exist n and a terminal con�guration dsuch that (a; �)!n d. We show (a; �0)# by induction on n:If n = 0, (a; �) is a terminal con�guration, that is, a is a value, andthen (a; �0) is terminal too.Otherwise there exists (a1; �1) such that (a; �)! (a1; �1) !n�1 d. Byinspection of the reduction rules we see that (a; �0) ! (a1; �01) with�1 T �01, unless a is of the form a = R[�:`] where �(�) and �0(�)have methods ` = ς(x)b� and ` = ς(x)b0�, respectively. In that case(a1; �1) = (R[b�0]; �) and (a; �0)! (R[b0�0]; �0) where �0 = (x 7! �) :: �.Since (R[b�0]; �) !n�1 d in one less step than (a; �) !n d, we get(R[b�0]; �0)# by the induction hypothesis. Moreover, b � b0 implies(b�0; �0) �dom(�0) (b0�0; �0). Hence (R[b�0]; �0) l (R[b0�0]; �0) and we ob-tain (R[b0�0]; �0)# and (a; �0)#, as required.This completes the induction on n and we conclude that (a; �)# implies(a; �0)#. The reverse implication is symmetrical. So (a; �) l (a; �0), asrequired.(Comp Object) Follows from case (Comp Update) by repeated applica-tions of Proposition 10(3).(Comp Let) Here a = (let x = a0 in b), a0 = (let x = a00 in b0), a0 � a00 andb � b0. Firstly, a0 � a00 implies (let x = a0 in b) � (let x = a00 in b),by Lemma 29. Next, b � b0 implies (let x = x in b) � (let x = x in b0)and (let x = a00 in b) � (let x = a00 in b0), by Proposition 8(1) andLemma 30. Finally, a � a0 because � is transitive, (� Trans). 24.5 Contextual EquivalenceWe call a relation S on static terms adequate if and only if a S a0 implies(a; []) l (a0; []), for all closed terms a and a0.Proposition 13 Operational equivalence is adequate.Proof Immediate from the de�nition of operational and experimentalequivalence, by taking the empty substitution, empty store, and empty re-duction context. 2Proposition 14 Operational equivalence is the largest compatible and ade-quate relation on static terms.



57Proof We must show that any compatible and adequate relation S isincluded in �.Suppose a S a0. By appeal to Lemma 28, a � a0 holds if(R[a]�; �) l (R[a0]�; �) (20)for any given static reduction context R and any � and � such that ` � okand � : fv(R[a]) [ fv(R[a0])! dom(�).Suppose � = [�i 7! oi i21::n], oi = [`ij = ς(xij)aij j21::qi], and � = [xh 7!�ih h21::m] with fi1 : : : img � f1 : : : ng. Then let !i = [`ij = ς(x)x:`ij j21::qi],pick n distinct variables z1 : : : zn, and let bij be obtained from aij by replacingevery occurrence of location �k by variable zk for k 2 1::n, for all j 2 1::qiand i 2 1::n. Letb = let z1 = !1 in : : : let zn = !n in(:::(z1:`11 ( ς(x11)b11):::):`1q1 ( ς(x1q1)b1q1 ;...(:::(zn:`n1 ( ς(xn1)bn1):::):`nqn ( ς(xnqn)bnqn ;let x1 = zi1 in : : : let xm = zim in R[a]and let b0 be the same as b but with a0 in place of a (notation a; b abbreviateslet x = a in b where x =2 fv(b)). Then b S b0 holds, since a S a0 and Sis compatible, and therefore (b; []) l (b0; []), since S is adequate. One cancheck that (b; [])!� (R[a]�; �) and (b0; [])!� (R[a0]�; �). By determinacy ofreduction, it follows, as in the proof of Lemma 24, that (a�; �) l (b; []) and(b0; []) l (a0�; �). Finally, we conclude (20), as required, because the relationl is transitive. 2Clearly, operational equivalence is also the largest adequate congruence onstatic terms. It follows that it coincides with Morris-style contextual equiva-lence, sometimes known as observational congruence (Meyer and Cosmadakis1988), where we take convergence of programs as our means of observation.Instead of the usual de�nition of contextual equivalence in terms of variablecapturing contexts, one can equivalently de�ne it as the relation betweenstatic terms which are related by a compatible and adequate relation; moreconcretely, for any two terms a and a0, let f(a; a0)gc be the least compatiblerelation that relates them, de�ned inductively by the rules:(Ctx a a0)a f(a; a0)gc a0 (Ctx Comp)b \f(a; a0)gc b0b f(a; a0)gc b0



58Then a and a0 are contextually equivalent if and only if f(a; a0)gc is adequate.The coincidence between operational and contextual equivalence reads asfollows:Theorem 4 Operational (CIU) equivalence coincides with contextual equiv-alence.Proof We must prove that a � a0 if and only if f(a; a0)gc is adequate. The`if' direction is immediate from the previous proposition because a f(a; a0)gca0 and f(a; a0)gc is compatible and adequate. Conversely, f(a; a0)gc is con-tained in �, by induction on the de�nition of f(a; a0)gc, since � is closedunder (Ctx a a0) and (Ctx Comp) by the assumption a � a0 and by (�Comp). Therefore f(a; a0)gc is adequate since � is adequate. 2The de�nitions of experimental equivalence and operational equivalenceare formulated in terms of reduction contexts, stores and substitutions. Thatmakes it easy to relate experimental and operational equivalence to thesubstitution-based operational semantics in equivalence proofs. In contrast,the de�nition of contextual equivalence is robust and abstract because it isnot dependent on details of the operational semantics: it only refers to staticterms and adequacy (convergence). Theorems 1, 2, and 3 imply that ade-quacy can equivalently be de�ned on the basis of any of the three operationalsemantics of Section 2 or the abstract machine of Section 3. Furthermore,the de�nition of adequacy is una�ected by the choice of store model for theoperational semantics (see the discussion below).4.6 Discussion and Related WorkThe store modelThe object store model is well-suited for operational reasoning because itmakes clear that method updates are not shared between di�erent labels anddi�erent objects. For example, it was easy to prove Proposition 11(3):(y:`( ς(x)b); (z:`0 ( ς(x0)b0); a � (z:`0 ( ς(x0)b0); (y:`( ς(x)b); aIn the method store model of Abadi and Cardelli (Abadi and Cardelli1996), object values are of the form [`i 7! �i i21::n], and stores map loca-tions to methods. A static term would be instantiated to a con�gurationby applying a substitution of free variables to object values and by pairingthe resulting term with an associated method store. The de�nition of CIUequivalence would have to constrain the object values and method store used



59in instantiations: the resulting con�guration would need to be such thatdi�erent occurrences of object values do not share methods unless the occur-rences are identical. For example, without this constraint, there is a closinginstantiation of the above equation such that one side converges while theother diverges. Take b = x, b0 = x0:`0, and a = z:`0, and substitute the object[` 7! �] for y, and the object [`0 7! �] for z, two objects that share the method� but that are not identical. Now, if we run each side in the method store[� 7! ς(x)[]], we �nd that the left hand side diverges, whereas the right handside converges to ([`0 7! �]; [� 7! ς(x)x]).On the other hand, one advantage of the method store model is that itmakes it easy to verify that di�erent copies of the empty object are equivalent,for instance, let x = [] in [` = ς(s)x] � [` = ς(s)[]] (21)is an instance of Proposition 8(1) because [] is a value. In our object storemodel, the proof of (21) becomes somewhat involved and requires a tediousargument analogous to that of Lemma 27.FunctionsTo keep the exposition simple and focused on imperative objects, the theoryof operational equivalence is only presented for the core calculus. The def-inition of operational equivalence and the results for the core calculus canbe extended to the full calculus with functions considered in the previoussections, along the lines of the similar work on a �-calculus with referencesby Honsell, Mason, Smith, and Talcott (Honsell et al. 1993). All the lawsin Section 4.3 remain valid for the full calculus. Nonetheless, the extensionof the theory of operational equivalence is not conservative; for instance,(let y = clone(z) in []) � [] is a valid equation in the theory for the corecalculus, where every value is an object location, but not in the theory forthe full calculus, where z may be instantiated to a function value �(x)b and(let y = clone(�(x)b) in []; �) is stuck whereas ([]; �) terminates for any store�.Related workThe congruence proof we have presented, based on that of Honsell, Mason,Smith, and Talcott (1993), is quite simple, considering that the imperativeobject calculus is a higher-order, state-based language. Alternatively, it ispossible to adapt Howe's general method for proving congruence of simu-lation orderings (Howe 1996) to CIU equivalence; see Gordon (1998) for an



60example of this for the stateless object calculus of Abadi and Cardelli (1996).Talcott (1998) presents another proof method based on a notion of uniformcomputation. These proof methods scale up more smoothly when, for exam-ple, functions are added to the calculus, but for the core calculus our directapproach is simpler.Some transformations for rearranging side e�ects are rather cumbersometo express in terms of equational laws as they depend on variables beingbound to distinct locations. We have not pursued this issue in great depth.For further study it would be interesting to consider program logics suchas VTLoE (Honsell, Mason, Smith, and Talcott 1993) or speci�cation logic(Reynolds 1982; Reddy 1998) where it is possible to express such conditionsdirectly.Earlier work on operational equivalence for object calculi has been con-cerned with stateless objects. For instance, Gordon and Rees (1996) andGordon (1998) characterise contextual equivalence exactly via forms of bisim-ilarity induced by the primitive operational semantics of objects. See Stark(1997) for an account of the di�culties of de�ning bisimulation in the pres-ence of imperative e�ects.In recent work, Kleist and Sangiorgi (1998) translate the �rst-order typedimperative object calculus into a typed �-calculus. Among other results,they verify typed versions of some of our laws by translation into bisimilar�-calculus processes. In comparison, working directly with the operationalsemantics as we do seems to be simpler than establishing and reasoning aboutan encoding.The main in
uence on this section has been the literature on operationaltheories for functional languages with state. Our experience is that exist-ing techniques for functional languages with state scale up well to deal withthe object-oriented features of the imperative object calculus. CIU equiva-lence was introduced by Mason and Talcott (1991) and has been the topic ofmuch research; see Talcott (1998) for an overview of this work as well as amore general presentation of the theory. Functional languages with state ac-commodate imperative object-oriented programming styles; see for exampleAbelson and Sussman (1985). Operational equivalences of imperative objectsin this style have been studied using CIU equivalence by Mason and Talcott(1991, 1992, 1995). But program equivalences for imperative object-orientedlanguages do not seem to have received much study so far. Our results area �rst step and indicate an interesting algebra of imperative objects. Manysubtleties of the theory of operational equivalence are shared with theoriesfor functional languages with state, including the examples of Meyer andSieber (1988). These subleties have been addressed by advanced operationalmethods (Honsell, Mason, Smith, and Talcott 1993; Pitts and Stark 1998)



61which should be interesting to study for objects too, but we have not exploredthese issues here in any depth.Several authors have studied operational equivalences for languages withconcurrent objects (Agha, Mason, Smith, and Talcott 1997; Jones 1996;Walker 1995; Sangiorgi 1997), but the technique of CIU equivalence wasnot used in these studies.5 A Re�nement: Static Resolution of LabelsIn Section 3 we showed how to compile the imperative object calculus toan abstract machine that represents objects as �nite lists of labels pairedwith method closures. In each pair, the �rst component is the label, and thesecond component is the method closure. A frequent operation is to resolvea method label, that is, to compute the o�set of the method with that labelfrom the beginning of the list. This operation is needed to implement bothmethod select and method update. In general, resolution of method labelsneeds to be carried out dynamically since one cannot in general computestatically the object to which a select or an update will apply. However,when the select or update is performed on a newly created object, or to self,it is possible to resolve method labels statically. The purpose of this section isto exercise our framework by presenting an algorithm for statically resolvingmethod labels in these situations, and proving its correctness, Theorem 5.We begin in Section 5.1 by extending our calculus to allow method se-lects and method updates with respect to integer o�sets as well as labels.We present the optimisation algorithm in Section 5.2, give an example inSection 5.3, and prove the correctness of the algorithm in Section 5.4. Wediscuss related work in Section 5.5.5.1 Integer O�setsTo represent our intermediate language, we begin by extending the syntaxof terms so that selects and updates may be performed on (positive) integero�sets, i or j.a; b ::= : : : j a:j j a:j ( ς(x)b terms, 0 < jAs before, we say that a term, a, of this extended language is a static termif and only if locs(a) = ?.The intention is that at runtime, a resolved select o:j proceeds by runningthe jth method of object o. If the jth method of object o has label `, thiswill have the same e�ect as o:`. Similarly, an update o:j ( ς(x)b proceeds by



62updating the jth method of object o with method ς(x)b. If the jth methodof object o has label `, this will have the same e�ect as o:`( ς(x)b.To make this precise, the operational semantics of Section 2 and theabstract machine and compiler of Section 3 may easily be extended withinteger o�sets. We suppress all the details apart from the following.We extend the reduction contexts of Section 2.2 as follows:R ::= : : : j R:j j R:j ( ς(x)b reduction contextWe extend the small-step substitution-based semantics of Section 2.2 andthe big-step substitution-based semantics of Section 2.3 with these axiomsand rules:(Red O�set Select) (R[�:j]; �)! (R[bjff�=xjgg]; �)if �(�) = [`i = ς(xi)bi i21::n] and j 2 1::n.(Red O�set Update) (R[�:j ( ς(x)b]; �)! (R[�]; �0)if �(�) = [`i = ς(xi)bi i21::n], j 2 1::n and�0 = � + (� 7! [`i = ς(xi)bi i21::j�1; `j = ς(x)b; `i = ς(xi)bi i2j+1::n]).(Subst O�set Select)(a; �0) + (�; �1) �1(�) = [`i = ς(xi)bi i21::n] j 2 1::n (bjff�=xjgg; �1) + (v; �2)(a:j; �0) + (v; �2)(Subst O�set Update)(a; �0) + (�; �1) �1(�) = [`i = ς(xi)bi i21::n] j 2 1::n�2 = �1 + (� 7! [`i = ς(xi)bi i21::j�1; `j = ς(x)b; `i = ς(xi)bi i2j+1::n])(a:j ( ς(x)b; �0) + (�; �2)All the results proved in Sections 2 and 3 remain true for this extendedlanguage.The reduction contexts used in the de�nition of experimental equivalencenow include include selects and updates with integer o�sets. By enrich-ing the syntax with integer o�sets we make both experimental equivalenceand operational equivalence �ner grained. For instance, in the original lan-guage the order of methods in an object may be permuted without a�ectingoperational equivalence. For example, if a = [`1 = []; `2 = ς(s)s:`2] andb = [`2 = ς(s)s:`2; `1 = []], then a � b. But this equation fails in the pres-ence of reduction contexts with integer o�sets, since, for instance, (a:1; [])converges but (b:1; []) diverges. Although the equivalences are �ner grained,all the results proved in Section 4 hold for the extended calculus.



635.2 A Static Resolution AlgorithmWe need the following de�nitions to express the static resolution algorithm.A;B ::= [`i i21::n] layout type, `i distinctE ::= [xi 7! Ai i21::n] environment, xi distinctFor an object o = [`i = ς(xi)bi i21::n], let layout(o) = [`i i21::n].The algorithm infers a layout type, A, for each term it encounters. If thelayout type A is [`i i21::n], with n > 0, the term must evaluate to an objecto with layout(o) = A. On the other hand, if the layout type A is [], nothinghas been determined about the layout of the object to which the term willevaluate. An environment E is a �nite map that associates layout types tothe free variables of a term.We express the algorithm as the following recursive routine resolve(E; a),which takes an environment E and a static term a with fv(a) � dom(E),and produces a pair (a0; A), where static term a0 is the residue of a afterresolution of labels known from layout types to integer o�sets, and A is thelayout type of both a and a0. We use p to range over both labels and integero�sets.resolve(E; x) def= (x; E(x)) where x 2 dom(E)resolve(E; [`i = ς(xi)ai i21::n]) def= ([`i = ς(xi)a0i i21::n]; A)where A = [`i i21::n]and (a0i; Bi) = resolve((xi 7! A) :: E; ai), xi =2 dom(E), for each i 2 1::nresolve(E; a:p) def=� (a0:j; []) if j 2 1::n and p = `j(a0:p; []) otherwisewhere (a0; [`i i21::n]) = resolve(E; a)resolve(E; a:p( ς(x)b) def=� (a0:j ( ς(x)b0; A) if j 2 1::n and p = `j(a0:p( ς(x)b0; A) otherwisewhere (a0; A) = resolve(E; a), A = [`i i21::n]and (b0; B) = resolve((x 7! A) :: E; b), x =2 dom(E)resolve(E; clone(a)) def= (clone(a0); A) where (a0; A) = resolve(E; a)resolve(E; let x = a in b) def= (let x = a0 in b0; B)where (a0; A) = resolve(E; a)and (b0; B) = resolve((x 7! A) :: E; b), x =2 dom(E)



645.3 Example of Static ResolutionTo illustrate the algorithm in action, consider the object pair(x; y):[fst = ς(s)x; snd = ς(s)y; swap = ς(s)let x = s:fst in let y = s:snd in(s:fst ( ς(s0)y):snd ( ς(s0)x]Then, for arbitrary layout types A and B,resolve([x 7! A; y 7! B]; pair(x; y)) = (pair 0(x; y); [fst; snd ; swap])where pair 0(x; y) denotes the object:[fst = ς(s)x; snd = ς(s)y; swap = ς(s)let x = s:1 in let y = s:2 in(s:1( ς(s0)y):2( ς(s0)x]All method selects and method updates in the object have been statically re-solved. The layout type [fst ; snd ; swap] asserts that pair(x; y) and pair 0(x; y)will evaluate to objects with this layout. This means, not surprisingly, thatany select or update of fst , snd or swap on pair(x; y) are statically resolved.For instance:resolve([x 7! A; y 7! B]; pair(x; y):swap) = (pair 0(x; y):3; [])Here, the empty layout type [] asserts that nothing is known about the layoutof the objects returned by pair(x; y):swap and pair 0(x; y):3. So, if we selectswap twice, the second method select is not resolved:resolve([x 7! A; y 7! B]; pair(x; y):swap:swap) = (pair 0(x; y):3:swap; [])5.4 Veri�cation of the AlgorithmTo allow proofs by induction on derivations, we begin by representing thealgorithm by an inductively de�ned relation,$. We need an auxiliary notionof a store type, a �nite map sending locations to layout types:� ::= [�i 7! Ai i21::n] store type, �i distinctBy the following rules, we de�ne a resolution relation on terms, (E;�) `a$ a0 : A, intended to mean that in environment E and store type �, andat layout type A, term a may be resolved to term a0 by turning some of thelabels in a into integer o�sets in a0.



65(Layout x)x 2 dom(E)(E;�) ` x$ x : E(x) (Layout �)� 2 dom(�)(E;�) ` �$ � : �(�)(Layout Object) (where B = [`i i21::n] and xi =2 dom(E))((xi 7! B) :: E;�) ` ai $ a0i : Ai 8i 2 1::n(E;�) ` [`i = ς(xi)ai i21::n]$ [`i = ς(xi)a0i i21::n] : B(Layout Select 1)(E;�) ` a$ a0 : A(E;�) ` a:`$ a0:` : [] (Layout Select 2)(E;�) ` a$ a0 : A(E;�) ` a:j $ a0:j : [](Layout Select 3) (where j 2 1::n)(E;�) ` a$ a0 : [`i i21::n](E;�) ` a:`j $ a0:j : [](Layout Update 1) (where x =2 dom(E))(E;�) ` a$ a0 : A ((x 7! A) :: E;�) ` b$ b0 : B(E;�) ` a:`( ς(x)b$ a0:`( ς(x)b0 : A(Layout Update 2) (where x =2 dom(E))(E;�) ` a$ a0 : A ((x 7! A) :: E;�) ` b$ b0 : B(E;�) ` a:j ( ς(x)b$ a0:j ( ς(x)b0 : A(Layout Update 3) (where x =2 dom(E), A = [`i i21::n] and j 2 1::n)(E;�) ` a$ a0 : A ((x 7! A) :: E;�) ` b$ b0 : B(E;�) ` a:`j ( ς(x)b$ a0:j ( ς(x)b0 : A(Layout Clone)(E;�) ` a$ a0 : A(E;�) ` clone(a)$ clone(a0) : A(Layout Let) (where x =2 dom(E))(E;�) ` a$ a0 : A ((x 7! A) :: E;�) ` b$ b0 : B(E;�) ` let x = a in b$ let x = a0 in b0 : BWe need the (Layout �) rule and store types so that the resolution relationis de�ned on arbitrary terms. Even though the resolve(E; a) routine takesa static term a as its input, we cannot simply de�ne the resolution relationon static terms. If we did so, we would not be able to prove Proposition 15,which relates resolution and evaluation, since terms containing locations mayarise from evaluation of static terms.



66 This resolution relation on terms includes all the possible outcomes ofrunning the algorithm:Lemma 31 Suppose that a is a static term and E is an environment withfv(a) � dom(E). If routine resolve(E; a) returns (a0; A), then the judgment(E; []) ` a$ a0 : A is derivable.Proof By induction on the number of recursive calls made by the routineresolve(E; a), using all the rules but (Layout �). 2For illustration, let us revisit the pair example from Section 5.1. Via(Layout Object), (Layout x), (Layout Let), (Layout Select 3) and (LayoutUpdate 3) we may derive:([x 7! A; y 7! B]; []) ` pair(x; y)$ pair 0(x; y) : [fst ; snd ; swap]Further, via (Layout Select 3) and (Layout Select 1) we derive:([x 7! A; y 7! B]; []) ` pair(x; y):swap $ pair 0(x; y):3 : []([x 7! A; y 7! B]; []) ` pair(x; y):swap:swap $ pair 0(x; y):3:swap : []We will make precise the connection between evaluation and resolutionin Proposition 15. Since evaluation is de�ned on con�gurations, to statethe proposition we �rst need need to extend the resolution relation to storesand con�gurations. By the following rules, we de�ne a resolution relation,` � $ �0 : �, on store pairs, and another, ` c$ c0 : (A;�), on con�gurationpairs:(Layout Store) (where dom(�) = dom(�) = dom(�0))�(�) = layout(�(�)) = layout(�0(�))([];�) ` �(�)$ �0(�) : �(�) 8� 2 dom(�)` � $ �0 : �(Layout Con�g)([];�) ` a$ a0 : A � ` � $ �0` (a; �)$ (a0; �0) : (A;�)For example, consider the store � = [�1 7! o1; �2 7! o2] and a store type� = [�1 7! A1; �2 7! A2] such that ` � $ � : �. Then, using the rules above,we may derive:` (pair(�1; �2):swap; �)$ (pair 0(�1; �2):3; �) : ([];�)



67where pair 0(�1; �2) is the object pair(�1; �2) with all labels resolved, as inthe previous example. Given the set of rules de�ning the resolution rela-tion, we cannot derive a layout type other than [] for pair(�1; �2):swap andpair 0(�1; �2):3.To see the e�ect of evaluation on the layout type of these con�gurations,we derive: (pair(x; y):swap; �) + (�; (� 7! pair(�2; �1)) :: �)and (pair 0(x; y):3; �) + (�; (� 7! pair 0(�2; �1)) :: �)where � =2 dom(�), by the evaluation rules from Section 2.3 and Section 5.1.Moreover, using the rules above, we may derive:` (�; (� 7! pair(�2; �1)) :: �)$ (�; (� 7! pair 0(�2; �1)) :: �) : (A; (� 7! A) :: �)where A = [fst ; snd ; swap].This example shows that, as one might expect, evaluation increases theaccuracy of the layout types derivable for a con�guration. In seeking to verifythe resolve routine, we introduced the resolution relation because it includesall the results of running resolve, Lemma 31, but also because we can provethat resolution is preserved by evaluation, Proposition 15. We �rst need thefollowing substitution lemma.Lemma 32 (E 0@[x 7! A]@E 00;�) ` a $ a0 : B, � 2 dom(�) and �(�) = Aimply (E 0@E 00;�) ` aff�=xgg $ a0ff�=xgg : B.Proof A routine induction on the derivation of the judgment (E 0@[x 7!A]@E 00;�) ` a$ a0 : B. 2If � and �0 are store types, let � � �0 if and only if dom(�) � dom(�0)and �(�) = �0(�) for each � 2 dom(�).Proposition 15 Suppose that ` c$ c0 : (A;�).(1) Whenever c + d there are d0, A0 and �0 such that c0 + d0, ` d $ d0 :(A0;�0) and � � �0. Moreover, A 6= [] implies A = A0.(2) Whenever c0 + d0 there are d, A0 and �0 such that c + d and ` d$ d0 :(A0;�0) and � � �0. Moreover, A 6= [] implies A = A0.Proof We shall prove part (1); part (2) follows by an almost symmetricargument. The proof proceeds by induction on the derivation of c + d.We show the case for (Subst Select).



68(Subst Select) In this case c = (a:`j; �0), (a; �0) + (�; �1), �1(�) = [`i =
ς(xi)bi i21::n], j 2 1::n and (bjff�=xjgg; �1) + d. Only (Layout Con�g) canderive ` (a:`j; �0) $ c0 : (A;�), so c0 must take the form (b0; �00) with([];�) ` a:`j $ b0 : A and ` �0 $ �00 : �. Either (Layout Select 1),(Layout Select 2) or (Layout Select 3) can derive ([];�) ` a:`j $ b0 : A.We shall consider the latter case:(Layout Select 3) Here b0 = a0:j and A = [], with ([];�) ` a $ a0 :B, j 2 1::m and `0j = ` where B = [`0i i21::m]. Since j 2 1::m, B 6=[]. By (Layout Con�g), ` �0 $ �00 : � and ([];�) ` a$ a0 : B im-ply ` (a; �0) $ (a0; �00) : (B;�). Hence, by induction hypothesis,(a; �0) + (�; �1) and B 6= [] imply there is a con�guration d1 anda store type �1 such that (a0; �00) + d1, ` (�; �1) $ d1 : (B;�1)and � � �1. Hence d1 = (�; �01) with ([];�1) ` � $ � : B, whichimplies that � 2 dom(�1), �1(�) = B and ` �1 $ �01 : �1. Bythe latter, ([];�1) ` �1(�) $ �01(�) : B. The latter implies thatlayout([`i = ς(xi)bi i21::n]) = B, and therefore that B = [`i i21::n],m = n and each `i = `0i. It also implies there is o0 with �01(�) = o0and o0 = [`i = ς(xi)b0i i21::n]. By (Layout Object), there is Aj with([xj 7! B];�1) ` bj $ b0j : Aj. By Lemma 32, � 2 dom(�1)implies ([];�1) ` bjff�=xjgg $ b0jff�=xjgg : Aj. By (Layout Con�g),` (bjff�=xjgg; �1) $ (b0jff�=xjgg; �01) : (Aj;�1). By induction hypothe-sis, the latter and (bjff�=xjgg; �1) + c0 imply there are d0, A0 and �0such that (b0jff�=xjgg; �01) + d0, ` c0 $ d0 : (A0;�0) and �1 � �0. By(Subst O�set Select), we have c0 = (a0:j; �00) + d0. We have � � �0from � � �1 and �1 � �0, since � is clearly transitive. Finally,A 6= [] implies A = A0 holds vacuously, since A = [].The cases for (Layout Select 1) and (Layout Select 2) are very similar.We omit the remaining cases, which are no harder than the one shown. Thecase for (Subst Update) is similar to the one shown. The cases for (SubstO�set Select) and (Subst O�set Update) are slightly simpler than (SubstSelect) and (Subst Update) respectively. The remaining cases are routine. 2Lemma 33 Suppose ([xi 7! [] i21::n]; []) ` a $ a0 : A. Consider any re-duction context R with locs(R) = ? such that fv(R) � f�; x1; : : : ; xng =fxn+1; : : : ; xn+mg. Then ([xi 7! [] i21::n+m]; []) ` R[a] $ R[a0] : B for someB.Proof By induction on the size of the reduction context R, with appealto rules (Layout Select 1), (Layout Select 2), (Layout Update 1), (Layout



69Update 2), (Layout Clone) and (Layout Let). Moreover, we need the factsthat the $ relation is re
exive (if locs(a) � dom(�) and fv(a) � dom(E)then (E;�) ` a $ a : A holds for some A) and satis�es environment weak-ening (if dom(E) � dom(E 0) and E(x) = E 0(x) for each x 2 dom(E), then(E;�) ` a$ a0 : A implies (E 0;�) ` a$ a0 : A). 2Lemma 34 Given ([xi 7! [] i21::n]; []) ` a $ a0 : B, a store type � and asubstitution � : fx1; : : : ; xng ! dom(�), there is B0 such that ([];�) ` a�$a0� : B0. Moreover, B 6= [] implies B = B0.Proof By induction on the derivation of ([xi 7! [] i21::n]; []) ` a $ a0 : B.2Theorem 5 Suppose a is a static term with free variables x1,. . . ,xn. Ifroutine resolve([xi 7! [] i21::n]; a) returns (a0; A), then a � a0.Proof By Lemma 28, to show a � a0, it su�ces to prove (R[a]�; �) l(R[a0]�; �), for all static reduction contexts R, well formed stores �, andsubstitutions � : fv(R[a]) [ fv(R[a0])! dom(�). Consider any static reduc-tion context R, any well formed store � and any substitution � : fv(R[a]) [fv(R[a0]) ! dom(�). Let E = [xi 7! [] i21::n] and E 0 = [xi 7! [] i21::n+m]where fxn+1; : : : ; xn+mg = fv(R) � f�; x1; : : : ; xng. By Lemma 31, we mayderive (E; []) ` a $ a0 : A. By Lemma 33, (E; []) ` a $ a0 : A im-plies (E 0; []) ` R[a] $ R[a0] : B for some B. If � = [�i = oi i21::n], let� = [�i = layout(oi) i21::n]. By Lemma 34, (E 0; []) ` R[a] $ R[a0] : B and� : fx1; : : : ; xn+mg ! dom(�) imply ([];�) ` R[a]� $ R[a0]� : B0 for someB0. By (Layout Store), � ` � $ �. Hence by (Layout Con�g), we have` (R[a]�; �)$ (R[a0]�; �). Suppose that (R[a]�; �)#. By Theorem 1 there isc with (R[a]�; �) + c. By Proposition 15(1), ` (R[a]�; �) $ (R[a0]�; �) im-plies there is c0 such that (R[a0]�; �) + c0, and therefore (R[a0]�; �)#, again byTheorem 1. Similarly, by Proposition 15(2) and ` (R[a]�; �) $ (R[a0]�; �),(R[a0]�; �)# implies (R[a]�; �)#. Therefore (R[a]�; �) l (R[a0]�; �), as re-quired to establish that a � a0. 2Our prototype implementation of the imperative object calculus opti-mises any closed static term a by running the routine resolve([]; a) to obtainan optimised term a0 paired with a layout type A. By the theorem, this op-timisation is correct in the sense that a0 is operationally equivalent to a. Infact the theorem applies to applications of the resolve routine to open terms.Inasmuch as we may regard a module as a term with free variables, thetheorem would justify use of resolve during separate compilation of modules.



70 On a limited set of test programs, the algorithm converts a majority ofselects and updates into the optimised form. However, the speedup rangesfrom modest (10%) to negligible; the interpretive overhead in our bytecode-based system tends to swamp the e�ect of optimisations such as this. It islikely to be more e�ective in a native code implementation.5.5 Discussion and Related WorkIn general, there are many algorithms for optimising access to objects; seeChambers (1992), for instance, for examples and a literature survey. Theidea of statically resolving labels to integer o�sets is found also in the workof Ohori (1992), who presents a �-calculus with records and a polymorphictype system such that a compiler may compute integer o�sets for all usesof record labels. Our system is rather di�erent, in that it exploits object-oriented references to self.In contrast to Ohori's type system, we have not integrated our lay-out types with a conventional type system that guarantees the absence ofunchecked runtime errors. Our system of layout types could probably beintegrated with one or other of Abadi and Cardelli's type systems for theimperative object calculus, to obtain a uni�ed type system that avoidedunchecked runtime errors and moreover could determine statically the layoutof certain objects. Instead, our implementation checks programs using oneof Abadi and Cardelli's type systems in one pass, and in a separate passuses the algorithm from this section to optimise updates and selects. Thisseparation avoids the complications of a uni�ed type system.Two alternative approaches to program analysis for untyped object calculiare the abstract 
ow logic control 
ow analysis for the imperative objectcalculus by Nielson and Nielson (1998) and the set-based control 
ow analysisfor a concurrent, imperative object calculus by di Blasio, Fisher, and Talcott(1997). Both should be adaptable to the problem of statically resolvingmethod o�sets. These approaches are rather more complex than ours butmay lead to more precise results.6 ConclusionsIn this paper, we have collated and extended a range of operational techniquesin order to verify aspects of the implementation of a small object-orientedprogramming language, Abadi and Cardelli's imperative object calculus.First, we presented both a big-step and a small-step substitution-basedoperational semantics for the calculus and proved them equivalent to a closure-
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