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Abstract

This paper describes the new runtime system being developed for the Glasgow Haskell

Compiler. The goal is to provide support for mixed interpreted/compiled execution of

Haskell programs, with Hugs as the interpreter. In the process, we've taken the oppor-

tunity to �x some of the de�ciencies of the old system (such as garbage collection of

CAFs), add some new features (cost-centre stack pro�ling, and a more 
exible storage

manager), and improve performance (one stack instead of two, better register usage on

register-challenged architectures).

We also took the opportunity to design a clean, simple API to the runtime system that

would allow it to be used in a variety of applications, from standalone Haskell binaries

and interactive interpreters to encapsulated COM/CORBA objects.

1 Introduction

Compilers get the headlines, but behind every great compiler lies a great runtime system. A

surprising amount of work goes into runtime systems, but disproportionately few papers are

written about them. This paper describes the design of the runtime system we have built to

support mixed compiled/interpreted execution of Haskell.

Runtime systems start simple; after all, the compiler translates all the programmer-written

source into executable code, so what is there to do? Initially not much, perhaps, but serious

language implementations rapidly grow features that require run-time support. To be speci�c,

the runtime system we describe in this paper supports the following features:

Mixed compiled/interpreted execution was our prime goal (Section 6.4). The program-

mer sees the Hugs interpreter, but can load modules compiled by the Glasgow Haskell

compiler (GHC). Execution switches between compiled and interpreted code at a rather

�ne-grain level.

The storage manager includes a generational garbage collector (Section 4). The storage

manager is made more complicated by the need to support a number of language ex-

tensions, namely:

� Mutable variables and arrays support the state monad [LJ95].
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� Weak pointers allow the programmer to build self-cleaning memo-tables, among

other things [DBE93].

� Stable pointers are immutable names for heap objects; they allow pointers to

Haskell objects to be held outside the heap.

From the programmer's point of view, a big improvement is that the maximum heap size

no longer has to be speci�ed; instead, the heap simply grows (and shrinks) as required.

Concurrency. The run-time system supports Concurrent Haskell by default [PJGF96], and

hence has to manage multiple Haskell threads.

Pro�ling is now recognised as even more important for functional languages than for imper-

ative ones. We support both space and time pro�ling, using Jarvis's cost-centre stacks

[Jar96], a development of our earlier work on cost centres [SPJ95] (Section 7).

The foreign language interface allows C or COM/CORBA to call a Haskell function, or

be called by a Haskell function.

2 Overview

The runtime system has three main components (see Figure 1):

� A scheduler, which manages the various threads in the system. The scheduler sits at

the centre of the action: every thread returns to the scheduler before the next thread is

run, and the garbage collector is normally called from the scheduler level. The scheduler

is described in detail in Section 6.

� The storage manager consists of a low-level block allocator that requests storage on

demand from the operating system, and a garbage collector. The storage manager is

described in Section 4.

� The interpreter executes bytecodes. These may be read from a �le, or dumped directly

in the heap by an external bytecode compiler.

The entire runtime system is a library that can be embedded in some larger program (the

client application). The ones we have in mind are:

� The Hugs interpreter;

� a standalone GHC-compiled binary;

� a library callable from some enclosing C++ or Java program;

� a COM or CORBA object.
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Figure 1: Runtime System Overview

3 Heap objects

A central aspect of the design is the shape of heap-allocated objects. In particular, since an

object might be allocated by Hugs, and then used by GHC-compiled code, or vice versa, Hugs

and GHC must agree precisely on the layout of heap objects.

Every heap object looks like Figure 2. The �rst word of every object is called its info pointer,

and points to the static entry code of that object. The entry code is the code that evaluates

the object to weak head normal form; it is the most-used �eld during execution (as opposed

to garbage collection).

Immediately before the entry code is the object's info table. The info table has �elds that say

what kind of object this is, and hence what its layout is; this information is required by the

garbage collector. More speci�cally, the �elds of an info table are as follows:
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Figure 2: A Closure

� Closure type: a constant indicating which kind of closure this is (eg. function, thunk,

constructor etc.)

� Layout information for the garbage collector: either a pair (pointers, non-pointers) or

a bitmap.

� A pointer to the SRT for the object (see Section 4.6)

� Closure 
ags: several on-o� 
ags for quick access to certain properties of the closure.

(eg. is static, is pointed etc.)

� Various optional pro�ling, parallel and debugging �elds.

A simpler
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alternative would be to make the info pointer point to the info table, and point

to the entry code from an entry in the info table. Having the info pointer point directly to

the entry code, instead, looks attractive because it requires one fewer indirections. However,

it pollutes the instruction cache with never-executed info tables, and may not be a win on

modern architectures. We intend to experiment with the more conventional layout.

The runtime system supports quite a wide variety of heap objects. They fall into three main

groups:
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Simpler, not only because it is more conventional, but also because one can only generate this layout if one

generates assembly code directly. If one goes via C, then one has to post-process the output code to achieve

the same e�ect.



Pointed objects represent values of a pointed type; that is, a type that includes bottom.

All pointed objects may be evaluated (or entered). This is done by putting the address

of the object in a register and jumping to the object's entry code. Pointed objects

include:

� Thunks (unevaluated closures).

� Data constructors.

� Functions.

� Partial applications | these arise from an update of a function-valued thunk.

� Indirections, which are used to overwrite a thunk with its value.

� Black holes, which overwrite a thunk when its evaluation is begun, but before its

value has been computed (Section 5.1).

Unpointed objects represent values of unpointed type; that is, a type that does not include

bottom. A pointer to an unpointed heap object never points to a thunk or an indirection;

it always points to the object itself. Examples include:

� (Immutable) arrays.

� Mutable arrays and variables.

� MVars | required for Concurrent Haskell.

� Weak Pairs | for supporting memo tables.

Administrative objects are allocated by the runtime system itself, and never seen by the

programmer. They include:

� Thread state objects (TSOs). These contain the state of a given Haskell thread,

including the thread's stack.

� Byte code objects (BCOs). These contain byte codes for the interpreter.

� The stable pointer table, which maps the stable name of an object to its heap

address.

4 The Storage Manager

The runtime system includes a completely rewritten storage manager providing several en-

hancements both for compiled and interpreted execution. Hugs in particular will bene�t from

an industrial-strength garbage collector.

To summarise the main improvements provided by the new storage manager and garbage

collector:

� Dynamic resizing for heap and thread stacks: better performance for programs with

low memory requirements, and no more heap-size settings. The storage manager will

also be able to adjust its memory requirements to optimise the trade-o� between time

and space. For example, it could reduce the size of the heap if the system is paging

excessively.



� The garbage collector will support multiple generations, and will even be able to adjust

the number of generations during execution, depending on the storage requirements of

the program. It will also allow objects to be aged within a generation, by dividing the

generation into steps; this prevents objects being promoted to the next generation when

they are still very young.

� Top-level expressions (CAFs) will be garbage collected. Previously, the storage alloc-

ated by a CAF would be retained throughout the lifetime of the program. The new

storage manager will be able to traverse the code tree and discover which CAFs are still

accessible, allowing garbage CAFs to be collected. More about this in Section 4.6.

� Large objects, such as arrays and thread stacks, can be treated independently by the

storage manager, allowing them to remain at static locations in memory.

� Weak pointers. Using weak pointers (or weak pairs) we can provide support for hashed

memo tables without space leaks.

The driving technical decision is to allow the heap to consist of many dis-contiguous areas,

rather than a single large continguous address space. In fact, we go further, dividing the heap

into blocks of uniform size (4k bytes at present). The heap can then be partitioned between

generations, and age steps with each generation, in a 
exible and dynamic way. The blocks

making up a partition do not need to be contiguous, so it is easy to use any free block for

any purpose.

Many other sophisticated storage managers have adopted a similar design [DEB94, Rep94].

It makes the storage manager more complicated, and a little less e�cient, but it is much more


exible and robust, as we discuss below.

4.1 Structure

The storage manager is divided into two layers:

� The Block Allocator. This is the low level machine dependent layer in the storage

manager. It provides memory in units of blocks to the upper levels.

� The rest of the storage manager. This consists of the garbage collector and two memory

allocation interfaces: one for compiled code which provides a collection of blocks for fast

sequential allocation, and a separate interface for the interpreter and other external use.

A block is a power-of-2 sized chunk of memory. Blocks may be lumped together to form larger

contiguous chunks of memory called groups. Each block has an associated block descriptor,

which stores information about the block:

� The address of the block itself,

� the �rst byte of free memory in the block,



� for the �rst block in a group, the number of blocks in the group,

� which generation/step the block belongs to,

� a link to another block descriptor.

Blocks (and groups) can be linked together using the link �eld to form chains. Chains are

used for example to link together all the blocks in a single generation, and to maintain the

list of free blocks in the block allocator.

The 
exibility of a block-structured storage manager provides several advantages:

� If memory runs short, the runtime system can request more from the operating system,

without requiring it to be contiguous with the existing area. The requirement that

the programmer must often specify a maximum heap size is a major annoyance of the

current GHC implementation.

� Individual generations and allocation areas can be resized according to the memory

requirements of the program, by chaining blocks together. There is no need for the

memory in a generation to be contiguous.

� Large objects can be allocated and managed independently, allowing the garbage col-

lector to simply chain the objects onto new lists instead of copying the data itself during

garbage collection.

� Memory can be recycled quickly: as a block becomes free it can be immediately linked

onto a new list and reused. Consider a two-space collector running at 50% residency:

if the amount of live data is n bytes, then the total memory use is 4n. With a block-

structured garbage collector we can do this in 3n bytes because the allocation area is

re-used after each GC.

The block allocator provides an interface whereby blocks and groups may be allocated to

the upper levels, and later freed again. The block allocator maintains a pool of free blocks

and requests memory from the operating system as necessary. Memory is requested from

the operating system in units of megablocks, a multiple of the block size. Each megablock is

divided into blocks with a small amount of space reserved for block descriptors at the start

of the megablock. The block descriptor for the block containing any address is given by a

simple function of the address.

The storage manager is largely independent of the actual size of blocks and megablocks that

are chosen, with the only requirements that both are powers of 2 in size and a megablock is

a multiple of the block size. Currently we use 4k blocks and 1M megablocks.

The storage manager is self-contained with a simple API, consisting of just 7 functions. In

the following sections we will describe these functions.



4.2 Fast Sequential Allocation

Three functions provide access to contiguous chunks of memory which compiled code can

�ll with objects sequentially. The storage manager provides a number of blocks collectively

known as the nursery (where objects are born!). Each nursery block will be �lled in turn,

until the nursery is full when a garbage collection is needed. The garbage collector will

provide a new set of nursery blocks. The size of the new nursery can be adjusted to maximise

performance or reduce memory use.

OpenNursery(hp,hplim)

ExtendNursery(hp,hplim)

CloseNursery(hp,hplim)

Compiled code uses two registers for allocation purposes: the heap pointer Hp and the heap

limit HpLim. On entering compiled code from the scheduler, a call to OpenNursery is per-

formed. This call initialises the Hp and HpLim registers, usually with Hp pointing to the start

of the next free nursery block, and HpLim pointing to the end.

Each basic block performs a heap check, which simultaneously increases Hp while checking

that it has not exceeded the value of HpLim. The code following the heap check then �lls in

the memory with new objects. If the check fails, then ExtendNursery is called. This function

either initialises Hp and HpLim to the next free nursery block, or fails indicating the nursery

block pool is exhausted and a garbage collection is required.

On exiting compiled code, CloseNursery is called which saves away the next free location in

the current nursery block in the block descriptor ready for the next OpenNursery.

The upshot is that code can allocate away happily by incrementing Hp until HpLim is reached,

when either a new block will be chained on or the code must return to the scheduler for a

garbage collection. The calls to ExtendNursery are performed out of line (the compiled code

jumps to some common heap-check failure code), but are nevertheless very cheap. All the

nursery functions are implemented as short macros.

One advantage with this allocation scheme is that we have the opportunity to perform some

extra checks out of line in the \minor" heap check failure code that we wouldn't want to do at

every heap check. One example is checking the rescheduling timer; we can't allow the timer

to interrupt a thread in mid-execution since it must leave everything in a tidy state so that

garbage collection can be performed. On a heap-check failure, however, the thread is already

prepared for a possible garbage collection so we can easily yield if the rescheduling timer has

expired.

4.3 Out of band allocation

The following interface can be used when the sequential allocation scheme isn't appropriate

(we'll give some examples below):

StgPtr allocate(int words)

Bool doYouWantToGC(void)



The allocate function provides a chunk of memory of size words. It always succeeds. It seems

that we are fooling ourselves and pretending that we've got an in�nite supply of memory, but

the idea is that allocate is only used in short bounded sections of (C or Haskell) code

where garbage collection isn't convenient. At an appropriate point the application can call

doYouWantToGC and ask the storage manager if it thinks a garbage collection is called for; if

so the application should save away all live pointers on the thread stack and call the garbage

collector.

A prime example is the GNU multi-precision integer library that we use to implement the

Integer type in Haskell. The library allows the application to provide its own allocation

interface, but we can't garbage collect while in the allocator because we don't know what

live pointers the library function has hold of at any given time. It's possible to guess how

much memory is needed beforehand, but this is a risky business and requires knowledge of the

internals of the library. The solution is to use the allocate interface, and call doYouWantToGC

on returning from the library call.

The allocate interface can also allocate objects larger than the block size, which is impossible

with the sequential allocation scheme because the di�erence between Hp and HpLim is never

larger than a block. So functions which need large chunks of memory, such as for an array

or a thread stack, must use allocate to get their memory. Large allocations are ful�lled by

asking the block allocator for a block group (a contiguous sequence of blocks) of the correct

size, and then keeping track of the group on a list separate from the nursery. Large objects

are never moved in memory; their block groups are simply chained onto a new list during

garbage collection.

4.4 Garbage Collection

The garbage collector is normally called from the scheduler, but may be called by external C

code provided the calling thread has saved away its state on the thread stack.

void GarbageCollect(void (*get_roots)(void))

StgClosure *MarkRoot(StgClosure *p)

The garbage collector is invoked by calling GarbageCollect passing a pointer to a function

which will be called back to �nd all the possible live roots. The reason for the callback is that

the application, and not the storage manager, knows where all the possible roots are. When

called from the scheduler, for example, the roots will normally consist of the various thread

queues plus things like the stable pointer table.

The application-speci�c get_roots function calls MarkRoot for each possible root, which

returns the new location of the object. The garbage collector will traverse the reachable

graph from each root to �nd the closure of live data.

4.5 Support for generational GC

To support generational garbage collection the storage manager needs to know the location

of objects than can refer to objects in newer generations. This can happen in two ways:



� An update overwrites a thunk in an older generation with an indirection to a new object,

or

� a destructive write is performed to a mutable object in an older generation.

We provide two functions to indicate to the storage manager when one of these situations has

occurred:

void UpdateWithIndirection(StgPtr p1, StgPtr p2)

void RecordMutable(StgPtr p)

When an object is to be updated, the actual update is performed by UpdateWithIndirection,

which checks whether the object to be updated is in an old generation, and if so it must be

marked for traversal during garbage collection. UpdateWithIndirection is implemented as

a macro for speed.

There are two ways to cope with destructive writes in a generational garbage collector: either

trap the write itself and mark the target object for later traversal, or keep track of all mutable

objects in older generations and traverse them all during GC. We opt for the latter approach

since the number of mutable objects is usually low, and we would like to keep the write

operations fast and inline.

Only certain objects are explicitly mutable, and they are indicated as such by their ob-

ject types. Hence the garbage collector can easily keep a record of all live mutable objects

in the heap, except when an object is changed from being immutable to mutable. The

RecordMutable operation is provided for this eventuality, which only occurs in one place in

GHC: the thawArray function (the opposite of freezeArray which makes a mutable array

immutable).

4.6 Garbage Collecting CAFs

A CAF (constant applicative form) is a top-level expression with no arguments. The expres-

sion may need a large, even unbounded amount of storage when it is fully evaluated.

CAFs are represented by closures in static memory that are updated with indirections to

objects in the heap once the expression is evaluated. Previous versions of GHC maintained a

list of all evaluated CAFs and traversed them all during GC, the result being that the storage

allocated by a CAF would reside in the heap until the program ended.

The problem with garbage collecting CAFs is that they can't be reached by following the live

roots of the running program: we don't store pointers to static objects in dynamic memory

because we already know at compile time where the object lives so there's no need to store

pointers to it in the heap. The problem with this approach is that we can't know whether a

CAF expression will ever be referenced again just by looking at the contents of the heap and

stack, we have to look at the code itself.

The solution we adopted is to generate a static reference table (SRT) for each code segment

in the program, containing pointers to all of the top-level functions and CAFs that it directly



references. During garbage collection, we traverse all the objects referred to by the reachable

SRTs, recursively to identify the reachable CAFs.

For example, each thunk in the heap will have some associated code which evaluates the

thunk. This code will also have an SRT which records the top level functions and CAFs

referenced by the code for the thunk (any non-top-level objects will be pointed to by the

thunk in the heap). By recursively following the pointers in the SRT we can identify all the

CAFs that can possibly be reached directly or indirectly by the thunk. Similarly for stack

frames; however constructors are fully evaluated and hence have no SRTs. Each static object

has a spare �eld which we use to link together all the reachable static objects and also stop

the traversal from looping.

The scheme can be optimised by noting that many code sequences don't reference any static

objects at all, and hence have an empty SRT. A top-level function with an empty SRT need

not be referenced from other SRTs, possibly resulting in more empty SRTs, and so on. We

have found by using this optimisation that most functions get away with an empty SRT, and

non-empty SRTs generally have no more than a few entries, especially if the information is

passed across module boundaries (which we do). The increase in code size has so far been

minimal. There is a penalty at garbage collection time for following the SRTs, but it is o�set

by the saving in heap residency when CAFs can be garbage collected.

5 Execution model changes

The basic execution model that the runtime system supports is the STG machine [Jon92b].

However, the need to support mixed compiled/interpreted execution led us to make a number

of changes to the original STG execution model. Speci�cally:

One stack. The original STG machine used two stacks, one for pointers and one for non-

pointers. Segregating the pointers makes garbage collection easier, but it makes everything

else more complicated. The compiler has to model two stacks; two registers are con-

sumed as stack pointers; copying chunks of stack into separate heap objects is more

complex (this happens when updating a function-valued thunk); and so on.

Our new model has a single stack, containing both pointers and non-pointers. The

stack grows downwards, towards decreasing addresses. This makes it easy to think of

an activation record as a kind of stack-allocated heap object: the return address (at the

lowest address of the activation record) is like an info pointer, and it is furnished with

an info table that describes the layout of the activation record. The garbage collector

uses this information to identify the pointers and non-pointers in the activation record.

The idea of attaching layout information to return addresses is not new, but we have

found that thinking of an activation record as a stack-allocated, but otherwise normal,

heap object, is quite helpful.

When calling an unknown function, it turns out to be necessary to tag each non-pointer

explicitly ([Jon92b] gives an example that shows the problem). We do this by allocating

an extra tag word on the stack for each such non-pointer. Fortunately, calls to unknown

functions with unboxed arguments are pretty rare.



The single stack model is a bit more e�cient than the two-stack model, because there

is now no need to \stub" dead pointers | that is, overwrite them with a null pointer

| in the pointer stack. Previously this was necessary to avoid space leaks, but now the

descriptor in the info table can simply describe the dead stack slot as a non-pointer,

and hence not to be treated as a root by the garbage collector.

Uniform return in heap convention for boxed values. The original STG machine had

the nifty feature that a function returning (say) a pair would return the two components

in registers. If the caller of the function was a case expression that took the pair

apart, then the returned pair might never be allocated at all. This \return in registers"

convention contrasts with the simpler \return in heap" approach of allocating the pair

and returning a pointer to it. We have now reverted to this simpler approach.

The return-in-registers scheme looks super�cially very attractive, but it has a number

of undesirable consequences:

� Since garbage collection may strike, or an update may need to be performed, an

info pointer has to be returned along with the components of the pair. This uses

another instruction, and another register, and is only needed some of the time.

� The case expression might not use all of the components of the returned value

| selectors have this property. This matters when an existing value is returned,

because then the components are loaded into registers only to be discarded.

� Matters get complicated when switching back to interpreted execution; the latter

certainly uses the simple return-in-heap convention, and impedance-matching is

complicated.

Return-in-registers looks a particularly poor choice for register-impoverished architec-

tures, such as the x86, an architecture for which we would particularly like good per-

formance.

Using the return-in-heap convention means that we can no longer update thunks in

place (except by copying the value, which is clearly a bad idea), because the returned

value is already allocated. Necessity is the mother of invention: we have designed (but

not implemented) a scheme that recovers update in place by returning unboxed tuples

(only) in registers.

Better register usage. The STG also has a register-based calling convention, whereby call-

ing a known function with the right number of arguments is done by loading the argu-

ments into registers and jumping to the function's entry point. Registers were previously

used for the �rst 8 arguments, which is a pessimisation when real machine registers are

not available and these \pseudo-registers" are mapped to memory locations. In the

new system, we adjust the calling convention based on the number of machine registers

available; for instance on the x86 only the �rst argument to a function is passed in a

register, the rest are passed on the stack.

Polymorphic case. Haskell 1.4 allows any value (whether a data value or a function value)

to be evaluated to weak head normal form, using the seq operator. The execution

model supports this by using a special sort of update frame.



5.1 Space leaks and black holes

A program exhibits a space leak if it retains storage that is sure not to be used again. Space

leaks are becoming increasingly common in imperative programs that malloc storage and

fail subsequently to free it. They are, however, also common in garbage-collected systems,

especially where lazy evaluation is used. [Wad87, RW93]

Quite a bit of experience has now accumulated suggesting that implementors must be very

conscientious about avoiding gratuitous space leaks | that is, ones which are an accidental

artefact of some implementation technique.[.appel book.] The update mechanism is a case in

point, as [Jon92a] points out. Consider a thunk for the expression

let xs = [1..1000] in last xs

where last is a function that returns the last element of its argument list. When the thunk

is entered it will call last, which will consume xs until it �nds the last element. Since the

list [1..1000] is produced lazily one might reasonably expect the expression to evaluate in

constant space. But until the moment of update, the thunk itself still retains a pointer to the

beginning of the list xs. So, until the update takes place the whole list will be retained!

Of course, this is completely gratuitous. The pointer to xs in the thunk will never be used

again. In [Jon92b] the solution to this problem that we advocated was to overwrite a thunk's

info with a �xed \black hole" info pointer, at the moment of entry. The storage management

information attached to a black-hole info pointer tells the garbage collector that the closure

contains no pointers, thereby plugging the space leak.

5.1.1 Lazy black-holing

Black-holing is a well-known idea. The trouble is that it is gallingly expensive. To avoid the

occasional space leak, for every single thunk entry we have to load a full-word literal constant

into a register (often two instructions) and then store that register into a memory location.

Fortunately, this cost can easily be avoided. The idea is simple: instead of black-holing every

thunk on entry, wait until the garbage collector is called, and then black-hole all (and only)

the thunks whose evaluation is in progress at that moment. There is no bene�t in black-holing

a thunk that is updated before garbage collection strikes! In e�ect, the idea is to perform

the black-holing operation lazily, only when it is needed. This dramatically cuts down the

number of black-holing operations.

How can we �nd all the thunks whose evaluation is in progress? They are precisely the ones

for which update frames are on the stack. So all we need do is �nd all the update frames (via

the Su chain) and black-hole their thunks right at the start of garbage collection. Notice that

it is not enough to refrain from treating update frames as roots: �rstly because the thunks to

which they point may need to be moved in a copying collector, but more importantly because

the thunk might be accessible via some other route.



5.1.2 Detecting loops

Black-holing has a second minor advantage: evaluation of a thunk whose value depends on

itself will cause a black hole closure to be entered, which can cause a suitable error message

to be displayed. For example, consider the de�nition

x = 1+x

The code to evaluate x's right hand side will evaluate x. In the absence of black-holing, the

result will be a stack over
ow, as the evaluator repeatedly pushes a return address and enters

x. If thunks are black-holed on entry, then this in�nite loop can be caught almost instantly.

With our new method of lazy black-holing, a self-referential program might cause either stack

over
ow or a black-hole error message, depending on exactly when garbage collection strikes.

It is quite easy to conceal these di�erences, however. If stack over
ow occurs, all we need do

is examine the update frames on the stack to see if more than one refers to the same thunk.

If so, there is a loop that would have been detected by eager black-holing.

5.1.3 Lazy locking

In a parallel implementation, it is necessary somehow to \lock" a thunk that is under evalu-

ation, so that other parallel evaluators cannot simultaneously evaluate it and thereby duplicate

work. Instead, an evaluator that enters a locked thunk should be blocked, and made runnable

again when the thunk is updated.

This locking is readily arranged in the same way as black-holing, by overwriting the thunk's

info pointer with a special \locked" info pointer, at the moment of entry. If another evaluator

enters the thunk before it has been updated, it will land in the entry code for the \locked"

info pointer, which blocks the evaluator and queues it on the locked thunk.

The details are given by [THM

+

96]. However, the close similarity between locking and black

holing suggests the following question: can locking be done lazily too? The answer is that it

can, except that locking can be postponed only until the next context switch, rather than the

next garbage collection. We are assuming here that the parallel implementation does not use

shared memory to allow two processors to access the same closure. If such access is permitted

then every thunk entry requires a hardware lock, and becomes much too expensive.

Is lazy locking worth while, given that it requires extra work every context switch? We

believe it is, because contexts switches are relatively infrequent, and thousands of thunk-

entries typically take place between each.

The scheme can be further optimised by only locking each thunk once: if, while traversing

a thread's stack locking the thunks referred to by each update frame, we encounter a thunk

which is already locked, we can safely assume that all thunks further down the stack have

already been locked. This reduces the cost of lazy locking if context switches occur frequently.



6 The Scheduler

The scheduler manages the concurrent execution of multiple Haskell threads, and is the heart

of the runtime system.

6.1 Concurrency model

A Haskell thread is meant to be an extremely lightweight execution engine, and there may

be hundreds or thousands of them in a Concurrent Haskell program [PJGF96]. Furthermore,

they all share and mutate a common heap. If each Haskell thread were an operating system

thread, then every access to a heap object would have to be synchronised using relatively

expensive OS support.

Accordingly, the scheduler runs as a single OS thread, and multiplexes this single execution

thread among the runnable Haskell threads. Once started, a Haskell thread is never pre-

empted between two arbitrary instructions. Instead, it is pre-empted only when it makes

the next call to ExtendNursery; the ExtendNursery procedure inspects a global pre-emption


ag. This may delay thread switching, but it does make everything very simple, and doesn't

increase code size since the call to ExtendNursery is out-of-line in a generic heap-check

failure fragment. Instruction sequences are therefore atomic by default, so no special support

is required when mutating MVars. Requesting pre-emption is just a matter of setting a global

variable. Threads are suspended only at a moment when they have tidied up their activation

record, and left a suitable info pointer to describe the activation record on the stack.

A Haskell thread is represented by a heap-allocated Thread State Object (TSO). The TSO has

room to save the register state at thread suspension, and also contains the thread's stack. If

the stack over
ows, we simply allocate a new TSO of double the size, and copy the old TSO

into the new one.

6.2 The scheduler state

The scheduler state gives the entire state of the Haskell program. In particular, this state

gives all garbage collection roots. It consists of:

� A queue of runnable threads.

� A queue of threads waiting for a timeout or blocked I/O operations.

� A queue of threads currently engaged in external C calls which called back to Haskell

(see Section 6.5).

� A pointer to the stable pointer table.



6.3 The scheduler API

To facilitate calling Haskell functions from a variety of clients, the scheduler provides an API

that lets a client create and execute Haskell threads. Here it is:

void startupHaskell(int argc, char *argv[]);

void shutdownHaskell(void);

StgTSO *createThread(StgClosure *closure);

void schedule(StgTSO *main_thread);

The whole Haskell system is started by invoking startupHaskell, with some optional command-

line style arguments. This function initialises the scheduler and storage manager and prepares

for execution.

Threads may be created using the createThread interface, which takes a closure argument

indicating the closure to evaluate when the thread is run. For example, to create a thread

which will run the computation f in compiled module Foo, you can say

thread = createThread(Foo_f_closure);

To start running Haskell threads, the application invokes schedule, passing it the address

of a \main thread"

2

. The scheduler will run all the existing runnable threads until the main

thread �nishes or is killed; there is nothing else special about the main thread.

The scheduler will also return if all threads become blocked waiting on non-I/O resources

(deadlock).

The scheduler also provides an interface for passing arguments to newly created threads. This

is useful for calling Haskell functions from outside, and running Haskell IO computations (see

later).

void pushInt(StgTSO *thread);

void pushFloat(StgTSO *thread);

void pushDouble(StgTSO *thread);

void pushStablePtr(StgTSO *thread);

void pushAddr(StgTSO *thread);

void pushRealWorld(StgTSO *thread);

Arguments are pushed on the stack in reverse order, as normal. Only certain types of values

may be pushed, but these include Addr (a generic address value) from which the Haskell

thread may unpack any kind of structured data type.

In GHC, a value of type IO a actually has type

2

It may be necessary to extend this interface to return a value from the Haskell thread. In the meantime,

the Haskell thread may have type IO a and modify global variables in order to return values.



State -> (# State, a #)

where State is \the state of the world", and the (#...#) syntax indicates an unboxed tuple.

To evaluate an IO computation, it must be passed a state token

3

. The state token is pushed

using pushRealWorld.

For example, to create a thread for running Main.main, we could use

main = createThread(Main_main_closure);

pushRealWorld(main);

in fact, this is the guts of the default main function provided by the runtime system for

standalone compiled Haskell programs:

int main(int argc, char *argv[])

{

StgTSO *main;

startupHaskell(argc,argv);

main = createThread(Main_main_closure);

pushRealWorld(main);

schedule(main);

shutdownHaskell();

}

6.4 Switching between compiled and interpreted execution

The interpreter executes byte codes, which are stored in Byte Code Objects (BCOs) in the

heap. BCOs are stored and garbage collected along with the rest of the heap; for example

when a module is re-loaded by the interpreter, the storage used by the code for the old copy

will be collected at the next GC.

How does a thread switch between compiled and interpreted execution? Suppose it is execut-

ing interpreted code, and is about to evaluate a value (thunk or function). The interpreter

looks at the heap object; it if is a Byte Code Object (BCO), the interpreter moves the

byte-code program counter to the start of the object, and continues execution. Otherwise,

it returns to the scheduler, requesting compiled execution. The scheduler �res up compiled

execution by loading machine registers with the heap pointer, stack pointer, and so on, and

branching to the code for the thunk or function.

Now suppose that compiled code enters the code for a function or thunk. If it is a compiled

function or thunk, then execution proceeds normally. If it is a BCO, the BCO's entry code

3

Most manipulations of the state token are optimised away by the compiler's back-end, which assumes that

the state token takes up no space on the heap or in registers. It does, however, take up a stack slot because

the argument must be counted for the purposes of �nding out whether a function was partially applied.



simply returns to the scheduler requesting interpreted execution. This return �rst saves the

machine registers in the thread's TSO, of course.

In practice, we can optimise these returns to the scheduler, but logically that is what happens.

Similar things happen when returning to a return address on top of the stack, if one thinks of

the return address as the info pointer of a stack-allocated heap object, as discussed in Section

5.

6.4.1 Dynamic loading of compiled code

Hugs will need to dynamically load and unload compiled modules during a session. When

a module is loaded, its external references need to be updated to point to other compiled

modules, or into the interpreter itself when the reference is to a module that is currently

being interpreted. This requires some special support in the compiler, as well as the runtime

system.

It seems inevitable that we will have to compile modules into special dynamically-linkable

objects, which will impose some overhead as most jumps will have to go through a jump

table. There are several dynamic linking schemes in use, but most of these are speci�c to a

particular architecture, operating system or binary format. To avoid portability problems,

we intend to implement our own dynamic linking scheme.

6.5 Callouts and Callbacks

Integration with existing languages and tools is of the utmost importance if GHC is to be

used in the real world. Hence we'd like to provide methods by which Haskell programs can

call foreign language routines (a callout), and external systems can invoke Haskell functions.

The scheduler API described above caters for the latter requirement, but how do we allow

arbitrary foreign calls from Haskell?

As a �rst guess, we could just perform the call inline in a Haskell function. For most ap-

plications, this works �ne, although the entire Haskell system is temporarily suspended until

the foreign call returns. However, this approach could get us into trouble if the foreign callee

decided to use parts of the GHC RTS - perhaps to request a garbage collection, or even worse,

to call the scheduler (a callback).

If the callee wanted to perform a garbage collection, the caller (the Haskell thread) must make

sure it has left the world in a sane state, saving away registers on the stack and making sure the

garbage collector has access to all the live roots. This means some extra bookkeeping around

this kind of external call, so we provide a special construct for it (currently _ccall_GC_ to

indicate that the callee may call the garbage collector).

If the callee wants to call the scheduler, perhaps creating new threads �rst, then we have

another problem: the scheduler is already running, and we have two options:

� We could have the Haskell thread return to the scheduler, requesting that the foreign

call be performed from there. This means implementing some interpretive foreign calling

code in the scheduler, which is extremely hairy and architecture/language dependent.



� We could make the scheduler re-entrant. This is not as problematic as it sounds, but it

does involve some careful considerations:

{ The calling thread must be prepared for possible GC. Hence we require that a

foreign call which may call back be done with _ccall_GC_.

{ The scheduler must detect when it is being re-entered, and save the current thread

on a queue. The calling thread is then blocked until the new scheduler instance

returns (all other threads may continue to run, though).

{ The scheduler also has to be careful not to assume that local variables containing

pointers are constant across a call to Haskell land: the Haskell code may now call

the garbage collector or reschedule under our feet.

We plumped for the second option, because it was easier to implement; however we've had

little or no experience with it as yet, so it may still turn out to be a poor choice.

7 Pro�ling

We regard the pro�ler as an extremely important aspect of our runtime system. Though not

yet properly implemented, we plan to fully support Jarvis's cost-centre stack pro�ling [Jar96],

itself based on our earlier work on cost centres [SPJ95], for both space and time. The idea is

brie
y as follows:

� Costs are attributed to a stack of cost centres. This stack corresponds closely to the

dynamic chain of a call-by-value language. For example

f x = scc "f" (

let y = scc "y" (g x)

in scc "fbody" (h y)

)

The costs of evaluating (g x) will be attributed to the stack <y,f>, while those of

evaluating (h y) will be attributed to <fbody,f> (excluding the costs of evaluating y,

of course).

� The execution model is quite simple. A machine register identi�es the current cost

centre stack, to which are attributed all costs. In particular, timer interrupts increment

a statistics counter in the stack. When a thunk is built, the current cost centre stack

is stored in the thunk; when the thunk is entered, that stored cost centre stack is made

the current one.

� To keep the number of distinct cost-centre stacks tractable, Jarvis's ingenious idea is to

have the following invariant: any cost centre stack includes a given cost centre at most

once. So, when pushing a new cost centre on top of a stack, we �rst delete any existing

occurrence of that cost centre in the existing stack. This sounds as if it might be an

expensive operation, but it turns out to be quite simple to attach a memo table to each

stack, which maps a cost centre to the new stack obtained by pushing that cost centre

onto that stack.



� Statistics are dumped to a log �le during execution. After execution, the log �le can

be examined with one or more browsers. We have two browsers in mind: Jarvis's call-

graph browser, and a space-pro�le browser. In both cases, the browser allows views

at di�erent levels of detail without re-running the program. Of course, this relies on

storing rather a lot of information in the log �le; we are experimenting with 
exible and

compact log-�le formats to make this not too onerous [JMJW98]. Even so, the size of

the log �les is a worry.

We plan that the same general framework will support parallel pro�ling too.

� The cost-centre stack scheme has useful consequences for debugging, too. When a

program encounters a fatal error, such as a pattern matching failure or an in�nite loop

detected by a black hole entry, the information provided to the programmer normally

consists of no more than the function which contained the error. A stack trace is next

to useless, because the lazy evaluation order confuses the issue. However, the current

cost centre stack at the time of the error is much more useful, as it represents what the

programmer would normally think of as the call stack.

All of this is equally accessible to a Haskell program interpreted by Hugs, or compiled by

GHC, or a mixture.

We would like to support more elaborate space pro�lers, such as lag, drag, void, and retainers

[RR96a, RR96b], but all of them require compiler and runtime system support that we have

not yet studied carefully.
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