
A ROBUST PARSER FOR SPOKEN LANGUAGE
UNDERSTANDING

Ye-Yi Wang

Microsoft Research
 Speech Technology Group

One Microsoft Way
Redmond, Washington 98052, USA

http://research.microsoft.com/srg

ABSTRACT

This paper describes a robust parsing algorithm for spoken
language understanding. Comparing with the other work in
robust parsing, we focus on building a parser that is robust to
not only ill-formed spontaneous spoken language inputs but also
under-specified grammars. Preliminary experiment results show
that the parsing performance deteriorates more gracefully than
another parser we have used when the grammar is more under-
specified.

1. INTRODUCTION
Robust parsing has become an important topic in spoken
language understanding ever since the ATIS project. This is
because spontaneoue spoken languges are hardly well-formed.
Ungrammatical sentences, disfluencies (e.g., repeated words,
repairs or false starts) are so pervasive that the traditional parser
and NLP grammars will not work well. SLU researchers have
been working on robust parsing algorithms in the hope that their
performance will deteriorate gracefully when the inputs are ill-
formed [4][5][6].

While most of the robust parsing research work has focused on
the ill-formed inputs, the robustness of a parser to under-
specified grammars has not been well studied. We believe that
this is an important issue if we want to allow a non-
computational linguist to develop an application with a natural
language interface --- in this case, ideally, we can let the
developer write high level conceptual relations rather than
detailed grammars.

1.1 LEAP Grammar

LEAP (Language Enabled APplications) [1][3] is an effort in
the speech technology group in Microsoft Research that aims at
spoken language understanding.

LEAP differs from many other NLP systems with its
application-centric architecture. In this architecture, a LEAP
entity is an element of the real world that an application has to
deal with and wishes to expose to the user via natural language.
A Leap entity can be referred to with a semantic class --- a
semantic class is a way to specify a LEAP entity, and the LEAP
entity is called the type of that semantic class. Since a LEAP
entity can be referred to in many different ways, different
semantic classes may have the same type. For example, we can
refer to a person with his name (Peter) or his relation to another
person (John’s advisor); therefore both semantic classes
ByName and ByRel can share the same type, <PERSON>.

A LEAP grammar contains the definitions of semantic classes
that can be used to refer to LEAP entities. A semantic class is
defined as a set of slots that need to be filled with terminal

(verbatim) words or with recursive semantic class objects.

The semantic class grammar appears similar to the semantic
grammar in CMU Phoenix System [6]. However, there is a
philosophical difference between the two grammars. Strictly
speaking, our semantic class grammar can hardly be called a
grammar, since it is primarily used to define the conceptual
relations among LEAP entities rather than the language
expressions that are used to refer to the entities. Because of this,
a LEAP grammar tends to be under-specified. This can be
illustrated with the following example:
 <PERSON> ByRel {
 <P_RELATION>
 <PERSON> }
 <PERSON> ByName {
 [LastName]
 [FirstName] }
 <STRING> FirstName verbatim {
 john | john’s | peter | … }
 <STRING> LastName verbatim {
 smith | smith’s | shaw … }
 <P_RELATION> PersonalRel verbatim {
 boss | father | mother | son | … }

Here ByRel is a semantic class that has the type <PERSON>.
The LEAP grammar specifies that it has two slots --- one has to
be filled with an object of a semantic class having the type
<P_RELATION>, and the other has to be filled with an object
of a semantic class having the type <PERSON>. Here little
linguistic information is available for the assembly of an
expression that can be used to refer to an object of the class
ByRel. According to this grammar, any sequence that
contains a word of <P_RELATION> typed class and a word of
a <PERSON> typed class can be an expression referring to a
semantic object of ByRel, such as “John’s father,” “father of
John,” or even “John loves his father.” The slots of the class
ByName are specified more restrictively with particular
semantic classes (LastName and FirstName in brackets)
rather than the types of semantic classes.

Another difference exists between the grammar in Phoenix [6]
and our semantic class grammar: the former only allows word
skipping between slots (modeled in details with RTNs) in the
top frame level, while the latter appeals for robust parsing (word
and grammar symbol skipping) in all levels of the semantic
class hierarchy.

1.2 Under-Specified vs. Under-Developed

It is important to understand the difference between under-
specified grammar and under-developed grammar. Under-
specified grammar is the one that has the conceptual relations

Eurospeech, vol. 5, pp. 2055-2058, ESCA, Budapest, Hungary, 1999

among the relevant entities in an application fully defined but
lacks the linguistic information (e.g. word order information)
regarding how the entities can be glued together to form a legal
expression. Under-developed grammar is the one that does not
have all these relevant conceptual relations specified. There is
not much we can do with the parser for performance
improvement when the grammar is under-developed.

1.3 Challenges

Clearly the LEAP grammar is under-specified. While the under-
specification makes the grammar versatile enough to cover
different expressions with a single semantic class, it poses the
following challenges to the parser:

• An under-specified grammar will greatly increase the parse
ambiguity --- an input word sequence may match many
different semantic classes. How can the parser effectively
resolve the ambiguity?

• The ambiguity, together with the requirement of robust
parsing in all levels of a semantic hierarchy, results in a
much bigger search space. How can the parser effectively
prune partial parses to increase its speed?

2. ROBUST CHART PARSING
ALGORITHM

Our robust parsing algorithm is an extension of the bottom-up
chart parsing algorithm in [2]. To use the algorithm, we first
have to convert the LEAP semantic grammar into a CFG rule
set. This can be accomplished by introducing a CFG rule A→B
for a semantic class A and every slot rule B in A. With the
previous example, we introduce the following two rules to the
CFG grammar for the semantic class ByRel:
 ByRel → <P_RELATION>
 ByRel → <PERSON>.
Since <P_RELATION> and <PERSON> are not mutually
exclusive in ByRel, we need the following rule to glue them
together in a semantic class:
 ByRel → ByRel ByRel
The algorithm uses dotted rules by adding a dot in the right
hand side of CFG rules. If the dot appears at the end of a rule
like in A→α•, we call it a (partial) parse with symbol A. If the
dot appears in the middle of a rule like in A→B•CD, we call it a
hypothesis that is expecting a partial parse with a symbol
compatible with C: if C is a semantic class or a verbatim, then
the symbol of the partial parses must be C. If C is a type, then
the symbol of the partial parse has to be a class that has C as its
type.

2.1 The Algorithm

The algorithm maintains three major data structures --- A chart
(chart) holds hypotheses that are expecting partial parses to
finish the application of the CFG rules associated with them; an
agenda (agenda) holds the partial parses that are yet to be used
to expand the hypotheses in the chart; and a list (processed)
holds the parses that have already been used to expand the
hypotheses (therefore the parses are sub-trees of some new
hypotheses) in the chart. The algorithm requires that the LEAP
grammar have been converted to a CFG rule set (ruleset).

The general framework of the algorithm is similar to the chart
parsing algorithm described in [2]. The differences include
• The requirement that a hypothesis h and a partial parse p

have to cover adjacent words in the input is relaxed here.

Instead it is only required that h.end < p.start [Line
18]. This effectively skips the words between h.end and
p.start, and makes the parser able to omit noise words
in input sentences;

• The combination of a hypothesis with a new partial parse
taken from agenda results in multiple new hypotheses
[iteration in line 21]. Those hypotheses differ from one
another in terms of the position of the dot in the dotted rule
[line 26]. In other words, those different hypotheses are
expecting different partial parses. This effectively skips the
symbols in a rule, so the parser can continue its operation
even if something expected by the grammar is omitted by
the speaker or by the speech recognizer.

ALGORITHM: ROBUST_CHART_PARSER
1. agenda = φ
2. chart = φ
3. foreach (rule r in ruleset)
4. for i = 0 to r.size
5. create new hypo h
6. h.start ← h.end ← 0
7. h.rule ← r
8. h.dot_position ← i
9. chart ← h
10.foreach (w in sentence)
11. agenda ← w;
12. foreach (parse p in agenda) {
13. remove p from agenda
14. processed ← p
15. if (p.acceptable()) {
16. candidates ← p;
17. foreach (hypo h in chart)
18. if h.end < p.start and
 h.symbol_after_dot and
 p.symbol are compatible
19. append(h, p)
20.sort and output all parses in candidates
The algorithm calls the procedure append(h, p), which is
defined below:
PROCEDURE: APPEND(h, p)
21.for i=h.dot_position + 1 to h.rule.size
22. create new hypo h’ with children h, p
23. h’.start ← h.start
24. h’.end ← p.end
25. add h’ to the parents list of h and p
26. h’.dot_position = i
27. if i ≠ h.rule_size
28. chart ← h’
29. else
30. place(h’)
The placement of a new partial parse is crucially related to the
pruning/disambiguation mechanism of the parser. The algorithm
is described in the PLACE(h) procedure below:
PROCEDURE: PLACE(h)
31.if ∃∃∃∃ g (g.start=h.start and g.end=h.end
 and g.dot_position=g.rule.size
 and g.symbol=h.symbol)
32. case g.score > h.score
33. discard h
34. case g.score < h.score
35. case g ∈ processed
36. replace occurence of g with h in
 all parses and hypotheses, change
 their scores and propagate the

 change to all the antecedents
37. case g ∈ agenda
38. replace g with h
39. case g.score = h.score
40. create an ambigious parse f with
 children h and g.
41. f.score ← h.score
42. f.start ← h.start, f.end ← h.end
43. replace g in agenda/processed with f
44.else
45. agenda ← h

If there is already a parse g that has the same symbol and span
as the new parse h, we then compare their scores. If the existing
parse has a higher score, we just discard the inferior new parse
[line 32-33]. If the new parse has a higher score, we then
replace every occurrence of the existing parse with the new one
[line 34-38]. When we do this, we have to check if the existing
parse is in processed list. If so, we have to accordingly
update the score of all hypotheses and parses that used to have
the existing parse g as their descendents [line 35-36]. For that
purpose, a list of parents is maintained for every hypothesis or
partial parse [line 25].

2.2 Partial Parse Score

The PLACE(h) procedure in the previous subsection depends on
the score of partial parses. While we believe that parse scoring
should ultimately resort to the likelihood of the parse with
respect to a statistical grammar, the amount of data currently
available does not license this solution. Instead heuristic scores
are used. A parse score here is not a single number. Instead, it is
a set of property values of the parse. The set includes, in the
order from the most significant to the least significant, the
property values in Table 1.

Coverage + Number of word covered by a parse

SkippedSym - Number of rule symbols skipped in
the parse tree

TotalNodes - Number of nodes in the parse tree

Depth - The depth of the parse tree

Start - The leftmost position of the word
covered by the parse

Table 1. Properties in parse scores. The signs in the
second column indicate the preference on the value of a
property: “+” indicates that a larger number is preferred,
and “-” indicates the opposite. Combinations of the
different properties can result in different parse scores.
PLACE(h) uses the score of the properties in the shaded
background.

The score of a parse can be dynamically computed according to
its children’s score when the parse is created.

2.3 Pruning and Disambiguation

Pruning is carried out when new parses are created (see the
PLACE(h) procedure in the algorithm.) The score used in this
operation includes the properties that are in the shaded
background in Table 1. It is straightforward for the first two
properties. They are used to minimize the number of times that

input words or grammar symbols are skipped. The preference
on fewer parse tree nodes is less obvious. It can be illustrated
with the following example: assuming that we have an extra
semantic class PC (stands for “Person Container”):
<PEOPLE> PC {
 <PERSON>
 <PERSON> <PEOPLE> }
Then the phrase “john smith” is ambiguous according to the
grammar. It has two parses shown in Figure 1.

Figure 1. Ambiguous Parse

The “fewer nodes” preference correctly selects (a) from these
two parses. Actually the preference is a direct application of the
psycholinguistic minimum attachment principle.

A more radical final disambiguation process is carried out in
step 20 when we sort the acceptable parses in the candidate list.
It uses the score that contains all property values in Table 1.

2.4 Left Recursion

The inclusion of the rule A → A A for a semantic class A in
ruleset results in unlicensed ambiguity. For example, when
the sequence A A A is observed in an input, there are two
different parses as shown in Figure 2.

Figure 2. Left recursion (a) vs. right recursion (b)

These two parses are not real ambiguity since the rule A → A A
is introduced to concatenate different slots of a semantic class.
To avoid this, we only allow left recursion when A → A A is
applied to append a hypothesis with a partial parse, so we
effectively prohibit structures like (b) in Figure 2.

2.5 Agenda

Unlike a traditional chart parser, the sequential order in which
the partial parses are taken out from the agenda is crucial here.
This can be illustrated with the example in Figure 3.

Here the number in the bracket following a non-terminal is the
number of words in the sentence covered by that non-terminal.
Suppose that (a) was taken from the agenda first and combined
with the hypotheses in the chart, and then (b) was taken from
the agenda. Since (b) has the same symbol and span as (a) but a
better score (coverage), it replaces every occurrence of (a) in all
parses and hypotheses. Now if (c) is taken from the agenda, it
can replace the B[2] sub-tree in (a) and result in a tree A[6],
which also spans [k, l] and has a better coverage than (b).
However, since (a) was already discarded because of its
previous inferiority to (b), there will be no chance for (a) to
revive and take the place of the inferior A[5] in (b). Therefore it

A

A A

A A

A

A A

A A

(a) (b)

PC

<PERSON>Byname
FirstName

john

LastName

smith

PC
<PERSON>Byname

FirstName

john

<PEOPLE>PC

<PERSON>Byname

LastName

smith (a) (b)

is crucial to first take out the parse with smaller span (in this
example, (c)) from the agenda.

Figure 3. Partial parses from agenda. (a) and (b) have
the same symbol (A) and span ([l, n]) but different
coverage.

In our implementation, agenda is a priority queue. A partial
parse that has the minimum span and highest score, covers the
word closest to the sentence start position (in that order) has the
highest priority.

3. PERFORMANCE
The parser was incorporated into the LEAP server and used in
Dr. Who, a research project that aims the advancement of
component research in spoken language technologies. We have
collected 9 topics of data in the domain of personal information
management, and we have fully developed LEAP grammars for
3 of those topics. The grammars for the rest of the topics are
still under-developed.

We conducted our first experiment to evaluate the ambiguity
resolution performance of the parser. We selected 121 test
sentences that have the one of the 3 topics with the fully
developed grammars. We parsed those sentences, collected the
number of ambiguities that occurred in the process of parsing.
We then manually checked the best parses predicted by the
parser, and analyzed how many times the parser had made
ambiguity resolution errors that result in incorrect parses. The
result is shown in Table 2.

Sentence # CoParse Ambi IncResolution

121 110 1931 6

Table 2. Parser ambiguity resolution performance. 1st
column: number of sentences. 2nd column: number of
correct parses. 3rd column: total number of ambiguities
occurred in the parsing process. 4th column: number of
parsing errors due to incorrect ambiguity resolution.

In the second experiment we evaluate the topic identification
performance of the parser. We used this metric because (a) it
allowed automatic performance evaluation without manually
examining the parses; and (b) topic identification performance
was extremely important in our application. The evaluation was
conducted with a test set of 3000 sentences that covers all 9
topics, and the results are given in Table 3.

Correct TI Incorrect TI Accuracy

2220 780 74%

Table 3. Topic identification performance.

In the next experiment we compared the performance of the
parser with another top-down heuristic search parser [3] in
terms of their robustness to under-specified grammars. This was

carried out by replacing our current grammar (Grammar 2) with
a more under-specified one that we had in the previous
development stage. The topic identification performance of both
parsers deteriorated because of this. However, the parser
described in this paper had an 11% error rate increase while the
other one had a 15% error rate increase.

4. CONCLUSIONS AND FUTURE WORK

We have presented a robust parsing algorithm for spoken
language understanding. The algorithm is robust to both ill-
formed spoken language inputs and under-specified semantic
grammars.

Currently, heuristic scores are used for disambiguation. In the
future we will investigate parsing using statistical methods, and
parsing systematic framework. We will also investigate a
unified approach to CSR and SLU. As a first step towards a
unified model, we are applying the robust parsing algorithm to
the word graph generated by the Whisper speech recognizer.
We also envision a unified model that can use a stochastic
semantic grammar directly as the language model for speech
recognition.

5. ACKNOWLEDGEMENT
The author would like to thank Kuansan Wang, Joshua
Goodman, Peter Mau, Xuedong Huang, Antonio Bagazzi,
Bruno Alabiso, Alex Acero and the whole Dr. Who team in
Microsoft Research.

REFERENCES
[1] Alabiso B and A. Kronfeld, “LEAP: Language Enabled

Applications”. Proceedings of the First Workshop on
Human-machine Conversation. Bellagio, Italy, July 1997.

[2] Allen J. “Natural Language Understanding”. The
Benjamin-Cummings Publishing Company, Inc. 1995.

[3] Bigazzi A. “LEAP Notes”. Microsoft Research Internal
Document, 1999.

[4] Lavie A. “GLR*: A Robust Parser for Spontaneous Spoken
Language”. Proceedings of ESSLLI-96 work-shop on
Robust Parsing, Prague, Czech Republic, August 1996

[5] Miller S., R. Bobrow, R. Ingria and R. Schwartz. “Hidden
Understanding Models of natural Language”. Proceedings
of the 31st Annual Meeting of the Association for
Computational Linguistics, New Mexico State University,
1994.

[6] Ward W. “The CMU Air Travel Information Service:
Understanding Spontaneous Speech”. Proceedings of the
DARPA Speech and Natural Language Workshop, 1990.

A[5] → DE

D[3] E[2]

k l m n

A[4] → BC

B[2] C[2]

k l m n k l

B[4]

 (a) (b) (c)

