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ABSTRACT 

This paper describes a robust parsing algorithm for spoken 
language understanding. Comparing with the other work in 
robust parsing, we focus on building a parser that is robust to 
not only ill-formed spontaneous spoken language inputs but also 
under-specified grammars. Preliminary experiment results show 
that the parsing performance deteriorates more gracefully than 
another parser we have used when the grammar is more under-
specified. 

1.  INTRODUCTION 
Robust parsing has become an important topic in spoken 
language understanding ever since the  ATIS project. This is 
because spontaneoue spoken languges are hardly well-formed. 
Ungrammatical sentences, disfluencies (e.g., repeated words, 
repairs or false starts) are so pervasive that the traditional parser 
and NLP grammars will not work well. SLU researchers have 
been working on robust parsing algorithms in the hope that their 
performance will deteriorate  gracefully when the inputs are ill-
formed [4][5][6]. 
 
While most of the robust parsing research work has focused on 
the ill-formed inputs, the robustness of a parser to under-
specified grammars has not been well studied. We believe that 
this is an important issue if we want to allow a non-
computational linguist to develop an application with a natural 
language interface --- in this case, ideally, we can let the 
developer write high level conceptual relations rather than 
detailed grammars.  

1.1 LEAP Grammar 

LEAP (Language Enabled APplications) [1][3] is an effort in 
the speech technology group in Microsoft Research that aims at 
spoken language understanding.  

LEAP differs from many other NLP systems with its 
application-centric architecture. In this architecture, a LEAP 
entity is an element of the real world that an application has to 
deal with and wishes to expose to the user via natural language. 
A Leap entity can be referred to with a semantic class --- a 
semantic class is a way to specify a LEAP entity, and the LEAP 
entity is called the type of that semantic class.  Since a LEAP 
entity can be referred to in many different ways, different 
semantic classes may have the same type. For example, we can 
refer to a person with his name (Peter) or his relation to another 
person (John’s advisor); therefore both semantic classes 
ByName and ByRel can share the same type, <PERSON>. 

A LEAP grammar contains the definitions of semantic classes 
that can be used to refer to LEAP entities. A semantic class is 
defined as a set of slots that need to be filled with terminal 

(verbatim) words or with recursive semantic class objects. 

The semantic class grammar appears similar to the semantic 
grammar in CMU Phoenix System [6]. However, there is a 
philosophical difference between the two grammars. Strictly 
speaking, our semantic class grammar can hardly be called a 
grammar, since it is primarily used to define the conceptual 
relations among LEAP entities rather than the language 
expressions that are used to refer to the entities. Because of this, 
a LEAP grammar tends to be under-specified. This can be 
illustrated with the following example: 
  <PERSON> ByRel { 
      <P_RELATION> 
      <PERSON> } 
  <PERSON> ByName { 
      [LastName] 
      [FirstName] } 
  <STRING> FirstName verbatim { 
      john | john’s | peter | … } 
  <STRING> LastName verbatim { 
      smith | smith’s | shaw … } 
  <P_RELATION> PersonalRel verbatim { 
      boss | father | mother | son |  … } 
 
Here ByRel is a semantic class that has the type <PERSON>. 
The LEAP grammar specifies that it has two slots --- one has to 
be filled with an object of a semantic class having the type 
<P_RELATION>, and the other has to be filled with an object 
of a semantic class having the type <PERSON>. Here little 
linguistic information is available for the assembly of an 
expression that can be used to refer to an object of the class 
ByRel. According to this grammar, any sequence that 
contains a word of <P_RELATION> typed class and a word of 
a <PERSON> typed class can be an expression referring to a 
semantic object of ByRel, such as “John’s father,” “father of 
John,” or even “John loves his father.” The slots of the class 
ByName are specified more restrictively with particular 
semantic classes (LastName and FirstName in brackets) 
rather than the types of semantic classes.  
 
Another difference exists between the grammar in Phoenix [6] 
and our semantic class grammar: the former only allows word 
skipping between slots (modeled in details with RTNs) in the 
top frame level, while the latter appeals for robust parsing (word 
and grammar symbol skipping) in all levels of the semantic 
class hierarchy.  

1.2 Under-Specified vs. Under-Developed  

It is important to understand the difference between under-
specified grammar and under-developed grammar. Under-
specified grammar is the one that has the conceptual relations 
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among the relevant entities in an application fully defined but 
lacks the linguistic information (e.g. word order information) 
regarding how the entities can be glued together to form a legal 
expression. Under-developed grammar is the one that does not 
have all these relevant conceptual relations specified. There is 
not much we can do with the parser for performance 
improvement when the grammar is under-developed. 

1.3 Challenges 

Clearly the LEAP grammar is under-specified. While the under-
specification makes the grammar versatile enough to cover 
different expressions with a single semantic class, it poses the 
following challenges to the parser: 

• An under-specified grammar will greatly increase the parse 
ambiguity --- an input word sequence may match many 
different semantic classes.  How can the parser effectively 
resolve the ambiguity? 

• The ambiguity, together with the requirement of robust 
parsing in all levels of a semantic hierarchy, results in a 
much bigger search space. How can the parser effectively 
prune partial parses to increase its speed? 

2. ROBUST CHART PARSING 
ALGORITHM  

Our robust parsing algorithm is an extension of the bottom-up 
chart parsing algorithm in [2]. To use the algorithm, we first 
have to convert the LEAP semantic grammar into a CFG rule 
set. This can be accomplished by introducing a CFG rule A→B 
for a semantic class A and every slot rule B in A. With the 
previous example, we introduce the following two rules to the 
CFG grammar for the semantic class ByRel: 
   ByRel →  <P_RELATION> 
   ByRel →  <PERSON>. 
Since <P_RELATION> and <PERSON> are not mutually 
exclusive in ByRel, we need the following rule to glue them 
together in a semantic class: 
       ByRel →  ByRel ByRel  
The algorithm uses dotted rules by adding a dot in the right 
hand side of CFG rules. If the dot appears at the end of a rule 
like in A→α•, we call it a (partial) parse with symbol A. If the 
dot appears in the middle of a rule like in A→B•CD, we call it a 
hypothesis that is expecting a partial parse with a symbol 
compatible with C: if C is a semantic class or a verbatim, then 
the symbol of the partial parses must be C. If C is a type, then 
the symbol of the partial parse has to be a class that has C as its 
type. 

2.1 The Algorithm 

The algorithm maintains three major data structures --- A chart 
(chart) holds hypotheses that are expecting partial parses to 
finish the application of the CFG rules associated with them; an 
agenda (agenda) holds the partial parses that are yet to be used 
to expand the hypotheses in the chart; and a list (processed) 
holds the parses that have already been used to expand the 
hypotheses (therefore the parses are sub-trees of some new 
hypotheses) in the chart. The algorithm requires that the LEAP 
grammar have been converted to a CFG rule set (ruleset). 

The general framework of the algorithm is similar to the chart 
parsing algorithm described in [2]. The differences include  
• The requirement that a hypothesis h and a partial parse p 

have to cover adjacent words in the input is relaxed here. 

Instead it is only required that h.end < p.start [Line 
18]. This effectively skips the words between h.end and 
p.start, and makes the parser able to omit noise words 
in input sentences;  

• The combination of a hypothesis with a new partial parse 
taken from agenda results in multiple new hypotheses 
[iteration in line 21]. Those hypotheses differ from one 
another in terms of the position of the dot in the dotted rule 
[line 26]. In other words, those different hypotheses are 
expecting different partial parses. This effectively skips the 
symbols in a rule, so the parser can continue its operation 
even if something expected by the grammar is omitted by 
the speaker or by the speech recognizer.   

 
ALGORITHM: ROBUST_CHART_PARSER 
1. agenda = φ 
2. chart = φ 
3. foreach (rule r in ruleset) 
4.   for i = 0 to r.size 
5.     create new hypo h 
6.     h.start ← h.end ← 0 
7.     h.rule ← r 
8.     h.dot_position ← i 
9.     chart ← h 
10.foreach (w in sentence)  
11.  agenda ← w; 
12.  foreach (parse p in agenda) { 
13.    remove p from agenda 
14.    processed ← p 
15.    if (p.acceptable()) { 
16.      candidates ← p; 
17.      foreach (hypo h in chart) 
18.        if h.end < p.start and  
              h.symbol_after_dot and  
              p.symbol are compatible 
19.         append(h, p) 
20.sort and output all parses in candidates  
The algorithm calls the procedure append(h, p), which is 
defined below:  
PROCEDURE: APPEND(h, p)
21.for i=h.dot_position + 1 to h.rule.size 
22.  create new hypo h’ with children h, p 
23.  h’.start ← h.start 
24.  h’.end ← p.end 
25.  add h’ to the parents list of h and p 
26.  h’.dot_position = i 
27.  if i ≠ h.rule_size 
28.    chart ← h’ 
29.  else 
30.    place(h’) 
The placement of a new partial parse is crucially related to the 
pruning/disambiguation mechanism of the parser. The algorithm 
is described in the PLACE(h) procedure below: 
PROCEDURE: PLACE(h) 
31.if ∃∃∃∃ g (g.start=h.start and g.end=h.end 
           and g.dot_position=g.rule.size 
           and g.symbol=h.symbol) 
32.  case g.score > h.score 
33.    discard h 
34.  case g.score < h.score 
35.    case g ∈ processed 
36.      replace occurence of g with h in  
         all parses and hypotheses, change  
         their scores and propagate the 



         change to all the antecedents 
37.    case g ∈ agenda 
38.      replace g with h 
39.  case g.score = h.score 
40.    create an ambigious parse f with 
       children h and g. 
41.    f.score ← h.score  
42.    f.start ← h.start, f.end ← h.end 
43.    replace g in agenda/processed with f 
44.else 
45.  agenda ← h 
 
If there is already a parse g that has the same symbol and span 
as the new parse h, we then compare their scores. If the existing 
parse has a higher score, we just discard the inferior new parse 
[line 32-33]. If the new parse has a higher score, we then 
replace every occurrence of the existing parse with the new one 
[line 34-38]. When we do this, we have to check if the existing 
parse is in processed list. If so, we have to accordingly 
update the score of all hypotheses and parses that used to have 
the existing parse g as their descendents [line 35-36]. For that 
purpose, a list of parents is maintained for every hypothesis or 
partial parse [line 25]. 

2.2 Partial Parse Score  

The PLACE(h) procedure in the previous subsection depends on 
the score of partial parses. While we believe that parse scoring 
should ultimately resort to the likelihood of the parse with 
respect to a statistical grammar, the amount of data currently 
available does not license this solution. Instead heuristic scores 
are used. A parse score here is not a single number. Instead, it is 
a set of property values of the parse. The set includes, in the 
order from the most significant to the least significant, the 
property values in Table 1.  

 

Coverage + Number of word covered by a parse 

SkippedSym - Number of rule symbols skipped in 
the parse tree 

TotalNodes - Number of nodes in the parse tree 

Depth - The depth of the parse tree 

Start - The leftmost position of the word 
covered by the parse 

Table 1. Properties in parse scores. The signs in the 
second column indicate the preference on the value of a 
property: “+” indicates that a larger number is preferred, 
and “-” indicates the opposite. Combinations of the 
different properties can result in different parse scores. 
PLACE(h) uses the score of the properties in the shaded 
background. 

The score of a parse can be dynamically computed according to 
its children’s score when the parse is created. 

2.3 Pruning and Disambiguation 

Pruning is carried out when new parses are created (see the 
PLACE(h) procedure in the algorithm.)  The score used in this 
operation includes the properties that are in the shaded 
background in Table 1. It is straightforward for the first two 
properties. They are used to minimize the number of times that 

input words or grammar symbols are skipped. The preference 
on fewer parse tree nodes is less obvious. It can be illustrated 
with the following example: assuming that we have an extra 
semantic class PC (stands for “Person Container”): 
<PEOPLE> PC { 
       <PERSON> 
       <PERSON> <PEOPLE> } 
Then the phrase “john smith” is ambiguous according to the 
grammar. It has two parses shown in Figure 1. 

  

 

 

 

 

Figure 1. Ambiguous Parse 

The “fewer nodes” preference correctly selects (a) from these 
two parses. Actually the preference is a direct application of the 
psycholinguistic minimum attachment principle. 

A more radical final disambiguation process is carried out in 
step 20 when we sort the acceptable parses in the candidate list. 
It uses the score that contains all property values in Table 1.   

2.4 Left Recursion 

The inclusion of the rule A → A A for a semantic class A in 
ruleset results in unlicensed ambiguity. For example, when 
the sequence A A A is observed in an input, there are two 
different parses as shown in Figure 2. 

 

 

       

 

Figure 2.  Left recursion (a) vs. right recursion (b) 

These two parses are not real ambiguity since the rule A → A A 
is introduced to concatenate different slots of a semantic class. 
To avoid this, we only allow left recursion when A → A A is 
applied to append a hypothesis with a partial parse, so we 
effectively prohibit structures like (b) in Figure 2. 

2.5 Agenda 

Unlike a traditional chart parser, the sequential order in which 
the partial parses are taken out from the agenda is crucial here. 
This can be illustrated with the example in Figure 3.  

Here the number in the bracket following a non-terminal is the 
number of words in the sentence covered by that non-terminal. 
Suppose that (a) was taken from the agenda first and combined 
with the hypotheses in the chart, and then (b) was taken from 
the agenda. Since (b) has the same symbol and span as (a) but a 
better score (coverage), it replaces every occurrence of (a) in all 
parses and hypotheses. Now if (c) is taken from the agenda, it 
can replace the B[2] sub-tree in (a) and result in a tree A[6], 
which also spans [k, l] and has a better coverage than (b). 
However, since (a) was already discarded because of its 
previous inferiority to (b), there will be no chance for (a) to 
revive and take the place of the inferior A[5] in (b). Therefore it 
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is crucial to first take out the parse with smaller span (in this 
example, (c)) from the agenda. 

 

 

 

 

 

 

Figure 3. Partial parses from agenda. (a) and (b) have 
the same symbol (A) and span ([l, n]) but different 
coverage.  

In our implementation, agenda is a priority queue. A partial 
parse that has the minimum span and highest score, covers the 
word closest to the sentence start position (in that order) has the 
highest priority. 

3. PERFORMANCE 
The parser was incorporated into the LEAP server and used in 
Dr. Who, a research project that aims the advancement of 
component research in spoken language technologies. We have 
collected 9 topics of data in the domain of personal information 
management, and we have fully developed LEAP grammars for 
3 of those topics. The grammars for the rest of the topics are 
still under-developed. 

We conducted our first experiment to evaluate the ambiguity 
resolution performance of the parser. We selected 121 test 
sentences that have the one of the 3 topics with the fully 
developed grammars. We parsed those sentences, collected the 
number of ambiguities that occurred in the process of parsing. 
We then manually checked the best parses predicted by the 
parser, and analyzed how many times the parser had made 
ambiguity resolution errors that result in incorrect parses. The 
result is shown in Table 2. 

Sentence # CoParse Ambi IncResolution 

121 110 1931 6 

Table 2. Parser ambiguity resolution performance. 1st 
column: number of sentences. 2nd column: number of 
correct parses. 3rd column: total number of ambiguities 
occurred in the parsing process. 4th column: number of 
parsing errors due to incorrect ambiguity resolution. 

In the second experiment we evaluate the topic identification 
performance of the parser. We used this metric because (a) it 
allowed automatic performance evaluation without manually 
examining the parses; and (b) topic identification performance 
was extremely important in our application. The evaluation was 
conducted with a test set of 3000 sentences that covers all 9 
topics, and the results are given in Table 3. 

Correct TI Incorrect TI Accuracy 

2220 780 74% 

Table 3. Topic identification performance. 

In the next experiment we compared the performance of the 
parser with another top-down heuristic search parser [3] in 
terms of their robustness to under-specified grammars. This was 

carried out by replacing our current grammar (Grammar 2) with 
a more under-specified one that we had in the previous 
development stage. The topic identification performance of both 
parsers deteriorated because of this. However, the parser 
described in this paper had an 11% error rate increase while the 
other one had a 15% error rate increase. 

4. CONCLUSIONS AND FUTURE WORK 

We have presented a robust parsing algorithm for spoken 
language understanding. The algorithm is robust to both ill-
formed spoken language inputs and under-specified semantic 
grammars.  

Currently, heuristic scores are used for disambiguation. In the 
future we will investigate parsing using statistical methods, and 
parsing systematic framework. We will also investigate a 
unified approach to CSR and SLU. As a first step towards a 
unified model, we are applying the robust parsing algorithm to 
the word graph generated by the Whisper speech recognizer. 
We also envision a unified model that can use a stochastic 
semantic grammar directly as the language model for speech 
recognition.  
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