Exact Alpha-Beta Computation in Logarithmic Space with
Application to MAP Word Graph Construction

Geoffrey Zweig and Mukund Padmanabhan
IBM T. J. Watson Research Center
P. O. Box 218, Yorktown Heights, NY 10598

{gzweig,mukund@watson.ibm.com}

Abstract

The classical dynamic programming recursions for the
forwards-backwards and Viterbi HMM algorithms are
linear in the number of time frames being processed.
Adapting the method of [8] to the context of speech
recognition, this paper uses a recursive divide-and-
conquer algorithm to reduce the space requirement to
logarithmic in the number of frames. With this proce-
dure, it 1s possible to do exact computations for obser-
vation sequences of essentially arbitrary length. The
procedure works by manipulating a stack of alpha vec-
tors, and by using sparse vectors, the space savings can
be combined with those of traditional pruning tech-
niques. We apply this technique to MAP lattice con-
struction, and present the first results in the literature
for that technique. We find that it is an effective way of
creating word lattices, and that doing the exact com-
putations enabled by the log-space technique results in
lower word error rates than space saving via traditional
pruning.

1 Introduction

Hidden Markov models provide the cornerstone of
most speech recognition technology, and are under-
pinned by two fundamental algorithms: the compu-
tation of posterior state occupancy probabilities, and
the computation of the best (Viterbi) path through an
HMM graph [6]. These algorithms are useful because
they elegantly use dynamic programming to reduce the
computation time from exponential in the number of
time frames to linear. However, the amount of space
that is required is still linear in the number of frames
(N), and linear in the number of states (S); i.e. it
is O(SN). Therefore, in the past, it has been infea-
sible to exactly compute best paths or posterior state
occupancy probabilities for many HMM graphs of rel-
evance to LVCSR tasks. For example, if one expresses
a trigram language model as an FSM graph [7] and ex-
pands it to the phonetic state level, it can easily com-

prise millions of states. For an utterance several thou-
sand frames long, finding the best path with straight
dynamic programming is infeasible because of the gi-
gabytes of space required.

The conventional method for overcoming the space
problem is to perform pruning: instead of considering
all the states in the graph at each time frame, a set
of live states is maintained. Only their successors are
computed for the following time frame, and only the
best of these are added to the set of live states at
that time. Although this has been successfully used
in many applications, it has two drawbacks: first, it is
inexact; and secondly, the maintenance, propagation,
and pruning of the sets of live states adds complexity
and indirection to the dynamic programming code.

It has recently been observed [8] that it is in fact pos-
sible to organize a large class of computations whose
space requirements are normally linear in time so that
instead they are logarithmic in time. In this paper,
we demonstrate the use of the log-space algorithm in
speech recognition, and use it both to do exact alpha-
beta computation on a larger scale than has been re-
ported in the past, and to do approximate computa-
tions in less space than has previously been required.

The specific task to which we apply the method
is MAP word-lattice generation [1]. This technique,
which has not to our knowledge been previously tested,
uses posterior state occupancy probabilities to com-
pute posterior word occupancy probabilities, and from
these it constructs a word lattice. In our experiments,
we find that the MAP lattice technique is effective
and robust. We further find that doing the exact
computation produced lower error rates than prun-
ing, and that the conventional method of computing
alpha-beta quantities required an exorbitant amount
of space, even with pruning.

The remainder of the paper is organized as follows.
In section 2 we present the log-space algorithm and
discuss its space and time requirements. In section 3,
we review the MAP lattice generation technique, and
some simple modifications for producing small, accu-

a a a o=
B
a a o o aa o
=B

o a aaaa

=B

Figure 1: An example of alpha-beta computation in
less than linear space. There are N time frames. Ini-
tially, the alphas and betas of the first and last frames
are know. Then the alphas are computed for subse-
quent time frames, but only stored at intervals of v/N.
For each of these intervals starting with the rightmost,
the alphas are computed and stored for the interior of
the interval, and the beta vector is receded in time and
combined with the stored alphas. Space is reclaimed
after each interval is processed. The maximum amount
of memory required is shown in the third line of this

figure, and is 258v/N.

rate lattices. Experimental results are presented in

section 4, followed by a conclusion in section 5.

2 LogSpace Algorithm

Recall that for an HMM with states {Q}, transition
matrix a;;, observation distributions b;(z), and obser-
vation sequence O, the quantity a:(z) is defined as
P(o1,...,0t,q: = i), and the quantity 5;(¢) is defined
as P(ot41,...,0r|g: = i). The posterior probability
Oét(i)ﬁt(i)
Do, ee()Be(d)
recursions allow the alpha and beta quantities to be
computed:

of being in state ¢ at time ¢ is Simple

ai1(d) = Y ai(t)aijbi(0s41)

%

Be(3) = aibi(t + 1)Bi(t + 1)
J

In the classical dynamic programming procedure,
the alpha vectors are computed and stored for each
frame in the utterance, starting from a base case at
t = 0 and moving forwards in time. The beta vectors
are then computed for each frame starting from a base
case at ¢ = N and moving backwards in time. Since
a beta vector can be immediately combined with the
corresponding alpha vector as soon as it is computed
(for example, to extract posterior occupancy probabil-
ities), there is no need to store the beta vectors.

process(l, o, 7,)

if r — I < threshold
advance as to r and store
recede Bs to ! — 1 and combine with as
reclaim space used to store as
return Bs at I — 1

else
break into k parts with boundaries left[i], right[i]
advance as to r storing at boundaries left[i]
for s=k downto 1

B = process(left[s], afs], right[s], 8)

end

end

Figure 2: Pseudocode for logarithmic-space alpha-beta
computation. On entry, the as for every state are
known at [, and the (Bs are known at r. The proce-
dure returns the betas at | — 1. The example of Fig. 1
results when k = /N and threshold = \/N.

The key insight to the log-space algorithm is that by
storing alpha vectors only at strategic intervals, and re-
computing on demand those alpha vectors that are not
stored, the space required can be drastically reduced
at the price of a relatively small amount of additional
computation. A simple example of this is presented in
Figure 1. In this case, the N frames are broken into
/N intervals of v/N frames each, to achieve a memory
usage of O(S\/N).

By generalizing this strategy to one in which blocks
of frames are recursively broken into k£ sub-blocks, a
space usage of O(kS log, N) is achieved, and a runtime
of O(SNlog;, N). The general algorithm is presented
in Figure 2. It is important to stress that this gener-
alizes the example of Figure 1 by its recursive nature:
rather than terminating after just one k-way split, the
procedure recurses until a threshold number of frames
are present in a block, in the extreme case just 1. Note
that the alpha and beta vectors may themselves be
sparse representations of only those states with some
appreciable probability, and therefore the algorithm
can be combined with standard pruning techniques in
a straightforward way. The space requirements are
minimized when £ = e 1.e. kK = 2.71.. . in practice
this means 3-way splits.

3 MAP Lattice Algorithm

The basic concept of a MAP word lattice was presented
in [1], and is exteremly simple. The procedure uses
word-internal acoustic context, and a bigram language
model, and has two main steps: first it generates a
list of likely words and their approximate time spans;
and secondly it connects overlapping words to form a
lattice. We now describe each step in detail.

Discounted Bigram Probabilities

Backoff
Probabilities

Unigram
Probabilities

Null Word-Boundary state

Figure 3: HMM structure used to generate MAP lat-
tices. This HMM uses word internal acoustic context
and the inter-word transition arcs encode a Kneser-
Ney bigram language model. The circles within words
represent phonetic states, and self-loops are omitted.

3.1 Word Trace Generation

The construction of a MAP lattice is based on the as-
sumption that utterances are produced by an HMM
with a structure as shown in Figure 3. Each pronun-
ciation variant in the vocabulary appears as a linear
sequence of phones, and the structure of this model
permits the use of word-internal context dependent
phones. In our work, we used a bigram language model
with modified Kneser-Ney smoothing [2, 3]; this fac-
tors naturally as shown in Figure 3. There is an arc
from the end of each word to a null word-boundary
state, and this arc has a transition probability equal to
the back-off probability for the word. From the word-
boundary state, there is an arc to the beginning of each
word, labeled with the unigram probability. For word
pairs for which there is a direct bigram probability, we
introduce an arc from the end of the first word to the
beginning of the second, and this arc has a transition
probability equal to the discounted bigram probability.

The MAP lattice is constructed by computing the
posterior state occupancy probabilities for each state
at each time, and then computing posterior word oc-
cupancy probabilities P,(W) by summing over all the
states interior to each word. That is, if W; is the set
of states in word W;, we compute Esew, % at
each time frame. We then keep track of the NV likeliest
words at each frame, and output these as a first step
in the processing.

Note that a word will be on the list of likeliest words
for a period of time, and then fall off that list. Thus
the output of the first step is essentially a set of word
traces, as illustrated in Figure 4. The horizontal axis
1s time, and the vertical axis ranges over all the word
pronunciations.

3.2 Word Trace Connection

The next step is to connect the word traces into a lat-
tice. Many connection schemes are possible, but we

Word Traces

Again
Dan
it's
Hi
Dean

Gene

i Connect the traces

Jean

MAP
Lattice

Figure 4: Word traces produced by the MAP lattice
HMM, and their connection into a word lattice. In re-
ality, since the N-best words at each frame are output,
a vertical line should intersect a constant number of
word traces; for visual simplicity, we have simplified
the picture.

have found the following simple strategy to be quite
effective. It requires that one more quantity be com-
puted as the word traces are generated: the temporal
midpoint of each trace as computed from the first mo-

t=end
SZ tPy(W)
izt ——. To

t=start,

construct an actual lattice, we add a connection from
the end of one word to the beginning of another if the
two overlap, and the midpoint of the second is to the
right of the midpoint of the first. This is illustrated at
the bottom of Figure 4.

ment of its posterior probability:

4 Experiments

The results presented here address two issues: first,
what is the baseline accuracy that can be expected
from a MAP lattice system, and secondly, what benefit
can be expected from using the log-space algorithm to
compute quantities exactly, as opposed to computing
them with conventional pruning techniques. To ad-
dress these issues, we experimented with a voicemail
transcription task [5]. This is a large vocabulary con-
tinuous speech telephony task, and the HMM graph
we used had about 16,000 word pronunciations and
300,000 states.

The experimental results are presented in Table 1,
which shows the memory used in storing alpha and
beta vectors, lattice size, and lattice word-error-rate
for the basic MAP lattice strategy, and with two dif-

Algorithm | RAM (MB)

Link Density | WER |

| LogSpace | 70.6 | 4960 | 6.76 % |
FS-2.5k 84.7 4020 14.5
FS-5k 169 4540 11.0
FS-10k 339 4810 8.70
FS-20k 678 4910 7.23
BEAM-60 | 70.6 3620 12.2
BEAM-70 | 184 4420 9.09
BEAM-80 | 429 4740 8.35
BEAM-90 | 887 4910 7.06
Table 1: Lattice oracle word error rates with exact

computation (LogSpace) and two kinds of pruning.
For FS and BEAM, the pruning threshold is progres-
sively less severe proceeding down the table.

ferent kinds of alpha-beta pruning. The first kind (FS)
keeps a fixed number of states alive on the forward
pass, and only computes the betas for those states.
The second kind (BEAM) keeps all the states within
a threshold of the maximum on the forward pass. The
log-space technique produced the most accurate lat-
tices with the least memory.

In Table 1, the word error rate reported is the oracle
error rate for the lattice; 1.e. the error rate of the sin-
gle path through the lattice that has the smallest edit
distance from the reference script. The link density is
the ratio of the number of links between words in the
lattice to the number of words in the reference script.
The log-space algorithm was run with 3-way splits, and
the recursion terminated for blocks of nine frames or
fewer. The lattices were constructed from the traces
of the 100 likeliest words at each time frame.

4.1 Lattice Pruning

For some applications, for example expanding lattices
to trigram context, it is desirable to have lattices that
are smaller than those produced by the basic MAP lat-
tice technique. To do this, we developed a simple tech-
nique for reducing the lattice size, with relatively little
affect on the error rate. To prune the lattices, we recal-
culate the alphas and betas and compute the posterior
probability of transitioning along the arcs that connect
word-ends. That is, if 7 is the last state in one word

occurrence and j is the first state in a successor, we
o6 (1)Be+1(§)aijb;(0e41)
P(0) ’
This is the posterior probability of being in state z at
time ¢ and in state 7 at time ¢ + 1, and transitioning
between the words at an intermediate time. For each
link between words, we sum this quantity from ¢ = 0 to
t = N to get the total probability that the two words
occurred sequentially; we then discard the links with
the lowest posteriors. As in [4], we have found that
over 95% of the links can be removed without a major

compute P(g; =1, ¢r41 = j|O) =

loss of accuracy. In our pruned lattices the average
indegree is reduced from over 70 to a little under 4,
and the error rate is about 11%.

5 Conclusion

The log-space recursion is a simple way of enabling
exact computations for HMMs with very long obser-
vation streams. Alternatively, it can be combined with
traditional pruning to achieve an exponential decrease
the overall memory requirements.

We have tested the log-space technique by construct-
ing MAP lattices, both with exact computations, and
with pruning, and find that more accurate results are
produced in less space with the log-space technique.
Achieving comparable results with traditional pruning
required a prohibitive amount of space.

References

[1] F. Jelinek. Statistical Methods for Speech Recognition.
The MIT Press, 1997.

[2] R. Kneser and H. Ney. Improved Backing-off for n-
gram Language Modeling. Proc. of ICASSP’95. 1995.

[3] S.F. Chen and J. Goodman. An Empirical Study of
Smoothing Techniques for Language Modeling. Cen-
ter for Research in Computing Technology, Harvard
University, 1998.

[4] L. Mangu and E. Brill. Lattice Compression in
the Consensual Post-Processing Framework. Proc. of

SCI/ISAS, Orlando, Florida, 1999.
[6] M. Padmanabhan, G. Saon, S. Basu, J. Huang and

G. Zweig. Recent improvements in voicemail tran-
scription. Proc. of EUROSPEECH’99, Budapest,
Hungary, 1999.

[6] L. Rabiner and B.H. Juang. Fundamentals of Speech
Recognition. Prentice Hall, 1993.

[7] M. Mohri and M. Riley. Integrated Context-
Dependent Networks in Very Large Vocabulary
Speech Recognition. Proc. of EUROSPEECH'99, Bu-
dapest, Hungary, 1999.

[8] J. Binder, K. Murphy and S. Russell. Space-Efficient
Inference in Dynamic Probabilistic Networks. Proc.

15th Int’l. Joint Conf. on Al 1997.
[9] S. Ortmanns and H. Ney. A Word Graph Algorithm

for Large Vocabulary Continuous Speech Recognition.
Computer Speech and Language, (11) 1997.

[10] N. Deshmukh, A. Ganapathiraju, and J. Picone. Hier-
archical Search for Large-Vocabulary Conversational
Speech Recognition. IEEE Signal Processing Maga-

zine, V.16 n.5, 1999.

