
Estimating the Impact of Scalable Pointer

Analysis on Optimization

Manuvir Das1, Ben Liblit2, Manuel F�ahndrich1, and Jakob Rehof1

1: Microsoft Research 2: EECS Department, UC Berkeley
fmanuvir,maf,rehofg@microsoft.com, liblit@eecs.berkeley.edu

Abstract. This paper addresses the following question: Do scalable
control-
ow-insensitive pointer analyses provide the level of precision re-
quired to make them useful in compiler optimizations?
We �rst describe alias frequency, a metric that measures the ability of
a pointer analysis to determine that pairs of memory accesses in C pro-
grams cannot be aliases. We believe that this kind of information is
useful for a variety of optimizations, while remaining independent of a
particular optimization. We show that control-
ow and context insensi-
tive analyses provide the same answer as the best possible pointer anal-
ysis on at least 95% of all statically generated alias queries. In order to
understand the potential run-time impact of the remaining 5% queries,
we weight the alias queries by dynamic execution counts obtained from
pro�le data. Flow-insensitive pointer analyses are accurate on at least
95% of the weighted alias queries as well.
We then examine whether scalable pointer analyses are inaccurate on the
remaining 5% alias queries because they are context-insensitive. To this
end, we have developed a new context-sensitive pointer analysis that also
serves as a general engine for tracing the 
ow of values in C programs. To
our knowledge, it is the �rst technique for performing context-sensitive
analysis with subtyping that scales to millions of lines of code. We �nd
that the new algorithm does not identify fewer aliases than the context-
insensitive analysis.

1 Introduction

Programs written in C typically make widespread use of pointer variables. In
order to analyze a program that uses pointers, it is necessary to perform a pointer
analysis that computes, at every dereference point in a program, a superset of
the set of memory locations that may be accessed by the dereference. These
\points-to" sets can be used to perform alias analysis in an optimizing compiler:
two memory accesses whose points-to sets do not intersect cannot be aliases.
Alias information can be utilized by a variety of optimizations, including but
not limited to code scheduling, register allocation, loop unrolling and constant
propagation.

Over the years a wide variety of algorithms for pointer analysis have been
proposed (including [LR92,And94,EGH94,WL95,Ste96,LH99]). All of these al-
gorithms either do not scale to large programs, or are believed to produce poor



alias information. This is one reason why most optimizing compilers do not
perform global pointer analysis, and are therefore forced to make conservative
assumptions about potential aliases. In this paper, we argue that scalable pointer
analyses do produce precise alias information.

We are interested in determining whether scalable pointer analyses can im-
pact a variety of optimizations. Therefore, we avoid evaluating pointer analyses
in the context of a speci�c optimization and a speci�c compiler. Instead, we de-
velop a new metric, \alias frequency", that measures the frequency with which
a pointer analysis is forced to assert that a pair of statically generated memory
accesses in a C program may be aliases. Our experiments show that the alias
frequency of scalable pointer analyses (in particular, Das's algorithm [Das00]) is
within 5% of the alias frequency of the best possible pointer analysis.

Although this result is extremely encouraging, we must also consider whether
the 5% alias queries on which scalable pointer analyses are imprecise may be the
very queries that have the greatest impact on a given optimization. If this is
so, the code associated with these queries must dominate the run-time of the
programs. Then, if we weight the responses to alias queries by dynamic execution
counts from pro�le data, we should expect a large gap in alias frequency between
Das's algorithm and the best possible pointer analysis. However, our experiments
show that Das's algorithm is within 5% of the best possible pointer analysis in
terms of weighted alias frequency as well.

One possible source of the remaining inaccuracy in Das's algorithm is its
lack of context-sensitivity. To understand the impact of this limitation, we have
developed a new algorithm that is a context-sensitive version of Das's algo-
rithm. Our generalized one level 
ow (GOLF) algorithm uses the one level 
ow
idea from [Das00] to achieve a limited form of context-sensitivity in addition
to subtyping. Our results show no appreciable decrease in alias frequency from
context-sensitivity.

GOLF is a general engine for tracing the 
ow of values in programs with
pointers and indirect function calls in a context-sensitive manner. It can be
used for applications such as program slicing [Tip95] or escape analysis [Ruf00].
GOLF is the �rst context-sensitive analysis with subtyping that scales to millions
of lines of code. Even though GOLF does not improve alias frequency, it can
provide much more precise results than a context-insensitive algorithm if the
client of the analysis is itself context-sensitive (see Section 5.2).

In summary, we make the following contributions:

{ We present \alias frequency", a new metric for measuring the impact of
pointer analysis on optimization.

{ We demonstrate that scalable pointer analyses are able to produce precise
responses to at least 95% of all alias queries on all of our test programs.

{ We show that the addition of context-sensitivity does not improve the alias
frequency of scalable pointer analyses.

{ We present GOLF, a new 
ow-insensitive pointer analysis that utilizes a
limited amount of context-sensitivity and subtyping. It produces a points-
to graph that is linear in the size of the program, in almost linear time.



All points-to sets in the program can be extracted from the graph using
CFL-Reachability, in worst-case cubic time.

{ We show that on all of our test programs, GOLF is linear in time and space
requirements. We also show that the limited forms of context-sensitivity and
subtyping used in GOLF provide the same precision as algorithms with full
polymorphism and subtyping. We therefore claim that GOLF is likely to
provide the same precision as an algorithm with full polymorphic subtyping.

The rest of the paper is organized as follows: in Section 2, we motivate GOLF
through an example. We describe GOLF in Section 3. In Section 4, we present
alias frequency. In Section 5, we present our empirical results. We discuss related
work in Section 6, and conclude in Section 7.

2 Example

Consider the fragment of a C program with function calls shown below.

id(r) f return r; g
p = idi(&x);
q = idj(&y);
�p = 3;

The goal of a context-sensitive pointer analysis is to avoid confusing the addresses
returned from the function id to the variables p and q at the two calls to id.

mr

m
?

mp

m
?
�

�

mq

m
?

-
�

mx PPPq
� my���)

�

(a)

mr

m
?

mp

m
?
�

i+

mq

m
?

-
j+

mx PPPq
i� my���)

j�

(b)

The points-to information computed by Das's algorithm is shown in (a) above.
The points-to graph shown contains nodes representing memory locations and
edges representing pointer relationships. Every node contains a single pointer
edge. Thus, the target of the node for p represents the location �p. The points-to
graph includes special \
ow" edges (labeled �) between nodes. Flow edges are
introduced at assignments, one level below (in the points-to graph) the expres-
sions involved in the assignment. In the example program, the implicit assign-
ment from &x to parameter r induced by the function call introduces a 
ow edge
from the node for x to the pointer target node of r, indicating that the set of
symbols represented by �r must include x. The return statement in id induces
implicit assignments from r to p and from r to q. As a result, the set of symbols
represented by �p includes both x and y, even though there is no execution of
the program in which the address of y 
ows to p. As has been pointed out by



several authors in previous work [RHS95,RF01], the problem arises because a
value 
owing in to id from one call site (i) is allowed to 
ow out to a di�erent
call site (j).

The points-to graph produced by GOLF is shown in (b) above. We label 
ow
edges arising from function calls with identi�ers. All edges from a given call site
have the same identi�er. Edges also have a polarity, indicating whether a value
is 
owing in to (�) or out from (+) the called function. From this graph, we can
see that x need not be included in the set of symbols at �q, because the only
path from x to �q has an edge labeled i� followed by an edge labeled j+. In a
\valid" 
ow path, calls and returns are \matched": an edge labeled i� may be
matched only by an edge labeled i+.

A valid path in the GOLF graph is one whose sequence of labels forms a
string in a context-free language of matched l� and l+ labels. It is well known
that the presence of valid paths between a pair of nodes can be determined in
worst-case cubic time using CFL-Reachability queries [RHS95].

Both Das's algorithm and GOLF achieve scaling partly by limiting the use
of 
ow edges to one level in the points-to graph, while using uni�cation (or, type
equality rules) to merge nodes at lower levels. Our experiments show that the
restriction of context-sensitivity to one level does not lead to loss of precision
compared to full context-sensitivity.

3 GOLF: Generalized One Level Flow

A pointer analysis can be thought of as an abstract computation that models
memory locations. Every location � is associated with an id or set of symbols
', and holds some contents � (an abstract pointer value) (Figure 1 (b)). A
location \points-to" another if the contents of the former is a pointer to the
latter. Information about locations can be encoded as a points-to graph, in which
nodes represent locations and edges represent points-to relationships.

In Steensgaard's uni�cation-based algorithm [Ste96], the e�ect of an assign-
ment from y to x is to equate the contents of the locations associated with y

and x. This is achieved by unifying (i.e., equating their ids and contents) the
locations pointed-to by y and x into one representative location. Das's algorithm
extends Steensgaard's algorithm by pushing the e�ect of assignment processing
one level down the chains in the points-to graph (Figure 1). The e�ect of an
assignment from y to x is to introduce a special \
ow" edge from the pointed-to
location of y to the pointed-to location of x, and to equate only the contents of
the two pointed-to locations (Figure 1 (a)). Flow edges relate ids of locations:
all of the symbols in the id of the source of a 
ow edge must be included in the
id of the target of the edge. Assignment processing is represented declaratively
in Figure 1 (b): the type rule says that the program is correctly typed i� the
pointed-to locations of y and x have the same contents, and if the id of the
pointed-to location of y is a subset of the id of the pointed-to location of x.

GOLF extends Das's algorithm by treating implicit assignments induced by
function calls in a special manner, so as to obtain context-sensitive information.



(a) fxg fyg

? ?

� �

?

@
@R

�
�	

(b) s 2 Symbols
� 2 Locations ::= ('; �)
' 2 Ids ::= fs1 ; : : : ; sng
� 2 Values ::= ? j ptr(� )

? � �

ptr('; �) � ptr('0; �) , ' � '0

A ` x : ('; �) A ` y : ('0; �0)

�0 � �

A ` welltyped(x = y)

Fig. 1. Assignment processing in Das's algorithm. Figure (a) above shows the points-to
graph after processing x = y. The domains and type rule in �gure (b) above provide a
declarative speci�cation of assignment processing.

(a) fpg fyg

? ?

� i�

?

@
@R

�
�	

fxg frg

? ?

� i+

?

@
@R

�
�	

(b) ptr('; �) �i
p ptr('0; �) , ' �i

p '0 p 2 f+;�g

A ` p : ('; �) A ` r : ('0; �0)

A ` f : �! �
0

8s 2 S� : A ` welltyped(s)

A ` welltyped(f = fun (p)! (r) S�)

A ` x : ('x; �x) A ` y : ('y; �y)

A ` f : �! �
0

�y �
i
� � �0 �i

+ �x

A ` welltyped(x = fi(y))

Fig. 2. Function call processing in GOLF. The graph fragments in (a) above represent
points-to information after processing x = fi(y), a call to function f with argument
y at call site i. For ease of exposition, we assume that functions are normalized: the
statement f = fun (p)! (r) S� de�nes a function f that has a single formal parameter
p, an out parameter r that holds the return value, and a statement body S�. The
labeled constraints �i

� and �i
+ generated at function calls are similar to instantiation

constraints used in polymorphic type inference [Hen93], except that the direction of
constraints with negative (�) polarity is reversed to match the direction of 
ow of
values (see [RF01]).



The e�ect of function calls in GOLF is shown in Figure 2. Parameter passing
induces 
ow edges that are labeled by a call site identi�er and a polarity (Figure
2 (a)). The polarity indicates the direction of 
ow of values, either into the called
function through a formal parameter (�), or out of the function through a return
statement (+). Function call processing is represented declaratively through the
type rules for function de�nitions and function calls in Figure 2 (b). Value 
ow in
and out of a called function generates special labeled constraints between the ids
of pointed-to locations, while the contents of pointed-to locations are equated.
These labeled constraints are similar to subset constraints, except that the labels
are used to restrict the ways in which constraints can be composed transitively.
As explained in Section 2, we wish to rule out the invalid 
ow of values that
arises when an edge labeled i�, representing the 
ow of values into a function
at call site i, is followed by an edge labeled j+, representing the 
ow of values
back to a di�erent call site j.

Valid 
ow paths. The set of valid 
ow paths is characterized precisely
by the grammar shown below, and taken from [RF01]. The sequence of labels
encountered along a path of 
ow edges forms a string. A path is a \valid path"
i� its sequence of labels forms a string in the context-free language recognized
by non-terminal S:

S ::= P N N ::= M N j i� N j �

P ::= M P j i+ P j � M ::= i� M i+ j M M j � j �

3.1 Declarative speci�cation

The GOLF algorithm can be viewed as a set of non-standard type inference rules
over a simple language of pointer related assignments. The set of rules includes
the rules from Figure 2, and the rules from Das's algorithm for handling various
kinds of explicit assignment statements, shown below:

A ` x : ('; �) A ` y : ('0; �0)

�0 � �

A ` welltyped(x = y)

A ` x : ('; �) A ` y : �

ptr(�) � �

A ` welltyped(x = &y)

A ` x : ('; �) A ` y : ('0; ptr(� ))

� = ('00; �00)

�00 � �

A ` welltyped(x = �y)

A ` x : ('0; ptr(�)) A ` y : ('; �)

� = ('00; �00)

� � �00

A ` welltyped(�x = y)

3.2 Correctness

We claim that the type rules in Figure 2 and above provide a speci�cation
of a correct 
ow-insensitive but context-sensitive pointer analysis. This follows



from the observation that our type rules can be viewed as a restriction of the
type system presented by Rehof and F�ahndrich in [RF01]. Their type system,
which has been shown to be correct, de�nes an algorithm with full subtyping
and polymorphism. The GOLF type rules de�ne an algorithm with one level of
subtyping and one level of polymorphism.

There is a formal connection between constraint satisfaction in our type
inference rules and valid paths in the GOLF points-to graph. The connection is
provided in [RF01].

Global storage. The goal of GOLF is to identify all valid 
ow induced by
function calls. In C programs, this may include 
ow because of uses of global
variables within functions. It is possible that some 
ow may occur because of
a global variable even though no labeled 
ow edge is produced in the points-
to graph. Reps et al have suggested treating globals as extra parameters, but
this may lead to a large increase in the size of the points-to graph. Instead, we
identify nodes associated with globals (we call these \global storage" nodes) and
add self loops on these nodes, labeled with every possible call site and polarity.
This conservative approximation ensures that we cannot omit any 
ow of values
through global variables.

A similar problem occurs with indirect accesses through pointer valued pa-
rameters. One solution would be to modify our function call rule to add self loops
with the given call site label on all nodes below the nodes related by labeled 
ow
edges. Instead, we use the conservative approximation of treating these nodes as
global storage nodes.

3.3 Operational algorithm

Every symbol referenced in the program is associated with a unique location
on demand. The program is processed one assignment at a time, including im-
plicit assignments generated by function calls. At every assignment, locations
are uni�ed as necessary to satisfy the type equality requirements imposed by
the non-standard type inference rules in Figure 2 and Section 3.1. Processing of
simple subset constraints and labeled constraints is delayed by introducing 
ow
edges between locations, as shown in Figures 1 and 2. When two locations are
uni�ed, 
ow edges between the locations turn into self loops. Unlabeled (�) self
loops are discarded, but labeled (�i

p) self loops are retained in order to capture
all valid 
ow. The GOLF graph could therefore contain more edges than Das's
points-to graph. In practice, the increase in edge count is very low.

Once processing of the entire program is complete, points-to sets are pro-
duced from the points-to graph. Symbol x must be included in the points-to
set at a dereference �p i� there is a valid path from the node associated with
x to the node associated with �p. Reps et al have observed that the presence
of such a path can be determined using CFL-Reachability queries [RHS95]. We
use single-source queries, one for each symbol in the program, to populate all
points-to sets.

Global storage.We identify and mark global storage nodes in a linear scan
of the points-to graph. Instead of adding a linear number of self edges at each



global storage node, we account for the e�ect of the self edges implicitly: if there
is a valid path from node u to node v, where v is a global storage node, and
there is a valid path from node v to node w, then there must be a valid path
from node u to node w. This is because any unmatched labeled edges in the
path from u to w through v can be matched by following an appropriate set of
self edges at v. In other words, the e�ect of a global storage node is to introduce
transitivity in CFL-Reachability queries. This leads to a modi�ed reachability
procedure: node v is reachable from node u i� it is possible to reach from u to v

by \stepping" on global storage nodes and using valid paths to \hop" from one
global storage node to the next.

3.4 Complexity

The algorithm has two steps: an assignment processing step, which produces a
points-to graph with 
ow edges, and a 
ow propagation step. The �rst step has
the same complexity as Steensgaard's algorithm. It uses linear space, and has al-
most linear running-time (in the size of the program). Every implicit assignment
causes the addition of a single labeled edge. The number of implicit assignments
is linear even in the presence of indirect calls, because there is a single signature
for all possible target functions at a call site [Ste96].

The 
ow step involves a CFL-Reachability query on the graph for each symbol
in the program. The worst-case cost of an all-pairs CFL-Reachability query over
a graph is cubic in the number of graph nodes [RHS95]. Therefore, the complexity
of GOLF is cubic in the size of the program.

3.5 EÆcient CFL-Reachability

In this subsection we explain three insights that allow us to eÆciently compute
points-to sets for large programs.

Memoization. Our �rst insight is that a simple memoization, borrowed
from [Das00], can allow us to amortize the cost of multiple queries by avoiding
repeated work. Our experiments show that in every points-to graph, there is
a single node (the \blob") that has a large number of outgoing 
ow edges. In
every graph, the blob has an order of magnitude more outgoing edges than any
other node. Now consider the set of symbols that have valid paths to the blob.
For each such symbol, we would repeat a scan of the subgraph originating from
the blob. Instead, we would like to perform the scan from the blob exactly once,
cache the result, and share this across all symbols that reach the blob.

We pre-compute the set of nodes reachable from the blob (\frontier nodes"),
and the set of symbols that reach the blob. For every symbol that does not reach
the blob, we perform a forward scan to dereference nodes, as usual. For a symbol
that reaches the blob, we perform a forward scan, but we stop at frontier nodes.
Once we have processed all symbols, we append the symbols that reach the blob
to the points-to set at every frontier node.

Consider a symbol for which we compose the scan from the blob with the scan
from the symbol as described above. Because CFL-Reachability is not transitive,



we may be treating more nodes as reachable from the symbol than necessary.
However, if the blob is a global storage node, we can compose without loss of
precision. The only programs for which the blob is not a global storage node are
extremely small, and therefore do not require memoization. On the other hand,
there may be some frontier nodes at which the scan from a symbol arrives with
less matching requirements for a valid path than the scan from the blob. If we
stop the scan at these nodes and compose with the scan from the blob, we may
fail to visit some nodes. Therefore, we identify such cases during the scan from
the symbol, and continue the scan through the frontier node.

This simple memoization results in dramatic speedup. Our empirical evidence
shows that there are many scans that involve the blob, for which we amortize
the scan cost. All remaining scans cover very small regions of the graph.

We believe that the existence of the blob is not a coincidence. Rather, it
re
ects the presence of global variables that are referenced throughout a pro-
gram. The blob node is an accumulator for large points-to sets. These sets are
poor targets for improvement via more precise pointer analysis, because they
are unlikely to shrink to very small sets, and because a precise analysis is likely
to spend considerable resources tracking global variables. Points-to sets outside
the reach of the blob are better targets for more precise analysis.

Global storage. Our second insight is that we can use the transitive be-
haviour of global storage nodes to make a single scan more eÆcient. Global
storage nodes serve as points where we can use a divide and conquer strategy
to form longer valid paths from shorter valid paths without enforcing matching
requirements.

Summary edges. Our algorithm for a single CFL-Reachability query is
based on a demand algorithm outlined by Horwitz et al in [HRS95], which im-
proves the eÆciency of queries by adding special summary edges to the graph. We
have adapted their algorithm to handle nodes that are shared across functions
because of uni�cation, and to handle global storage.

4 Alias frequency

We are interested in estimating the impact of pointer analysis on compiler opti-
mizations, in a manner that is independent of a particular optimizing compiler or
optimization. However, previously de�ned measures of precision for pointer anal-
ysis that are independent of a particular optimization, such as average points-to
set size and number of singleton points-to sets, provide little indication of the
ability of a pointer analysis to enable optimizations by identifying memory ac-
cesses as not aliased.

Therefore, we propose \alias frequency", a new metric that estimates the
precision of alias information produced by a given pointer analysis.

4.1 Simple alias frequency

For a given program, we de�ne queries to be a set of alias queries. Each query
(e1; e2) involves a pair of memory access expressions occuring statically in the



program. The alias frequency of a given pointer analysis is the percentage of
queries for which the analysis says that e1 and e2 may refer to the same memory
location in some execution of the program:

simple alias frequency =

P
(e1;e2)2queries

a(e1;e2)P
(e1;e2)2queries

1
� 100

a(e1; e2) =

�
1 if e1; e2 may be aliases
0 otherwise

Alias queries. An extreme approach to generating alias queries would be to
consider all pairs of memory accesses encountered anywhere in the program. This
would result in a large number of pairs of accesses from di�erent functions. Most
of these pairs are uninteresting, because a typical optimizer will not optimize
code across function boundaries. Therefore, we consider only alias queries where
both memory access expressions occur in the body of the same function (there
may be duplicate pairs). We believe these queries represent most intra-procedural
optimizations performed in commonly used C compilers.1

Some expressions contain multiple dereference operators. In order to limit
the number of queries, we consider only top-level memory accesses from assign-
ment expressions, conditional expressions, and function arguments2. We have
experimented with di�erent criteria for selecting queries (such as including sub-
expressions of nested dereferences, and ignoring function arguments), and have
found that our results remain consistent.

Categorizing queries. We categorize memory accesses based on whether
they require pointer information to resolve. We de�ne a \symbol-access" recur-
sively: a symbol-access is a variable, a �eld access operation on a symbol-access,
or an array index operation on a symbol-access of array type. Every remaining
memory access, including a dereference, an arrow operation, or an array index
operation on an object of pointer type, is a \pointer-access". Every alias query
relating two symbol-accesses can be answered without pointer analysis. If the
two symbol-accesses refer to the same variable, we say they may be aliases:

a(s1; s2) =

�
1 if var(s1 ) = var(s2 )
0 otherwise

Measuring a given pointer analysis. Given a pointer analysis that pro-
duces a points-to set pts(e) for every expression e (we set pts(e) = fvar(e)g for a
symbol-access e), we can answer queries involving pointer-accesses. Two accesses
may be aliases if and only if their points-to sets overlap:

a(e1; e2) =

�
1 if pts(e1 ) \ pts(e2 ) 6= ;
0 otherwise

1 Notice that these queries would include aliases between globals and locals referenced
in the body of the same function.

2 Given ��p = x, we consider ��p and x, but not �p.



Measuring the best and worst possible pointer analysis. We are es-
pecially interested in understanding the gap in alias precision between scalable
pointer analyses and more precise algorithms. Therefore, we create an arti�cial
lower bound analysis that under-estimates the alias frequency of the best possible
safe pointer analysis, by treating every query involving at least one pointer-access
as not aliased. The only exception is when GOLF determines that a pair of ac-
cesses refer to the same single stack or global symbol. The lower bound analysis
treats these pairs as aliases:3

a(e1; e2) =

�
1 if pts(e1 ) = pts(e2 ) = fvg
0 otherwise

The lower bound analysis has the property that it is at least as precise as the
best possible pointer analysis on every alias query. Therefore, if a given pointer
analysis is close in alias frequency to the lower bound analysis, it must be at
least as close to any more precise safe pointer analysis.

We also create an arti�cial upper bound analysis, by treating every query in-
volving at least one pointer-access as aliases. The upper bound analysis indicates
whether any form of pointer analysis is necessary for a given program.

Our metric over-estimates the alias frequency of the lower bound analysis,
because a pair of accesses of the same variable may not be aliases if the accesses
refer to di�erent structure �elds. However, we are concerned with the di�erence
between a given analysis and the lower bound. Consider pairs of accesses where
at least one access is a pointer-access. The lower bound analysis treats such pairs
as not aliased, whereas any of our pointer analyses could potentially improve its
response to these queries using �eld distinction. For pairs of symbol-accesses,
all of the analyses, including the lower bound analysis, su�er equally. Therefore,
our lack of �eld distinction leads us to conservatively over-estimate the precision
gap between a given pointer analysis and the lower bound analysis.4

4.2 Weighted alias frequency

As mentioned in the introduction, we would like to estimate the potential impact
on run-time of the alias queries on which a pointer analysis produces a possibly
inaccurate response. Therefore, we weight the response a(e1; e2) of any analysis
to every query by the sum of the dynamic execution counts (num(e1 ) + num(e2 ),
gathered from pro�le data) of the accesses in the query:

weighted alias frequency =

P
(e1;e2)2queries

a(e1;e2)�(num(e1 )+num(e2 ))P
(e1;e2)2queries

num(e1 )+num(e2 )
� 100

A small di�erence between the weighted alias frequency of a given pointer
analysis and the lower bound analysis means that a more precise pointer analysis
is unlikely to enable additional optimizations that improve run-time signi�cantly.

3 We create dummy symbols, one at each dynamic allocation site, to represent heap
storage. The lower bound analysis does not treat accesses of the same heap symbol
as aliases, whereas our pointer analyses do.

4 The same argument applies to accesses of static arrays.



Program LOC AST nodes Time (s)

compress 1,904 2,234 0.05

li 7,602 23,379 0.50

m88ksim 19,412 65,967 0.88

ijpeg 31,215 79,486 1.13

go 29,919 109,134 0.98

perl 26,871 116,490 1.53

vortex 67,211 200,107 4.09

gcc 205,406 604,100 7.17

Word97 2,150,793 5,961,129 133.66

Table 1. Benchmark data. For each program, the table above shows the lines of code,
the AST node count, and the running-time (in seconds) of GOLF.

5 Experiments

We have produced a modular implementation of GOLF using the AST Toolkit,
which is itself an extension of the Microsoft Visual C++ compiler. Our imple-
mentation handles all of the features of C. Details may be found in [Das00]. We
implemented GOLF by modifying the rules for parameter passing and return
statements in our implementation of Das's algorithm, and by adding a CFL-
Reachability engine. Our implementation of Das's algorithm has been tested
extensively. Apart from all of the usual testing, we veri�ed the correctness of our
implementation of GOLF in two ways. First, we performed reachability queries
forward and backward, with and without memoization, and veri�ed that we get
the same results in every case. Second, we tested our implementation of CFL-
Reachability by treating labeled edges as unlabeled and verifying that we obtain
the same points-to sets as with Das's algorithm.

Benchmark programs. Table 1 shows our benchmark programs, consisting
of the integer benchmarks from SPEC95, and a version of Microsoft Word. For
each benchmark, we list the total lines of source code (including comments and
blank lines), as well as the number of AST nodes (a more accurate measure of
program size), and the analysis time (in seconds) for GOLF, averaged over 5
runs. Analysis time includes time to analyze each compilation unit (excluding
parse time), time to write out object �les, time to read in all of the object �les,
perform uni�cations, and compute points-to sets exhaustively at all static deref-
erence points in the program using CFL-Reachability. All of our experiments
were conducted on a Dell 610 desktop PC running Windows 2000, with 512MB
RAM and a single 800Mhz Intel Pentium III processor.

5.1 Alias precision of pointer analysis

Table 2 shows the simple and weighted alias frequencies of various pointer anal-
yses. We obtained execution counts for computation of weighted alias frequency
by instrumenting the benchmarks and running them on their SPEC reference



Program Simple Alias frequency Weighted Alias frequency
Lower GOLF Das00 Ste96 Upper Di� Lower GOLF Das00 Ste96 Upper Di�

compress 13.8 14.02 14.02 14.13 32.38 0.22 9.93 9.93 9.93 9.93 28.82 0.0

li 10.17 18.84 18.84 19.53 42.27 8.67 13.10 22.98 22.98 22.99 62.12 9.88

m88ksim 14.97 17.0 17.0 20.44 40.5 2.03 11.53 13.77 13.77 18.67 37.77 2.24

ijpeg 5.93 17.9 17.9 19.14 61.49 11.97 5.55 16.31 16.31 16.31 57.42 10.76

go 7.85 7.87 7.87 7.87 8.35 0.02 9.5 9.73 9.73 9.73 15.53 0.23

perl 9.54 14.45 14.45 14.53 45.17 4.91 3.45 12.56 12.56 12.56 53.87 9.11

vortex 6.12 10.81 10.81 15.71 42.69 4.69 3.7 7.18 7.18 14.51 50.20 3.48

gcc 5.49 11.98 11.98 14.64 50.36 6.49 4.62 9.36 9.36 10.72 51.66 4.74

Word97 6.63 14.45 15.07 20.37 44.21 8.44 - - - - - -

Average 8.94 14.15 14.22 16.26 40.82 5.27 7.67 12.73 12.73 14.43 44.67 5.06

Table 2. Precision of various pointer analyses. For each benchmark program, the
table above shows the simple alias frequency of the lower bound analysis (Lower),
GOLF, Das's algorithm (Das00), Steensgaard's algorithm (Ste96), and the upper bound
analysis (Upper), and the di�erence in simple alias frequency between Das00 and Lower
(Di�). The same data is also shown for weighted alias frequency. We were not able to
obtain dynamic execution counts for Word97.

inputs.5 The data shows that all of the scalable pointer analyses are surprisingly
close to the lower bound analysis. Das's algorithm does as well as the lower
bound analysis on all but 5.2% of the alias queries, on our benchmark programs.

To better understand the loss in precision from scalable pointer analysis, we
manually examined a fraction of the queries on which Das's algorithm di�ers
from the lower bound analysis. We found that in almost every case, either the
lower bound analysis is unsound, or we could have used straightforward �eld
distinction to resolve the query as not aliased. Therefore, we believe that the
gap in alias frequency between scalable pointer analyses and the best possible
pointer analysis is in fact much less than 5%.

The data in Table 2 also shows that the di�erence in weighted alias frequency
between Das's algorithm and the lower bound analysis is very similar to the
di�erence in simple alias frequency, for every benchmark. We therefore claim
that the queries on which Das's algorithm is inaccurate are not likely to provide
signi�cant additional opportunity for optimization.

On all of our benchmarks, the di�erences in weighted alias frequencies be-
tween various analyses are very similar to the di�erences in simple alias fre-
quency between the same analyses. Hence, we argue that simple alias frequency
is a useful indicator of precision for implementors of pointer analysis who do not
have access to either pro�le data or optimizing compilers that can consume alias
information produced by their analyses.

Das00 vs GOLF. Table 2 shows that the alias frequency of Das's algorithm
is not improved by the addition of context-sensitivity for any benchmark other

5 The reference input for gcc consists of 56 C source �les. We ran gcc on the �ve largest
source �les and averaged the execution counts.



than Word97. This data shows that in practice, scalable pointer analyses do not
sacri�ce optimization opportunity because of a lack of context-sensitivity.

Ste96. The data also shows that Steensgaard's algorithm is surprisingly close
to the lower bound analysis, given the relatively poor precision of the algorithm
in terms of points-to set size (see Table 3). We believe that this is largely because
the pollution of points-to sets that occurs in Steensgaard's algorithm leads to
accumulation of variables across functions, but this pollution does not result in
conservative alias relationships between pointer variables from the same function.
Also, smaller points-to sets do not imply lower alias frequency, if the smaller sets
contain the same subset of common symbols. Finally, points-to set sizes are often
arti�cially in
ated by the inclusion of symbols that are out of scope. Table 2 and
Table 3 clearly show that traditional measures of precision for pointer analysis
do not re
ect the ability of the analysis to produce good alias information.

Das00 vs Andersen. Previous work [Das00] has shown that Das's algo-
rithm and Andersen's algorithm [And94] produce almost identical points-to sets.
Therefore, their alias frequencies can be expected to be almost identical as well.

Limitations. First, although we measure alias frequency, we are really eval-
uating pointer analysis. It may be possible to signi�cantly improve the alias
frequency of any analysis, including the lower bound analysis, by adding a struc-
ture �eld analysis and/or an array index analysis. Second, our results apply only
to C programs; whether they apply to programs written in C++ or Java is
an open question. Third, aggressive inter-procedural optimizers may be able to
utilize alias information inter-procedurally [Ruf00]. These opportunities are not
re
ected in our selection of alias queries.

One potential concern with our results may be that scalable pointer analyses
appear close to the lower bound analysis because we have swamped the query set
with pairs of symbol accesses. We �nd that on the average, 30% of the queries
require some form of pointer information. This large percentage indicates that
there is a need for at least some form of pointer analysis in compilers.

As might be expected, we generate a large number of alias queries (10 million
queries for Word97). Each query may require reachability on the points-to graph.
By using the amortization technique described in Section 3.5, we are able to
answer alias queries extremely eÆciently. We can answer all queries for Word97
in less than seven minutes.

There may be regions of a program where a more accurate analysis may
eliminate aliases. For instance, consider a linked list traversal using previous and
current pointers. Our results show that a useful approach may be to �rst run a
scalable pointer analysis, and then apply a more precise shape analysis locally,
on a few functions. These functions can be identi�ed using alias frequency.

5.2 Performance and precision of GOLF

Performance. In the �gure below, we chart the running times for GOLF from
Table 1. We use the ratio of running-time to program size. The chart shows that
this ratio is fairly steady as program size grows, indicating that the analysis
scales linearly with program size. GOLF requires roughly twice as much time



a
n
d
a
s
m
u
ch

m
em

o
ry

a
s
D
a
s's

a
lg
o
rith

m
.
W
e
d
o
n
o
t
p
resen

t
d
eta

iled
d
a
ta

o
n

sp
a
ce

co
n
su
m
p
tio

n
,
w
h
ich

is
v
ery

low
.
G
O
L
F
req

u
ires

2
0
M
B
fo
r
W
o
rd
9
7
:

0 10 20 30 40compress
lim88ksim

ijpeg
go

perl

vortex
gcc

word96

Average

B
enchm

ark

Analysis time (ms per 1000 nodes)

P
r
e
c
isio

n
v
s
o
th
e
r
sc
a
la
b
le
p
o
in
te
r
a
n
a
ly
se
s.

T
a
b
le
3
sh
ow

s
th
e
p
reci-

sio
n
o
f
G
O
L
F
m
ea
su
red

u
sin

g
tra

d
itio

n
a
l
m
etrics.

T
h
e
ta
b
le
sh
ow

s
th
e
av
era

g
e

size
o
f
p
o
in
ts-to

sets
a
t
d
ereferen

ce
p
o
in
ts
a
n
d
th
e
n
u
m
b
er

o
f
sin

g
leto

n
p
o
in
ts-to

sets
fo
r
ea
ch

b
en
ch
m
a
rk
.
F
o
llow

in
g
p
rev

io
u
s
w
o
rk
,
th
e
size

o
f
th
e
p
o
in
ts-to

set
a
t

a
d
ereferen

ce
p
o
in
t
is
th
e
n
u
m
b
er

o
f
p
ro
g
ra
m

sy
m
b
o
ls,

in
clu

d
in
g
d
u
m
m
y
sy
m
-

b
o
ls
p
ro
d
u
ced

a
t
d
y
n
a
m
ic
a
llo
ca
tio

n
sites,

in
th
e
p
o
in
ts-to

set
o
f
th
e
d
ereferen

ce
ex
p
ressio

n
.
A
ll
th
ree

a
n
a
ly
ses

w
ere

ru
n
w
ith

th
e
sa
m
e
settin

g
s,
u
sin

g
th
e
sa
m
e

im
p
lem

en
ta
tio

n
.
W
e
o
m
it
d
a
ta

fo
r
p
o
in
ts-to

sets
a
t
in
d
irect

ca
ll
sites,

a
lth

o
u
g
h

G
O
L
F
ca
n
a
lso

b
e
u
sed

to
im

p
rov

e
p
o
in
ts-to

sets
fo
r
fu
n
ctio

n
p
o
in
ters

a
s
w
ell.

P
o
in
ts-to

sets
w
ith

sin
g
le
elem

en
ts

rep
resen

t
o
p
p
o
rtu

n
ites

fo
r
rep

la
cin

g
co
n
-

d
itio

n
a
l
u
p
d
a
tes

w
ith

stro
n
g
u
p
d
a
tes.

S
m
a
ller

p
o
in
ts-to

sets
m
ay

lea
d
to

g
rea

ter
eÆ

cien
cy

in
su
b
seq

u
en
t
a
n
a
ly
ses

[S
H
9
7
],
a
s
w
ell

a
s
less

ru
n
-tim

e
ov
erh

ea
d
in

sy
stem

s
th
a
t
in
stru

m
en
t
co
d
e
[M

C
E
0
0].

T
h
e
d
a
ta

sh
ow

s
th
a
t
G
O
L
F
p
ro
d
u
ces

m
o
re

sin
g
leto

n
sets

th
a
n
D
a
s's

a
lg
o
rith

m
fo
r
sev

era
l
b
en
ch
m
a
rk
s.
O
n
th
e
w
h
o
le,

o
u
r
resu

lts
a
p
p
ea
r
to

b
e
co
n
sisten

t
w
ith

th
e
resu

lts
o
f
F
o
ster

et
a
l
([F

F
A
0
0
]),

w
h
o
fo
u
n
d
little

im
p
rov

em
en
t
in

p
recisio

n
fro

m
th
e
a
d
d
itio

n
o
f
p
o
ly
m
o
rp
h
ism

to
a
p
o
in
ter

a
n
a
ly
sis

w
ith

su
b
ty
p
in
g
.
O
u
r
b
en
ch
m
a
rk

p
ro
g
ra
m
s
a
re

m
u
ch

la
rg
er

th
a
n
in

[F
F
A
0
0],

a
n
d
w
e
d
o
see

g
rea

ter
im

p
rov

em
en
t
o
n
la
rg
er

p
ro
g
ra
m
s.

P
r
e
c
isio

n
v
s
fu
ll
p
o
ly
m
o
r
p
h
ic

su
b
ty
p
in
g
.
G
O
L
F
a
p
p
rox

im
a
tes

a
fu
ll

p
o
ly
m
o
rp
h
ic

su
b
ty
p
in
g
a
lg
o
rith

m
b
y
restrictin

g
b
o
th

su
b
ty
p
in
g
a
n
d
p
o
ly
m
o
r-

p
h
ism

to
o
n
e
lev

el
in

th
e
ty
p
e
stru

ctu
re.

D
a
s
h
a
s
a
lrea

d
y
sh
ow

n
th
a
t
th
e
o
n
e

lev
el
restrictio

n
o
f
su
b
ty
p
in
g
d
o
es

n
o
t
ca
u
se

lo
ss

in
p
recisio

n
[D
a
s0
0].

T
h
e
d
a
ta

fo
r
th
e
F
R
D
0
0
a
n
d
O
n
eL
ev

co
lu
m
n
s
in

T
a
b
le
3
sh
ow

s
th
a
t
th
e
o
n
e
lev

el
restric-

tio
n
o
f
p
o
ly
m
o
rp
h
ism

d
o
es

n
o
t
ca
u
se

p
recisio

n
lo
ss

eith
er.

It
is
th
erefo

re
lik
ely

th
a
t
G
O
L
F
ex
tra

cts
m
o
st
o
f
th
e
p
recisio

n
o
f
a
n
a
n
a
ly
sis

w
ith

fu
ll
p
o
ly
m
o
rp
h
ism

a
n
d
su
b
ty
p
in
g
.
H
ow

ev
er,

it
is
still

p
o
ssib

le
th
a
t
th
e
co
m
-

b
in
a
tio

n
o
f
fu
ll
p
o
ly
m
o
rp
h
ism

a
n
d
fu
ll
su
b
ty
p
in
g
m
ay

elim
in
a
te

m
o
re

sp
u
rio

u
s



ow

o
f
va
lu
es

th
a
n
th
e
co
m
b
in
a
tio

n
o
f
lim

ited
p
o
ly
m
o
rp
h
ism

a
n
d
lim

ited
su
b
-

ty
p
in
g
u
sed

in
G
O
L
F
.
W
e
w
ere

u
n
a
b
le
to

p
erfo

rm
a
d
irect

co
m
p
a
riso

n
,
b
eca

u
se

it
h
a
s
n
o
t
b
een

p
o
ssib

le
to

sca
le
p
o
ly
m
o
rp
h
ic
su
b
ty
p
in
g
to

la
rg
e
p
ro
g
ra
m
s.



Program Average thru-deref size Singleton sets
Ste96 Das00 Golf FRD00 OneLev Ste96 Das00 Golf FRD00 OneLev

compress 2.1 1.22 1.22 2.9 2.9 36 47 47 30 30

li 287.7 185.62 185.62 189.63 194.80 15 39 39 15 15

m88ksim 86.3 3.29 3.27 14.13 15.16 116 638 641 256 251

ijpeg 17.0 13.14 11.78 13.01 14.30 1,671 3,287 3,287 1,802 1,777

go 45.2 14.79 14.79 16.06 16.06 28 28 28 23 23

perl 36.1 22.24 21.90 23.89 23.91 240 1,023 1,155 307 306

vortex 1,064.5 59.86 59.30 57.42 65.70 808 4,855 4,855 4,764 4,764

gcc 245.8 7.96 7.71 90.62 97.17 1,323 6,830 6,896 2,637 2,598

Word97 27,176.3 11,219.5 7,756.6 - - 11,577 41,904 43,142 - -

Table 3. Precision of various pointer analyses. For each benchmark program, the table
above shows the average size of points-to sets at static dereference points for Ste96,
Das00, GOLF, a polymorphic version of Steensgaard's algorithm (FRD00), and a one
level restriction of FRD00 (OneLev). The table also shows the number of dereference
points with singleton points-to sets found using each of these algorithms. FRD00 and
OneLev cannot be compared directly with the other analyses, because they are based on
Rehof's implementation of a polymorphic version of Steensgaard's algorithm [FRD00].
We were not able to use this implementation to analyze Word97.

Context-sensitive clients. In order to populate points-to sets, we accu-
mulate all 
ow of pointer values into a function from its callers. In the example
below, the points-to set of l is the same using Das's algorithm or GOLF:

void Read(Obj o1; Obj o2) f LockWrap(&o1:lock); LockWrap(&o2:lock); g
void LockWrap(Lock � l) f AcquireLock(l); g

However, the labeled edges in GOLF can be used to produce distinct sum-
maries of function behaviour at di�erent call sites. These summaries can be
leveraged by a client of GOLF, as long as the client is context-sensitive. For
instance, a context-sensitive analysis that tracks lockable objects can use the
summaries of LockWrap produced by GOLF to conclude that o1 must be locked
by the �rst call to LockWrap. Das's algorithm can only say that o1 may be locked
by either call. We believe that this is the real value of GOLF.

6 Related work

GOLF. As we mentioned in the introduction, our work on GOLF follows a long
line of research on context-sensitive pointer analysis. The most precise algorithms
are control-
ow-sensitive and context-sensitive [LR92,WL95,EGH94,CRL99]. It
is not clear whether any of these algorithms will scale beyond 50,000 lines of
code. Previous algorithms for control-
ow-insensitive context-sensitive pointer
analysis include [LH99,CH00,FRD00]. The �rst two algorithms follow every edge
in the call graph, whether the call graph is pre-computed or constructed on the

y. This may limit their applicability to large programs, which have very large



(quadratic sized) call graphs due to indirect calls. On the other hand, [FRD00]
appears to scale well, but it does not provide any degree of subtyping, which is
important for larger programs.

GOLF is a context-sensitive algorithm with subtyping that scales to large
programs. It is an extension of Das's algorithm [Das00]. We apply his one level

ow idea to restrict polymorphism without losing precision, and we borrow his
caching technique to speed up our 
ow computation. GOLF can also be viewed
as a restriction of Rehof and F�ahndrich's general polymorphic subtyping frame-
work in [RF01]. With some modi�cations to account for uni�cation, globals, and
pointers, GOLF can be viewed as a variant of Reps, Horwitz and Sagiv's frame-
work in [RHS95]. GOLF is a scalable instantiation of these two frameworks.

Liang and Harrold have described a mechanism for extracting some context-
sensitivity from context-insensitive pointer analyses [LH00]. We believe that their
approach could be used to add context-sensitivity to Das's algorithm. It is not
clear how GOLF would compare with the resulting analysis.

Ruf [Ruf95] and Foster et al [FFA00] have reported empirical investigations of
the added precision provided by context-sensitive pointer analysis. Both argue
that there is little gain in precision from context-sensitivity. Our results are
consistent with theirs, and extend their conclusions to much larger programs.
However, we believe that the real value of GOLF is as a context-sensitive value

ow analysis that produces polymorphic summaries of function behaviour.

Impact of 
ow-insensitive pointer analysis. The issue we have ad-
dressed in this paper is the usefulness of control-
ow-insensitive pointer anal-
yses in compiler optimizations. Although conventional wisdom says that the
lack of 
ow-sensitivity and structure-�eld distinction can severely limit the use-
fulness of scalable pointer analyses, there is no empirical evidence to support
this belief. In fact, several studies have produced results that contradict this
idea [DMM98,CH00,HP98]. Cheng and Hwu have shown that a context-sensitive
pointer analysis with subtyping can enable many optimizations in a compiler
[CH00]. Their result inspired us to develop a scalable context-sensitive pointer
analysis with subtyping. Hind and Pioli have shown that 
ow-sensitivity has
little impact on the precision of pointer analysis [HP98]. Diwan et al have shown
that for a particular Java optimization, a 
ow-insensitive pointer analysis pro-
vides all of the precision that can be exploited by an optimizer [DMM98]. Our
results are consistent with all of these studies.

We know of no previous work that uses alias frequency to estimate the impact
of pointer analysis on compiler optimizations. Diwan et al have studied the e�ect
of pointer analysis on a particular Java optimization at several levels, including
static points-to information, optimization opportunities enabled, and run-time
improvement [DMM98]. Ideally, we would like to repeat their study for every
conceivable optimization and every pointer analysis. We propose weighted alias
frequency as a practical replacement for such a large set of experimental studies.

One avenue for further improvement in precision that is suggested by our
results is to run a scalable analysis globally, and apply more precise analysis
locally. Rountev et al have proposed this idea in [RRL99]. Our results provide



evidence that supports their approach. They use Steensgaard's algorithm as the
scalable global analysis. We believe that using GOLF as the global analysis would
lead to greater precision. Also, our alias frequency measure can be used in their
framework, to identify target functions for more precise analysis.

7 Conclusions

In this paper, we have provided experimental evidence to support the claim that
scalable pointer analyses provide precise alias information for C programs. We
believe this is a strong argument for the routine use of scalable pointer analysis
in optimizing compilers. We have also developed a framework for measuring
the impact of pointer analysis on compiler optimizations in a manner that is
independent of a particular optimization or optimizing compiler. Finally, we have
presented GOLF, the �rst algorithm that can trace the 
ow of values in very
large C programs, while providing a degree of subtyping and context-sensitivity.
We believe that the most useful method for analysis of large programs may be
to use a scalable global analysis in conjunction with an expensive local analysis.

Acknowledgements

We would like to thank Tom Reps and Rakesh Ghiya for helpful discussions, and
Jim Larus and the anonymous referees for suggestions on the paper.

References

[And94] L. Andersen. Program analysis and specialization for the C programming
language. PhD thesis, DIKU, University of Copenhagen, May 1994. DIKU
report 94/19.

[CH00] B. Cheng and W. Hwu. Modular interprocedural pointer analysis using
access paths: Design, implementation, and evaluation. In Proceedings of the
ACM SIGPLAN 2000 Conference on Programming Language Design and
Implementation, 2000.

[CRL99] R. Chatterjee, B. Ryder, and W. Landi. Relevant context inference. In 26th
ACM SIGPLAN Symposium on Principles of Programming Languages, 1999.

[Das00] M. Das. Uni�cation-based pointer analysis with directional assignments. In
Proceedings of the SIGPLAN 2000 Conference on Programming Language
Design and Implementation, 2000.

[DMM98] A. Diwan, K. S. McKinley, and J. Eliot B. Moss. Type-based alias analy-
sis. In Proceedings of the ACM SIGPLAN 98 Conference on Programming
Language Design and Implementation, 1998.

[EGH94] M. Emami, R. Ghiya, and L. Hendren. Context-sensitive interprocedural
points-to analysis in the presence of function pointers. In Proceedings of
the ACM SIGPLAN 94 Conference on Programming Language Design and
Implementation, 1994.

[FFA00] J. S. Foster, M. F�ahndrich, and A. Aiken. Polymorphic versus monomorphic

ow-insensitive points-to analysis for C. In Proceedings of the 7'th Interna-
tional Static Analysis Symposium, 2000.



[FRD00] M. F�ahndrich, J. Rehof, and M. Das. Scalable context-sensitive 
ow analysis
using instantiation constraints. In Proceedings of the ACM Conference on
Programming Language Design and Implementation, 2000.

[Hen93] F. Henglein. Type inference with polymorphic recursion. ACM Trans. Pro-
gram. Lang. Syst., 15(2):253{289, 1993.

[HP98] M. Hind and A. Pioli. Assessing the e�ects of 
ow-sensitivity on pointer
alias analyses. In Fifth International Static Analysis Symposium, Pisa, Italy,
number 1503 in LNCS, pages 57{81. Springer-Verlag, 1998.

[HRS95] S. Horwitz, T. Reps, and M. Sagiv. Demand interprocedural data
ow anal-
ysis. In ACM SIGSOFT Symposium on the Foundations of Software Engi-
neering, SIGSOFT Software Engineering Notes 20, 4, 1995.

[LH99] D. Liang and M. Harrold. EÆcient points-to analysis for whole program
analysis. In Proceedings of the 7th ACM SIGSOFT Symposium on the Foun-
dations of Software Engineering, 1999.

[LH00] D. Liang and M. Harrold. Light-weight context recovery for eÆcient and
accurate program analyses. In Proceedings of the 22nd International Con-
ference on Software Engineering, June 2000.

[LR92] W. Landi and B. Ryder. A safe approximate algorithm for interprocedural
pointer aliasing. In Proceedings of the ACM SIGPLAN 92 Conference on
Programming Language Design and Implementation, 1992.

[MCE00] M. Mock, C. Chambers, and S. J. Eggers. Calpa: A tool for automating selec-
tive dynamic compilation. In In 33rd Annual International Symposium on
Microarchitecture, December 2000, (Micro-33), Monterrey, California, De-
cember 2000.

[RF01] J. Rehof and M. F�ahndrich. Type-based 
ow analysis: From polymorphic
subtyping to CFL-Reachability. In Proceedings of the 28th Annual ACM
Symposium on Principles of Programming Languages, January 2001.

[RHS95] T. Reps, S. Horwitz, and M. Sagiv. Precise interprocedural data
ow anal-
ysis via graph reachability. In Symposium on Principles of Programming
Languages (POPL), San Francisco, California, 1995.

[RRL99] A. Rountev, B. Ryder, and W. Landi. Data-
ow analysis of program frag-
ments. In Proceedings of the 7th European Software Engineering Conference
and 7th ACM SIGSOFT Symposium on the Foundations of Software Engi-
neering, 1999.

[Ruf95] E. Ruf. Context-sensitive alias analysis reconsidered. Proceedings of the
ACM SIGPLAN 95 Conference on Programming Language Design and Im-
plementation, 1995.

[Ruf00] E. Ruf. E�ective synchronization removal for Java. In Proceedings of the
SIGPLAN 2000 Conference on Programming Language Design and Imple-
mentation, 2000.

[SH97] M. Shapiro and S. Horwitz. The e�ects of the precision of pointer analysis.
In LNCS 1302, 4th International Symposium on Static Analysis. Springer-
Verlag, 1997.

[Ste96] B. Steensgaard. Points-to analysis in almost linear time. In Conference
Record of the 23rd ACM Symposium on Principles of Programming Lan-
guages, 1996.

[Tip95] F. Tip. A survey of program slicing techniques. Journal of Programming
Languages, 3(3):121{189, 1995.

[WL95] R. Wilson and M. Lam. EÆcient context-sensitive pointer analysis for C
programs. In Proceedings of the SIGPLAN 95 Conference on Programming
Language Design and Implementation, 1995.


