PAST: Persistent and Anonymous Storage in a Peer-to-Peer
Networking Environment

Peter Druschel® and Antony Rowstron?
'Rice University, 6100 Main Street, MS 132, Houston, TX 77005-1892, USA*
2Microsoft Research Ltd., St. George House, 1 Guildhall Street, Cambridge, CB2 3NH, UK.

Abstract

This paper describes PAST, a large-scale Internet based
storage utility that provides high availability, persistence
and privacy of stored content, and protects the anonymity
of clients and storage providers. PAST is a peer-to-
peer Internet application and is entirely self-organizing.
PAST nodes contribute storage to the system, serve as
access points for clients, and participate in the routing
of client requests. Nodes are not trusted, they may join
the system at any time and may silently leave the sys-
tem without warning. Yet, the system is able to provide
strong assurances, efficient storage access, and scalabil-
1ty.

One of the most interesting aspects in the design of
PAST is the use of smart cards, which are issued by a
third party called a broker. The smart cards form the sys-
tem’s trusted computing base (TCB), and play a key role
in PAST’s ability to provide strong assurances, scalabil-
ity, and efficiency, despite the weak assumptions about
the behavior and trustworthiness of individual nodes. In
this position paper, we will argue that the use of a broker
substantially simplifies the construction of a robust and
secure peer-to-peer storage service like PAST.

1 Introduction

There are currently many projects aimed at construct-
ing peer-to-peer applications and understanding more of
the issues and requirements of such applications and sys-
tems [1, 2, 3, 4]. Peer-to-peer systems can be character-
ized as distributed systems in which all nodes have iden-
tical capabilities and responsibilities and all communica-
tion is symmetric.

We are currently developing PAST, an Internet based,
peer-to-peer global storage utility, which aims to provide
strong persistence, high availability, scalability, content
privacy and anonymity of clients and storage providers.

While PAST offers persistent storage services, its ac-
cess semantics differ from that of a conventional filesys-
tem. Documents stored in PAST are associated with a
docld that is quasi-uniquely associated with the docu-
ment’s content'. This implies that documents stored in

*Work done while visiting Microsoft Research, Cambridge, UK.
'The docld is based on a secure hash of the document’s content.

PAST are immutable since a modified version of a docu-
ment cannot be written with the same docld as its origi-
nal.

PAST does not support a delete operation for docu-
ments. Instead, the owner of a document may reclaim
the storage associated with a document. While the se-
mantics of document deletion indicate that the document
is removed when the operation completes, reclaim has
weaker semantics, and simply means that a user can
reuse the space, and the system no longer provides any
guarantees about the availability of the document.

The PAST system is composed of nodes, where each
node is capable of storing documents and routing client
requests to insert, retrieve, or reclaim a document. The
nodes form a self-organizing network. Inserted docu-
ments are replicated across multiple nodes. The system
ensures, with high probability, that the set of nodes over
which a document is replicated is diverse in terms of ge-
ographic location, ownership, administrative entity, net-
work connectivity, rule of law and so forth.

An efficient routing protocol ensures that client re-
quests to insert or reclaim a document are routed to each
node that stores the document. Client requests to retrieve
a document are routed to a node that is a good approxi-
mation to the“closest in the network™? to the client that
issued the request, among all live nodes that store the
requested document. The number of PAST nodes tra-
versed, as well as the number of messages exchanged
while routing a client request is at most logarithmic in
the total number of PAST nodes in the system.

Whilst many aspects of PAST are interesting, one of
the most fundamental design decisions is the adoption of
a third party (broker) that issues smart cards for all users
of the system. These smart cards provide a TCB, and al-
low PAST to provide strong assurances (e.g., persistence,
privacy, anonymity) with high efficiency, despite weak
assumptions about the behaviour and trustworthiness of
PAST nodes and limited trust placed in the broker.

The broker is not involved in the operation of the
PAST network and knows nothing other than a mapping
of operators to smart card ids, how much storage a client
is able to use and how much storage a node operator has

Therefore, it is extremely unlikely that documents with different con-
tents have the same docld.

2The notion of network proximity may be based on geographic lo-
cation, number of network hops, bandwidth, delay, or a combination of
these and other factors.

agreed to contribute to the system.

One of the main issues of peer-to-peer systems, and
particularly storage or document-sharing systems, is pri-
vacy and anonymity. A provider of storage space used
by others does not want to risk prosecution for content of
the documents it stores, and a client inserting or retriev-
ing a document may not wish their identity to be known
by others. Anderson [5] describes the “the Gutenberg In-
heritance” and motivates why such levels of privacy and
anonymity are required.

PAST clients and storage providers need not trust each
other, but place limited trust in the broker. In partic-
ular, clients and storage providers trust that the broker
facilitates the operation of a functioning PAST network.
However, clients need not reveal to the broker (or anyone
else) the content they are storing or anything about their
usage of the system, except for the total amount of stor-
age available to them. Similarly, neither the broker nor
anyone other than the node itself knows which doclds are
stored at a storage node.

In the following sections, we shall present enough de-
tail about the design of PAST to make the case that the
use of a broker that issues smart cards facilitates the oper-
ation of an efficient, robust, and secure system that meets
these requirements.

2 PAST architecture

Some of the key aspects of PAST’s architecture are (1)
the broker, which facilitates the secure operation of the
system, (2) the use of smart cards, which form the sys-
tem’s TCB, (3) the heavy use of randomization to pro-
vide strong (probabilistic) assurances without the need
for centralized control or expensive distributed agree-
ment protocols, and (4) an efficient routing protocol
that routes client requests in O(logN) steps in a self-
configuring topology.

The purpose of the broker is to certify (and protect) the
identity of clients and storage node operators, to ensure
a balance of demand and supply of storage space, and
to issue smart cards, which form the system’s TCB. The
broker facilitates, but is not involved in, the interaction
between the clients and the storage providers, much in
the way a certification authority facilitates the authentica-
tion and secure communication between a Web browser
and a secure (SSL) Web site. Clients pay the broker for
the right to use storage space, whilst the broker pays the
storage providers for space.

PAST is composed of nodes, where, in general, each
node can be considered as both a storage node and a
client. The smart card issued to the node is initially used
to create a node identifier (nodeld), which is a 128 bit
number chosen randomly from a uniform distribution.
An expiration date is associated with the new nodeld, and
this information is signed by the smart card.

Documents that are inserted into the PAST system are
each assigned a docld. A docld is 160 bits in length, and
is the secure hash (SHA-1) of a textual document name,
a secure hash (SHA-1) of the content, and the creator’s

smartcard id. Before a document is inserted, a write cer-
tificate is generated, which contains the docld, document
expiry date, the replication factor, the creation date and a
secure hash of the content. The write certificate is signed
by the smartcard of the document’s creator.

When a documented is inserted in PAST, the network
routes the document to the k¥ nodes whose node identi-
fiers are numerically closest to the first 128 bits of the
document identifier (docld). Each of these nodes then
stores a copy of the document. The replication factor k
depends on the availability and persistence requirements
of the document and may vary between documents.

This simple insertion procedure ensures that (1) the
document remains available as long as one of the k£ nodes
that store the document is alive; that (2) the set of nodes
that store the document are diverse in geographic lo-
cation, administration, ownership, network connectivity,
rule of law, etc.; and, (3) that the storage requirements
are balanced among storage nodes. (1) follows from the
properties of the PAST routing algorithm described in
Section 3. (2) and (3) follow from the independent draw-
ing of a uniformly distributed random nodeld by each
storage site and the properties of a secure hash function
(uniform distribution of hash values, regardless of the set
of documents).

2.1 Security and therole of the broker and
smartcards

In discussing PAST’s security, we make the following as-
sumptions. We assume that it is computationally infeasi-
ble for an attacker to break the public-key cryptosystem
and the secure hash function used by the smartcards. It
is assumed that an attacker can control individual PAST
nodes, but that they cannot control the behavior of the
smartcard. Finally, it is assumed that the broker does not
conspire with clients or storage node operators to violate
the system’s security.

The broker is a key concept in PAST’s security model.
It allows PAST to provide strong assurances about per-
sistence, availability, anonymity, and privacy despite the
fact that PAST nodes are not trusted. The broker acts
as entity that is trusted (to a certain degree) by all par-
ties, and thus serves as a certification authority. More-
over, the broker issues smartcards, which collectively
form PAST’s TCB.

The smartcard is issued by a PAST broker, and is used
to generate unique ids for nodes, generate document ca-
pabilities, generate write/reclaim certificates and main-
tain client storage quotas. In the following, we discuss
each of these functions.

Secure generation of nodelds The smartcard gener-
ates and signs a nodeld when a node first joins the sys-
tem. A secure random number generator embedded in
the smartcard is used for this purpose. This ensures uni-
form coverage of the space of nodelds, and a random
spread of nodelds across geographic locations, coun-
tries, node operators, etc. Furthermore, the use of signed

nodelds prevents attacks involving malicious node oper-
ators trying to choose particular values for their nodelds
(for instance, to control all nodes that store a particular
document).

Secure generation of write certificates and receipts
The smartcard of a client wishing to insert a document
into PAST issues a write certificate. The certificate con-
tains a secure hash of the document’s contents (computed
by the client node, not the smartcard), the docld (com-
puted by the smartcard), a replication factor, a document
expiration date, and is signed by the smartcard. During
an insert operation, the write certificate allows each stor-
ing node to verify that (1) the client is authorized to in-
sert the document into the system, (2) the contents of the
document arriving at the storing node have not been cor-
rupted en route from the client, and (3) the docld is valid
(it is consistent with the content arriving at the node).
Each storage node that has successfully stored a copy of
the document then issues a write confirmation that is re-
turned to the client, which allows the client to (4) verify
that k£ copies of the document have been created. (1)
prevents clients from exceeding their storage quotas, (2)
renders ineffective attacks based on malicious nodes in-
volved in the routing of an insert request that change the
content, (3) prevents denial-of-service attacks where ma-
licious clients try to exhaust a subset of PAST storage
nodes by generating bogus doclds with nearby values,
and (4) prevents a malicious node from suppressing the
creation of k diverse replicas. During a retrieve opera-
tion, the write certificate is returned along with the docu-
ment, and allows the client to verify that the content has
not been corrupted.

Secure generation of reclaim certificates and receipts
Prior to issuing a reclaim operation, the client’s smart-
card generates a reclaim certificate. The certificate con-
tains the docld, the client’s smartcard id, and is signed
by the smartcard. The certificate is included with the
reclaim request, which is routed to the nodes that store
the document. Upon processing a reclaim operation by a
client, the smartcard of a storage node first verifies that
the smartcard id in the reclaim certificate matches that in
the write certificate stored with the document. This pre-
vents clients other than the owner of the document from
reclaiming the document’s storage. If the reclaim opera-
tion is accepted, the smartcard of the storage node gen-
erates a reclaim certificate. The certificate contains the
amount of storage reclaimed, the owner’s smartcard id,
and is signed by the smartcard and returned to the client.

Client storage quotas The smartcard maintains stor-
age quotas. Each client smartcard is issued by the bro-
ker with an initial quota, depending on how much stor-
age the client has purchased. When a write certificate
is issued, an amount corresponding to the document size
times the replication factor is debited against the quota.
When the client presents an appropriate reclaim certifi-
cate issued by a storage node, the amount reclaimed is

credited against the client’s quota. This prevents clients
from exceeding the storage quota they have paid for.

In the following, we discuss the role of the broker and
smartcards in ensuring some of the system’s key proper-
ties.

Providing system integrity Several conditions un-
derly the basic integrity of a PAST system. Firstly, to
maintain proper load balancing among storage nodes, the
nodelds and doclds must be uniformly distributed. The
smartcards ensure that malicious nodes and clients can-
not bias this distribution. Secondly, there must be a bal-
ance between the sum of all client quotas (potential de-
mand) and the total available storage in the system (sup-
ply). The broker ensures that balance, using the price
of storage to regulate supply and demand. Thirdly, indi-
vidual malicious nodes must be incapable of persistently
denying service to a client. A randomized routing proto-
col, described in Section 3, ensures that a retried opera-
tion will eventually by routed around the malicious node.

Providing Persistence Document persistence in PAST
depends primarily on three conditions. (1) Unauthorized
clients are prevented from reclaiming a document’s stor-
age, (2) the document is initially stored on k storage
nodes, and (3) there is sufficient diversity in the set of
storage nodes that store a document. By issuing and re-
quiring reclaim certificates, the smartcards ensure condi-
tion (1). (2) is enforced through the use of write confir-
mations and (3) is ensured due to the random distribution
of nodelds, which can’t be biased by an attacker.

Providing data privacy and integrity Clients use en-
cryption to protect the privacy of their data. Encryption
is performed with a cryptosystem of the client’s choice,
and does not involved the smartcards. Data integrity is
ensured by means of the write certificates issued by the
smartcards.

Providing anonymity Anonymity of clients in PAST
is ensured because a client’s smartcard id is the only
information associating a stored document or a request
with the responsible client. The association between a
smart card id and the client’s identity is only known to
the broker. Anonymity of storage nodes is similarly guar-
anteed because only the broker knows the association be-
tween the node’s smartcard id and the identity of the node
operator. In addition, a small number of “neighboring”
nodes know the IP address of a PAST node. However,
when a PAST node forwards a request from or to a neigh-
boring node, it has no way to determine if that node is
the originator or destination of the request’. Therefore,
it cannot be sure if the neighbor in question acts as client
or storage node with respect to the request.

While space limitations prevent us from a full dis-
cussion of PAST’s security model, we believe that our

3Except in cases where the docId matches the nodeld of the neigh-
bor perfectly. This case is so unlikely that we ignore it.

overview shows that the use of a broker and the associ-
ated smartcards allow PAST to provide strong assurances
that would be difficult to attain otherwise. Without a bro-
ker and a TCB, one would have to rely on voting proto-
cols that are costly (in terms of the number of messages
exchanged) and complex.

It is to be noted that multiple PAST systems, with sep-
arate brokers, can co-exist in the Internet. In fact, we
envision multiple competing brokers, where a client can
access documents in the entire system, but can only store
documents on storage nodes affiliated with the client’s
broker. Furthermore, it is possible to operate isolated
PAST systems that serve a mutually trusting community
without a broker. In these cases, a virtual private network
(VPN) can be used to interconnect the system’s nodes.

In the remainder of this paper, we give a brief overview
of other interesting aspects of PAST, namely its routing
and self-configuration algorithms.

3 Routing

We now describe the routing scheme used by the PAST
nodes to forward request messages. The nodeld is used
to indicate a node’s position in the namespace, which
ranges from 0 to 2128 — 1. A nodeld is sub-divided into a
sequence of levels, where each level is represented by b
contiguous bits in the nodeld®, such that the bits at posi-
tions b* I to b* (I + 1) — 1 represent level I. The value of
the level defines a domain, where there are 2° domains at
each level, numbered from 0 to 2° — 1.

Each PAST node maintains a routing table. For each
level [, the routing table contains the IP addresses of 2b
1 nodes that have the same nodeld prefix as the present
node up to level [— 1, but whose domains at level [have
distinct values different from the corresponding domain
in the present node’s nodeld. How the information in the
routing table is obtained is described later.

A node routes a message to a destination in the names-
pace by first finding the highest level [at which the
node’s id differs from the destination nodeld. The mes-
sage is then forwarded either to a node that matches the
destination nodeld up to at least level [— 1, or if no
such node exists, to the node whose nodeld is numer-
ically closest to the destination nodeld. This (slightly
simplified) procedure guarantees that a message reaches
the existing node whose nodeld is numerically closest to
the destination nodeld in no more than O(logys N) steps,
where NV is the total number of PAST nodes.

An example is shown diagrammatically in Figure 1.
The nodes are represented as circles and nodelds. For
simplicity, the nodelds are limited to four bits, all the
possible nodelds exist, and b = 1. So, there are four
levels, with the MSB of the nodeld corresponding to
level zero. In the diagram, the domains for each level
are shown. The shaded domains within each level high-
light the domains that appear in the routing table of node
0110. Any node within a domain at a level can appear in
the routing table of another node as a “representative” for

“Typically a value of 3 or 4 would be used for b.

that domain, so, in this example, any of the nodes 0000,
0001, 0010 or 0011 can act as the representative for the
shaded domain zero at level one.

Level O 0
Level 1 0 1 0 1
Level 2 0 0 0 0
Level3 | O 1fofj1jo0f1foj1jo0of1jo]1fofj1]0/]1

slelielejellelle)] lo]ele)e]e/e)e]ele]

0000 {0001 {0010 (0011|0100 |0101 {0110 (0111 | 1000|1001 | 1010 [10111100 |1101 {1110 {1111

Figure 1: Tables maintained in each node.

To demonstrate the routing, if node 0110 receives a
message with a destination of 0011, it will pass the mes-
sage to one of nodes 0000, 0001, 0010 or 0011 (we will
assume 0001 is in its routing table). This is because 0110
and 0011 differ at level one, and the routing table con-
tains node 0001 for level one domain zero. Node 0001
will then route the message to either node 0011 or 0010,
and so forth.

The number of entries in the routing table at each level
is 2% — 1, and the number of levels that are populated in
the routing table is logss V. With a value of b = 4 and
with as many as 10'2 nodes, the routing table contains
only approximately 150 entries and in the worst-case a
message is routed through 10 nodes.

Each node also maintains two other tables, the names-
pace table and the locality table. The namespace ta-
ble contains pointers to the K closest neighbours in the
namespace. The locality table contains pointers to the
N nodes that are “closest in the network™ to the present
node. Typical value for K and N, respectively, are 20
and 30. The namespace table is needed to support the
routing in a sparsely populated space of nodelds, and it
increases the efficiency of document insertion. The role
of the locality table will become clear later, when we dis-
cuss how the routing table is maintained.

Locality As described so far, the routing scheme does
not take into account locality (in the network) at all. In
reality, the “representative” node for each domain that
appears in a node’s routing table is not chosen randomly.
Instead, the node that is “closest in the network™ to the
present node, among all nodes in a given domain (i.e.,
with a given nodeld prefix), is chosen as the representa-
tive. As a result, in each routing step, a query message
is forwarded to the “closest” node that shares a longer
(normally by one level) common nodeld prefix than the
present node. This ensures that (1) a message is routed
towards its’ destination nodeld using a “good” (in terms
of network proximity) route, and (2) a document query
message will first reach the replicated copy of the re-
quested document that is “closest” to the client.

Self-organising In order to be self-organising, PAST
must be able to cope with the arrival of new nodes and the
unannounced departure of other nodes. Due to space lim-
itations, we limit our description of the self-configuration
protocol to the case where a new node joins the system.
When a new node arrives, it needs to initialize its ta-
bles, and it needs to inform other nodes of its presence.

We assume the new node knows initially about one other
nearby (in the network) node A that is already part of the
system. The new node asks the nearby node A to route
a special “join” query message with a destination equal
to the new node’s proposed nodeld. Like any request,
the message will be routed to the existing node B that
is numerically closest to the proposed nodeld of the new
node.

In response to receiving the “join” request, nodes A,
B, and all nodes encountered on the path from A to B
send their tables to the newly joining node. The new
node inspects these tables and incorporates appropriate
entries into its own tables. Furthermore, based on the ta-
bles received, the new node informs any nodes that need
to be aware of the new node’s arrival. We omit here
some of the details, but one can show that this proce-
dure ensures that the new node initializes its tables with
the appropriate values, and that all other nodes that need
to know about the new node’s presence are notified and
modify their tables appropriately.

Intuitively, this works because the new node receives
appropriate values for the locality tables and the upper
levels of the routing table from node A, which is close in
the network. Similarly, it receives appropriate values for
the namespace table and the lower levels of the routing
tables from node B, whose nodeld is arithmetically close
to the new node’s id. Finally, appropriate values for the
intermediate levels of the routing table are obtained from
the nodes along the route from A to B.

Fault-tolerance The routing scheme as described so
far is deterministic, and thus vulnerable to malicious or
failed nodes along the route that accept messages but do
not correctly forward them. Repeated queries could thus
fail each time, since they are likely to take the same route.

To overcome this problem, the routing is actually ran-
domized. To avoid routing loops, a message must al-
ways be forwarded to a node that is closer to the destina-
tion node in the namespace. However, the choice among
multiple nodes that are all closer in the namespace to the
destination is random. In practice, the probability distri-
bution is heavily biased towards the best choice to ensure
low average route delay. In the event of a malicious or
failed node along the path, the query may have to be re-
peated several times by the client, until a route is chosen
that avoids the bad node.

4 Related Work

There are currently many projects aimed at producing
systems that provide peer-to-peer style interaction, and
in particular systems that provide large-scale storing and
sharing of documents.

Some of the systems can be classified as providing
sharing facilities, such as Gnutella [3], Freenet [2], Nap-
ster [1]. Whilst these systems have proved popular, they
provide only weak persistence, may suffer from limited
scalability (e.g. Gnutella), or use centralised compo-
nents (e.g. Napster). PAST shares with these systems the

use of untrusted nodes and the anonymity aspects (e.g.
FreeNet), but combines these properties with strong per-
sistence and scalability.

There are a number of systems that aim to provide high
availability and persistence, such as Oceanstore [6], Far-
Site [4], Publius [7] and implementations of Eternity [5].
Many of these systems attempt to provide traditional file
system type semantics, supporting mutable data, direc-
tory structures and so forth. PAST differs from these
projects in its combination of immutable document stor-
age, scalability, anonymity, strong persistence, untrusted
nodes, self-configuration and the use of a broker.

PAST’s routing algorithm bears some similarity to
Plaxton trees [8]. However, there are important differ-
ences. In PAST, there is no single “document root”,
which forms a single point of failure. Also, the way lo-
cality is achieved is completely different in PAST and
unlike Plaxton trees, PAST normally ensures that a doc-
ument query is routed to the live replica closest to the
client.

5 Statusand Conclusion

We currently have a working prototype of the system that
operates in a simulated network environment. We have
performed tests with up to 10,000 PAST nodes and more
then a million documents. Self-configuration and docu-
ment storage/retrieval are fully functional, and early per-
formance results have been very encouraging.

Plans for the immediate future are to perform more
extensive simulations, to verify PAST’s security model
more formally, and to complete and distribute an imple-
mentation that can be deployed in the Internet. A full-
length paper with a detailed description of the system
along with an experimental evaluation is forthcoming.

In this paper, we have given a brief overview of the
design of PAST, an Internet based peer-to-peer scalable,
persistent and anonymous storage utility. A key feature
of PAST highlighted in this paper is the use of a broker,
which issues smartcards that act as the system’s TCB. We
argued that this feature allows PAST to provide strong as-
surances, despite weak assumptions about the behaviour
and trustworthiness of individual nodes. We hope that
the paper will help stimulate debate about the use of a
broker in peer-to-peer systems such as PAST.

References

[1] Napster. http://www.napster.com/.

[2] Tan Clarke, Oskar Sandberg, Brandon Wiley, and
Theodore W. Hong. Freenet: A distributed anonymous in-
formation storage and retrieval system. In Wbrkshop on
Design Issues in Anonymity and Unobservability, pages
311-320, July 2000. ICSI, Berkeley, CA, USA.

[3] The Gnutella protocol specification,
http://dss.clip2.com/GnutellaProtocol04.pdf.

[4] W. J. Bolosky, J. R. Douceur, D. Ely, and M. Theimer.
Feasibility of a serverless distributed file system deployed

2000.

(3]

(6]

(7]

(8]

on an existing set of desktop pcs. In Proc. SGMET-
RICS 2000, pages 34-43, 2000.

R.J. Anderson. The eternity service. In Proc.
PRAGOCRYPT 96, pages 242-252. CTU Publishing
House, 1996. Prague, Czech Republic.

John Kubiatowicz et al. Oceanstore: An architecture
for global-scale persistent store. In Proc. ASPLOS 2000,
November 2000.

Marc Waldman, Aviel D. Rubin, and Lorrie Faith Cranor.
Publius: A robust, tamper-evident, censorship-resistant,
web publishing system. In Proc. 9th USENIX Security
Symposium, pages 59-72, August 2000.

C. G. Plaxton, R. Rajaraman, and A. W. Richa. Accessing
nearby copies of replicated objects in a distributed environ-
ment. In Proc. 9th ACM Symp. on Parallel Algorithms and
Architectures, pages 311-320, June 1997. Newport, Rhode
Island, USA.

