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ABSTRACT
In this paper, we ask whether it is possible to build an IP
address to geographic location mapping service for Internet
hosts. Such a service would enable a large and interesting
class of location-aware applications. This is a challenging
problem because an IP address does not inherently contain
an indication of location.
We present and evaluate three distinct techniques, collec-

tively referred to as IP2Geo, for determining the geographic
location of Internet hosts. The �rst technique, GeoTrack, in-
fers location based on the DNS names of the target host or
other nearby network nodes. The second technique, GeoP-
ing, uses network delay measurements from geographically
distributed locations to deduce the coordinates of the tar-
get host. The third technique, GeoCluster, combines partial
(and possibly inaccurate) host-to-location mapping informa-
tion and BGP pre�x information to infer the location of the
target host. Using extensive and varied data sets, we evalu-
ate the performance of these techniques and identify funda-
mental challenges in deducing geographic location from the
IP address of an Internet host.

1. INTRODUCTION
In this paper, we ask the question: is it possible to build

an IP address to geographic location mapping service for
Internet hosts? Given an IP address, the mapping service
would return the geographic location of the host to which
the IP address has been assigned. This is a challenging
problem because an IP address does not inherently contain
an indication of geographic location.
Building an IP address to location mapping service (the

location mapping problem for short) is an interesting prob-
lem in its own right. Such a service would also enable a
large and interesting class of location-aware applications for
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Internet hosts, just as systems such as GPS [6] have for
mobile devices. By knowing the location of a client host,
an application, such as a Web service, could send the user
location-based targeted information on local events, regional
weather, etc. (targeted advertising), classify users based on
location (e.g., count \hits" based on the region the user is lo-
cated in), or control the availability of data based on user lo-
cation (territorial rights management akin to TV broadcast
rights). Each application may have a di�erent requirement
on the resolution of location information needed.
In this paper, we present several novel techniques, col-

lectively referred to as IP2Geo, that approach the location
mapping problem from di�erent angles. These techniques
exploit various properties of and observations on the Inter-
net such as hierarchical addressing and correlation between
delay and distance. We have analyzed a variety of data sets
both to re�ne these techniques and evaluate their perfor-
mance. To the best of our knowledge, ours is the �rst re-
search e�ort in the open literature that studies this problem
in detail.
The �rst technique, GeoTrack, tries to infer location based

on the DNS names of the target host or other nearby net-
work nodes. The DNS name of an Internet host sometimes
contains clues about the host's location. Such a clue, when
present, could indicate location at di�erent levels of granu-
larity such as city (e.g., corerouter1.SanFrancisco.cw.net in-
dicates the city of San Francisco), state (e.g., www.state.ca.us
indicates the state of California), or country (e.g., www.un.cm
indicates the country of Cameroon).
The second technique, GeoPing, uses network delay mea-

surements made from geographically distributed locations
to infer the coordinates of the target host. It is based on
the premise that the delay experienced by packets travel-
ing between a pair of hosts in the network is, to �rst order,
a function of the geographic separation between the hosts
(akin to the relationship between signal strength and dis-
tance exploited by wireless user positioning systems such as
RADAR[1]). This is, of course, only an approximation. So
our delay-based technique relies heavily on empirical mea-
surements of network delay, as discussed in Section 5.
The third technique, GeoCluster, combines partial (and

possibly inaccurate) IP-to-location mapping information with
BGP pre�x information to infer the location of the host of
interest. For our research, we obtained the host-to-location
mapping information from a variety of sources, including a
popular Web-based email site, a business Web hosting site,
and an online TV guide site. The data thus obtained is
partial in the sense that it only includes a relatively small



number of IP addresses. We use BGP pre�x information to
expand the coverage of this data by identifying clusters of
IP addresses that are likely to be located in the same ge-
ographic area. This technique is self-calibrating in that it
can o�er an indication of how accurate a speci�c location
estimate is likely to be.
We have evaluated these techniques using extensive and

varied data sets. While none of the techniques is perfect,
their performance is encouraging. The median error in our
location estimate varies from 28 km to several hundred kilo-
meters depending on the technique used and the nature of
the hosts being located (e.g., well-connected clients versus
proxy clients). We believe that a signi�cant contribution
of our work is a systematic study of a broad spectrum of
techniques and a discussion of the fundamental challenges
in determining location based just on the IP address of a
host.
The rest of this paper is organized as follows. In Section

2 we survey related work. In Section 3 we describe our
design rationale and experimental methodology. We present
the details of the three IP2Geo techniques and an analysis
of their performance in Sections 4, 5, and 6. Finally, we
present a summary and discuss the contributions of our work
in Section 7.

2. RELATED WORK
There has been been much work on the problem of locat-

ing hosts in wireless environments. The most well-known
among these is the Global Positioning System (GPS) [6].
However, GPS is ine�ective indoors. There have been sev-
eral systems targeted speci�cally at indoor environments,
including Active Badge [9], Bat [10], and RADAR [1]. As
we discuss later, our GeoPing technique uses a variant of one
of the algorithms we had developed for RADAR. However,
in general these techniques are speci�c to wireless networks
and do not readily extend to the Internet.
In the Internet context, an approach that has been used

to determine location is to seek the user's input (e.g., by re-
quiring the user to register with and/or log in to the site, by
storing the user's credentials in client-based cookies, etc.).
However, such approaches are likely to be (a) burdensome
on the user, (b) ine�ective if the user uses a client other
that the one where the cookie is stored, and (c) prone to er-
rors due to (possibly deliberate) inaccuracies in the location
information provided by an individual user. (In Section 6,
we discuss how GeoCluster deals with such inaccuracies by
aggregating information derived from individual users.)
An alternative approach is to build a service that maps

an IP address to the corresponding geographic location [16].
There are several ways of doing this:

1. Incorporating location information (e.g., latitude and
longitude) in Domain Name System (DNS) records.

2. Using the Whois [8] database to determine the loca-
tion of the organization to which an IP address was
assigned.

3. Using the traceroute [11] tool and mapping the router
names in the path to geographic locations.

4. Doing an exhaustive tabulation IP address ranges and
their corresponding locations.

The DNS-based approach was proposed in RFC 1876 [17].
This work de�nes the format of a new Resource Record
(RR) for the DNS, and reserves a corresponding DNS type
mnemonic (LOC) and numerical code (29). The DNS-based
approach faces deployment hurdles since it requires a mod-
i�cation of the record structure of the DNS records. This
also burdens administrators with the task of entering the
LOC records. Moreover, there is no easy way of verifying
the accuracy of the location entered.
An approach used widely in many tools is to query Whois

servers [8]. Tools such as IP2LL [26] and NetGeo [14] use
the location information recorded in the Whois database to
infer the geographic location of a host.
There are several problems with Whois-based approaches.

First, the information recorded in the Whois database may
be inaccurate or stale. Also, there may be inconsistencies
between multiple servers that contain records corresponding
to an IP address block. Second, a large (and geographically
dispersed) block of IP addresses may be allocated to a single
entity and the Whois database may contain just a single
entry for the entire block. For example, the 4.0.0.0/8 IP
address block is allocated to BBN Planet (now known as
Genuity) and a query to ARIN Whois database returns the
location as Cambridge, MA for any IP address within this
range.
An alternative approach is based on the traceroute tool.

The basic idea here is to perform a traceroute from a source
to the target IP address and infer location information from
the DNS names of routers along the path. A router name
may not always contain location information. Even when
it does, it is often challenging to identify the location infor-
mation since there is no standard naming convention that
is used by all ISPs. We discuss these issues in more detail
when we present GeoTrack in Section 4. Examples of loca-
tion mapping tools based on traceroute include VisualRoute
[31], Neotrace [29], and GTrace [15].
Finally, there are location mapping services, such as Edge-

Scape from Akamai [18] and TraceWare from Digital Island
[22]. Given the extensive relationship that these large con-
tent distribution networks enjoy with several ISPs, it is con-
ceivable that these location mapping services are based on
an exhaustive tabulation of IP address ranges and the cor-
responding location. However, the algorithms employed by
EdgeScape and TraceWare are proprietary, so it is diÆcult
for us to compare them to our research e�ort.

2.1 Fundamental Limitation due to Proxies
Many Web clients are behind proxies or �rewalls. So the

\client" IP address seen by the external network may actu-
ally correspond to a proxy, which may be problematic for
location mapping. In some cases the client and the proxy
may be in close proximity (e.g., a caching proxy on a univer-
sity campus). However, in other cases they may be far apart.
An example of the latter is the AOL network [19], which has
a centralized cluster of proxies at one location (Virginia) for
serving client hosts located all across the U.S. Figure 1 shows
the cumulative distribution function (CDF) of the distance
between the AOL proxies and clients. (The likely location of
clients was inferred from the data sets described in Section
3.5.) We observe that a signi�cant fraction of the clients are
located several hundred to a few thousand kilometers from
the proxies.
Proxies impose a fundamental limitation on all location
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Figure 1: Distribution of distance between AOL
proxies and clients.

mapping techniques that depend on client IP address. This
includes techniques based on Whois, traceroute (e.g., Geo-
Track), and network delay measurements (e.g., GeoPing).
Not only are these schemes unable to determine the true
location of a client, they are also oblivious to the error (i.e.,
these schemes would incorrectly return the location of the
proxy without realizing the error). Our GeoCluster tech-
nique is an exception in that it is often able to automatically
tell when its location estimate is likely to be erroneous. So
rather than incorrectly deducing the location of the client
based on the IP address of the proxy, GeoCluster would re-
frain from making a location estimate at all. We discuss this
issue is more detail in Section 6.3.
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Figure 2: Outline map of the U.S. showing locations
of our probe machines.

3. DESIGN RATIONALE AND EXPERIMEN-
TAL METHODOLOGY

In this section, we �rst discuss the design rationale for
IP2Geo in view of the limitations of existing techniques dis-
cussed above. We then describe the experimental setup and
data sets used in our study.

3.1 Design Rationale
In Section 2, we discussed several existing approaches

to location mapping and their limitations. Among these,
Whois and traceroute based approaches are the most pop-
ular. To get a better understanding of the strengths and
limitations of these two approaches, we have developed Geo-
Track, a traceroute-based tool for performing location map-
ping that is largely based on the same principles as exist-
ing traceroute-based tools such as VisualRoute and GTrace.
We compare the performance of GeoTrack with NetGeo, a
Whois-based location mapping tool.
IP2Geo also includes two new techniques, GeoPing and

GeoCluster, which operate very di�erently from existing ap-
proaches. GeoPing exploits the correlation between network
delay and geographic distance to determine the location of
a host. Although this correlation is not strong enough to be
captured in a mathematical model, we show that is indeed
possible to be build a coarse-grained location tracker using
just delay measurements.
We also describe GeoCluster, a powerful new technique

that combines partial IP-to-location mapping information
obtained from a variety of sources and topological clustering
data [12] to do location mapping. Our results indicate that
GeoCluster performs the best among the IP2Geo techniques.
Before getting to the details of these techniques, we de-

scribe the experimental setup and data sets that we have
used in our study.

3.2 Geographic Setting
All of our experiments are set in the United States (U.S.).

The main reason for this restriction is that, as of the time of
this writing, the bulk of the data sets and probe machines
that we have pertain to or are located in the U.S. While
there may be limitations to studying a single country, the
U.S. still o�ers a large and varied testbed for our research.
The U.S. consists of 50 states, 48 of which are located in the
large geographic area depicted in Figure 2, and two others
that are located 2000 km to the northwest and 4000 km to
the southwest, respectively, of this landmass. (In addition,
our data sets recorded the U.S. capital, Washington DC, as
a separate entity, so we e�ectively had 51 \states".) Thus,
the U.S. is as large as certain continents in terms of geo-
graphic expanse. It is also home to a sizeable fraction of
the Internet, in terms of networks, routers, end hosts, and
users. So we believe the research reported in this paper is
interesting despite being limited to the U.S.

3.3 Probe Machines
We obtained access to probe machines at the 14 locations

depicted in Figure 2. These machines were distributed geo-
graphically across the U.S. All of them were well-connected
hosts on university campuses except for the machine at Seat-
tle, WA, which was located at a corporate site (Microsoft).
These probe machines were used to make delay measure-
ments for GeoPing and to initiate traceroutes for GeoTrack.
As we explain later in Section 5.1.1, GeoPing is primed

using a database of delay measurements from the probe ma-
chines to several \target" machines at known locations. To
obtain such a database, we constructed a list of 265 Web
servers (termed UnivHosts) spread across university cam-
puses in 44 states of the U.S. The selection of university
servers as target hosts o�ered the advantage that we were
quite certain of their actual geographic location.



The UnivHosts data set is also used to evaluate the per-
formance of GeoTrack and GeoCluster.

3.4 BGP Data
BGP routing information was derived from dumps taken

at two routers at BBN Planet [20] and MERIT [28]. Since
GeoCluster only requires the address pre�x (AP) informa-
tion, we constructed a superset containing address pre�x
information derived from both sources. In all there were
100,666 APs in our list.

3.5 Partial Location Mapping Information
We obtained partial IP-to-location mapping information

from three sources. The data sets we obtained were partial
in the sense that they only covered a small fraction of IP
address space in use. Note that in no case did we have access
to user IDs or other user-speci�c information. Our data sets
only contained IP address and location information. So our
work did not compromise user privacy in any way.

1. Hotmail: Hotmail [24] is a popular Web-based email
service with several million active users. Of the over
1 million (anonymous) users we obtained information
for, we focused on the 417721 users who had regis-
tered their location as being in the U.S. The location
information we obtained from the users' registration
records was at the granularity of U.S. states. In ad-
dition, we obtained a log of the client IP addresses
corresponding to the 10 most recent user logins (pri-
marily in the �rst half of 2000). We combined the
login and registration information to obtain a partial
IP-to-location mapping.

2. bCentral: bCentral [21] is a business Web hosting site.
Location information at the granularity of zip codes
was derived from HTTP cookies. In all we obtained
location information corresponding to 181246 unique
IP addresses seen during (part of) a day in October
2000.

3. FooTV: FooTV is an online TV program guide where
people look up program listings for speci�c zip codes.
(We do not reveal the name of the site here due to
anonymity requirements.) From traces gathered over a
two-day period in February 2000, we obtained a list of
142807 unique client IP addresses and 336181 (IP,zip)
pairs corresponding to the client IP address and the zip
code that the user speci�ed in his/her query. A subset
of the IP addresses had more than one corresponding
zip code, which were usually clustered together geo-
graphically.

In the case of bCentral and FooTV, we mapped the zip
code information to the corresponding (approximate) lati-
tude and longitude using information from the U.S. Census
Bureau [30]. In the case of Hotmail, we computed the zip-
center of each state by averaging the coordinates of the zip
codes contained within that state.
The partial IP-to-location mapping obtained from these

sources may contain inaccuracies. For instance, in the case
of Hotmail and bCentral users may have registered incorrect
location information or may connect from locations other
than the one they registered. In the case of FooTV, users
may enquire about TV programs in areas far removed from

their current location, although we believe this is unlikely.
Regardless, we explain in Section 6 how GeoCluster is robust
to such inaccuracies in location information.

4. THE GEOTRACK TECHNIQUE
The GeoTrack technique tries to infer location based on

the DNS names of the host of interest or other nearby net-
work nodes. Network operators often assign geographically
meaningful names to routers1, presumably for administra-
tive convenience. For example, the name corerouter1.SanFran-
cisco.cw.net corresponds to a router located in San Fran-
cisco. We stress that having geographically meaningful router
names is not a requirement or a fundamental property of the
Internet. Rather it simply an observation that is generally
supported by empirical data.
We de�ne a router to be recognizable if its geographic lo-

cation can be inferred from its DNS name. Routers whose
IP address cannot be mapped to a DNS name or whose DNS
name does not contain meaningful location information are
considered as not being recognizable.
GeoTrack uses these geographic hints to estimate the lo-

cation of the target host. First, it determines the network
path between a probe machine and the target host using
the traceroute tool. Traceroute reports the DNS names of
the intermediate routers where possible. Then GeoTrack ex-
tracts location information from the DNS names of recogniz-
able routers along the path. Thus, it traces the geographic
path to the target host. Finally, GeoTrack estimates the
location of the target host as that of the last recognizable
router in the path (i.e., the one closest to the target).
As noted in Section 2, traceroute-based approaches that

extract geographic hints from router names have been pro-
posed before (e.g., GTrace [15], VisualRoute [31]). How-
ever, we are not aware of work in the open literature on
a quantitative evaluation of the traceroute-based approach
to determining the geographic location of hosts. Our goal
is precisely to do such an evaluation. Due to the logistic
diÆculties associated with obtaining and running existing
traceroute-based tools, we decided to write our own tool
based on GeoTrack to do large-scale experimentation. We
have tested our tool over a large sample of IP addresses and
found that its coverage is comparable to VisualRoute within
the U.S. and in Europe.

4.1 Extracting Geographic Information from
Router Names

Geographic information is typically embedded in the DNS
name of a router in the form of a code, which is usually
an abbreviation for a city, state, or country name. There
is no standard naming convention for these codes. Each
ISP tends to use its own naming convention. This makes
the task of extracting location information from DNS names
challenging.
Based on empirical data, we have observed that there are

basically three types of codes that indicate location: city
codes, airport codes, and country codes. Some ISPs assign
DNS names to routers based on the airport code of the city
they are located in. Since airport codes are a worldwide
standard, such a naming convention greatly eases the task

1To be precise, DNS names are associated with router in-
terfaces, not routers themselves. However, for ease of expo-
sition we only use the term \router".



of determining the router's location. For example sjc2-cw-
oc3.sjc.above.net refers to a router in San Jose, CA (airport
code sjc). However, many ISPs use non-standard codes for
cities. We have noticed that the city of Chicago, IL has
at least 12 di�erent codes associated with it (e.g., chcg,
chcgil, cgcil, chi, chicago). We have also observed that many
routers outside the United States have the country codes
embedded in their names. For example, the router with
the name asd-nr16.nl.kpnqwest.net is located in the Nether-
lands (country code nl). The country information can be
very useful in (partially) validating the correctness of the
location guessed based on city or airport codes.
We examined several thousand distinct router names en-

countered in the large set of traceroutes that we performed
from our 14 probe locations. We compiled a list of approxi-
mately 2000 airport and city codes for cities in the U.S. and
in Europe. Of the entire set of airport codes [27], our list
only includes a relatively small fraction of codes that are
actually used in router names. Since GeoTrack deduces lo-
cation by doing a string match of router names against the
codes, constructing a list with as few superuous codes as
possible decreases the chances of an inadvertent match.
To further reduce the chances of an inadvertent match,

we divided the list of location codes into separate pieces
corresponding to each major ISP (e.g., AT&T, Sprint, etc.).
When trying to infer location from a router name associated
with a particular ISP, GeoTrack only considers the codes in
the corresponding subset.
There is the question of how router names are matched

against the location codes. Simply trying to do a string
match without regard to position of the matching substring
may be inappropriate. For example, the code charlotte,
which corresponds to Charlotte, NC in the eastern U.S.,
would incorrectly match against the name charlotte.ucsd.edu,
which corresponds to a host in San Diego, CA in the western
U.S. Through empirical observation, we have de�ned ISP-
speci�c parsing rules that specify the position at which the
location code, if any, must appear in router names associated
with a particular ISP. We split the router name into multi-
ple pieces separated by dots. The ISP-speci�c parsing rules
specify which piece(s) should be considered when looking for
a match. For example, the rule for Sprintlink speci�es that
the location code, if present, will only be in the �rst piece
from the left (e.g., sl-bb10-sea-9-0.sprintlink.net containing
the code sea for Seattle). The rule for AlterNet (UUNET)
speci�es that the code, if present, will only appear in the
third piece from the right (e.g., 192.atm4-0.sr1.atl5.alter.net
containing the code atl for Atlanta).

4.2 Performance Evaluation
We compare the performance of GeoTrack and a Whois-

based tool, NetGeo [14], both for university hosts drawn
from the UnivHosts data set and for a more diverse set of
hosts drawn from the FooTV data set. The latter consists
of a random sample of 2380 client IP addresses drawn from
the FooTV data set. While many of the FooTV clients con-
nected via proxies, none of the university hosts was behind
a proxy. For this experiment, we used the probe machine at
UNC in Raleigh, NC as the source of all traceroutes.
We quantify the accuracy of a location estimate using the

error distance, which we de�ne as the geographic distance
between the actual location of the destination host and the
estimated location. In the case of FooTV, the \actual" lo-

cation corresponds to the zip code recorded in the FooTV
data set which, as noted in Section 3.5, may not be entirely
accurate. Also, an IP address may be associated with mul-
tiple locations, either because it was allocated dynamically
(say using DHCP [5]) or because it belonged to a proxy
host (such as a Web proxy or a �rewall). GeoTrack, on the
other hand, would only make a single location estimate for
a particular IP address. In our evaluation, we compute sep-
arate error distances corresponding to the many \actual"
locations associated with an IP address.
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Figure 3: CDF of the error distance for GeoTrack
and NetGeo.

Figure 3 shows the CDF of error distance for both Geo-
Track and NetGeo. It is very interesting to note the similar-
ity between the \NetGeo-FooTV" and \GeoTrack-FooTV"
curves beyond the 70th percentile mark, and the distribu-
tion of distance of AOL clients from their proxies in Figure
1. GeoTrack determines the location of the AOL proxies
as Washington, DC while NetGeo returns the location as
Sterling, VA. The similarity in the curves can be attributed
to the fact that these two locations are only about 35 km
apart. (Moreover, AOL's proxies are also located in the
same vicinity.)
We also observe that the performance of GeoTrack is only

slightly better than that of NetGeo. GeoTrack exhibits a
median error distance of 590 km and NetGeo a median of
650 km. Since many of the FooTV clients are behind proxies,
neither Geotrack nor NetGeo is able to estimate the client's
location accurately.
It is interesting to note that there is a signi�cant di�er-

ence in the performance of GeoTrack for the well-connected
UnivHosts hosts as compared to that for FooTV clients. For
instance, the median error distance is 102 km for the former
while is is 590 km for the latter. The reason for this di�er-
ence is that (a) none of the hosts in UnivHosts is behind a
proxy, and (b) these hosts are well connected in the sense
that a traceroute to them generally completes and yields a
last recognizable router that tends to be close to the target
host.

5. THE GEOPING TECHNIQUE
The GeoPing technique seeks to determine the geographic

location of an Internet host by exploiting the relationship
between network delay and geographic distance. GeoPing
measures the delay to the target host from multiple sources



(e.g., probe machines) at known locations and combines
these delay measurements to estimate the coordinates of the
target host.

5.1 Correlation between Network Delay and
Geographic Distance

Conventional wisdom in the networking community has
suggested that there is poor correlation between network
delay and geographic distance [2]. This has largely been
attributed to the presence of circuitous geographic paths
in the Internet and bottlenecks links that cause congestion
(and hence delay). However, in recent years, the Internet
has grown at a very rapid pace, in terms of bandwidth as
well as coverage (witness the rapid growth in the number
and capacity of high-speed links, ISP points of presence,
etc.). The richer connectivity (at least in well-connected
portions of the Internet such as in the U.S.) often implies
less circuitous routes.
To quantify impact of richer connectivity, we traced the

network paths from several known locations to hosts in the
UnivHosts data set. For each pair of hosts, we de�ned the
linearized distance as the sum of the lengths of the indi-
vidual hops along the path between the hosts. (We used
GeoTrack to determine the geographic location of the in-
termediate nodes. We skipped over nodes whose locations
could not be determined, so in general we might underesti-
mate the linearized distance.) We compute the ratio of the
linearized distance to the geographic distance between the
hosts. The closer the ratio is to 1, the more \direct" (i.e.,
less circuitous) the network path is. Figure 4 shows the cu-
mulative distribution of this ratio for paths originating from
3 di�erent locations. The main observation we make here is
that the ratio of linearized distance to geographic distance
is close to 1 in the vast majority of cases. This implies that
the corresponding network paths are not very circuitous.
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Figure 4: CDF of the ratio of linearized distance to
geographic distance for Internet paths originating
from three locations.

Congestion in the network may lead to signi�cant queuing
delays, which would also disrupt the relationship between
network delay and geographic distance. To alleviate this
problem, we gather several samples for the delay between
two hosts and then pick the minimum among them. (This
approach has been used in several networking protocols be-
fore, e.g., TCP Vegas [3].) While not perfect, picking the

minimum enables us to eliminate much of the e�ect of con-
gestion. Our experiments suggest that the minimum delay
stabilizes once we have at least 10-15 delay samples.
The above approach would fail in the presence of special

links (e.g., dialup, satellite, etc.) that have an inherent large
delay that does not necessarily correlate with geographic
distance. We discuss possible approaches to solving this
problem in Section 5.3.
In the following sub-sections, we present delay measure-

ments that support our contention that there is signi�cant
correlation between (the minimum) network delay and geo-
graphic distance. Although the correlation is not perfect, we
are still able to exploit it to determine location at a coarse
granularity. We present a robust algorithm for this in Sec-
tion 5.2. We present experimental results that quantify the
accuracy of this algorithm and also indicate the fundamental
limitations of a delay-based approach.

5.1.1 Experimental Setting
We use the UnivHosts data set for performing our mea-

surements. We perform traceroutes and ping measurements
from 14 di�erent sources (Figure 2) to all the 265 univer-
sity servers in UnivHosts. After identifying the path from
a given source to a host, we determine the round-trip delay
to all intermediate routers using ping measurements. From
multiple delay samples, we compute the minimum RTT to
the destination and to each intermediate router in the path.
We use GeoTrack to determine the physical location of in-
termediate routers. Using the data gathered for each source,
we construct a large data set of [minimum delay, geographic
distance] pairs corresponding to the paths from that source
to the hosts in UnivHosts (and the intermediate routers).

5.1.2 CDF of Distance given Network Delay
We investigate whether there is a model that would en-

able estimation of geographic distance based on knowledge
of network delay. For this purpose, we divide the delay
range into several 10 ms wide bins and compute the CDF of
geographic distance within each bin. (We decided to have
a separate bin for the 0-5 ms delay range because we ob-
served empirically that 5 ms often de�nes the threshold for
a \metropolitan area". For instance, we found that more
than 90% of the nodes within an RTT of 5 ms are located
within a range of 50 km from the source.) So the delay bins
we used to classify our measurements were: 0-5 ms, 5-15 ms,
15-25 ms, : : :, 125-135 ms.
Figure 5 shows the CDF of geographic distance for our

source host located in Seattle. Many of the delay bins ex-
hibit distinct \cli�s" (i.e., sharp upswings) in the cumulative
probability distribution for speci�c distance values. For ex-
ample, the cli� around 1300 km for the 25-35 ms delay bin
is mainly contributed by locations in the San Francisco Bay
Area. The other noticeable trend is that as the delay in-
creases from 0 to 80 ms, the cli� in the CDF shifts to the
right. We observed similar trends for the probes at other
locations as well.
While there is a de�nite trend in the cli�s of the CDF

for each delay range, our results suggest that the relation-
ship between delay and distance is not strong enough to be
captured in a precise mathematical model. For small de-
lay values (under 10 ms), we found that most of the hosts
(over 90%) are within a radius of 300 km from the source.
However for delay values more than 40 ms, we observed an
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Figure 5: Cumulative Distribution of geographic
distance for multiple delay ranges based on data
gathered at the Seattle, WA probe location.

error of at least 300-400 km to obtain a 70% con�dence in
the distance estimate. We validated this for the data sets
obtained from each of the 14 probe locations.
We also investigated how the relationship between delay

and distance varies when we consider hosts belonging to dis-
tinct organizations located in the same geographic area. For
this purpose, we considered probes located at Duke Univer-
sity and the University of North Carolina (UNC) located
in the same metropolitan area on the U.S. east coast, and
similarly Berkeley and Stanford on the west coast. We com-
pared the CDFs corresponding to various delay ranges for
each of these probe locations. The cli�s of the CDFs for
Duke and UNC matched each other, and likewise for Berke-
ley and Stanford. This suggests that the cli�s of the CDFs
are largely a function of the geographic location of a probe
rather than the speci�c probe itself.
One limitation of our measurements is that most of our

probe machines were located at university sites, many of
which were connected to the high-speed Internet2 backbone
[25]. The delay-distance relationship for nearby locations
might not match quite as well if the probes were located
at more heterogeneous sites with di�ering ISP connectivity.
However, as we discuss next, our methodology for determin-
ing location is robust to such di�erences since we do not
attempt to map directly from delay measurements to dis-
tance estimates.

5.2 Nearest Neighbor in Delay Space (NNDS)
We now discuss how GeoPing exploits the relationship be-

tween delay and distance to determine the geographic loca-
tion of a host. Since we are unable to construct a precise and
compact mathematical model that captures the relationship,
we use an empirical approach, which we term nearest neigh-
bor in delay space (NNDS). NNDS is patterned after the
nearest neighbor in signal space (NNSS) algorithm we had
developed in the RADAR [1], a system to locate hosts in
wireless LANs.
NNDS is motivated by the observation that hosts with

similar network delays with respect to other �xed hosts tend
to be located near each other. So the �rst step is to con-
struct a delay map that records the relationship between
delay and location. Each entry of the delay map contains:

(a) the coordinates of a host at a known location, and (b) a
delay vector, DV = (d1; : : : ; dN), containing the measured
(minimum) delay to the host from N probes at known lo-
cations. The delay map constitutes the training data and is
constructed o�ine. Given a new target host, T , whose loca-
tion is to be determined, we �rst measure the network delay
to it from the N probes. We then construct a delay vector
for T as DV 0 = (d01; : : : ; d

0

N ). Finally, we search through the
delay map to �nd a delay vector, DV , that matches DV 0

the best. To �nd the best match, we consider the delay vec-
tors in the delay map as forming an N -dimensional delay
space and �nd the \nearest" neighbor of DV 0 in this space.
We use Eucledian distance as the measure of distance in de-
lay space | the Eucledian distance between DV and DV 0 isp
(d1 � d0

1
)2 + : : :+ (dN � d0N )

2. Once the nearest neighbor
in delay space has been found, the corresponding location
recorded in the delay map is then GeoPing's estimate of the
location of the target host T .
Several aspects of NNDS contribute to its robustness: (a)

delay is measured from multiple distributed locations rather
than a single location, (b) the minimum among several de-
lay samples is considered rather than the individual delay
samples, and (c) the delays measurements are used as a \sig-
nature" of a geographic location rather than being directly
translated into distances and location coordinates.
Typically, the delay vectors corresponding to geograph-

ically proximate locations are clustered together in delay
space. However, this is not essential for NNDS to be ef-
fective. Sites located in the same city but connected via
di�erent ISPs may form more than one distinct cluster in
delay space. However, as long as the number of clusters
remains small, NNDS will still be e�ective.
We now turn to evaluating the performance of GeoPing

employing NNDS.

5.2.1 Experimental Results
We use the delay measurements from the 14 probe ma-

chines to the 265 hosts in UnivHosts to populate the delay
map. We also use the hosts in UnivHosts as the target
hosts for performance evaluation. Given a target host, T ,
in UnivHosts whose location we are trying to determine, we
exclude all data points corresponding to T in the delay map
before applying the NNDS algorithm. We study the impact
of the number and distribution of probe machines on the
accuracy of the location estimate. For a given number of
probes (say n), we compute the mean error distance as the
average over all the error distances corresponding to several
geographically distributed placements of n probe locations
chosen from the set of 14 possible locations. For example,
for 2 probes, we average the error distance over di�erent
placements of 2 probes in geographically dispersed locations
among the 14 possible locations. Due to the large num-
ber of possible combinations for certain values of n (such as
n = 7), we do not necessarily consider all possible choices of
n probes out of the set of 14.
Figure 6 shows several percentile levels of the error dis-

tance as a function of the number of probes. For exam-
ple, the 75th percentile curve corresponds to the distance at
which the CDF plot of mean error distance crosses the 0.75
probability mark. From Figure 6, we infer that the error
distance initially decreases sharply as the number of probes
increases, then stabilizes and reaches an optimal value be-
tween 7 and 9 probe locations, and �nally increases slightly
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Figure 6: Error distance versus number of probes.

for higher values. This suggests that having 7 to 9 probes
would be ideal for the NNDS algorithm. It is also encourag-
ing to note that NNDS with 7 probes has an error distance
of only about 150 km at its 25th percentile. Our results
suggest that network delay can indeed be used to deter-
mine geographic location, albeit at a coarse granularity. We
expect NNDS to perform even better with a delay map con-
structed using a more extensive training data set and plan
to investigate this is future research.
We have also investigated the impact of various probe

placement strategies on the accuracy of location estimation.
We have examined the e�ects of probe placement on the er-
ror distribution. Our �ndings indicate that a geographically
well-distributed set of probes yields better accuracy than a
clustered set of probes. For instance, the median error dis-
tance with a probe each at Stanford and Illinois was about
19% lower (i.e., better) than a probe each at Berkeley and
San Diego (both of which are on the U.S. west coast). How-
ever, we found that the placement of probes has a smaller
impact on performance than the number of probes.

5.3 Miscellaneous Issues
Finally, we discuss a few miscellaneous issues pertaining

to GeoPing and NNDS.

Other Statistical Methodologies
Besides the NNDS approach, we have also investigated

other statistical techniques for estimating location from de-
lay measurements. In particular, we tried constructing an
approximate model that captures the relationship between
delay and distance by generating a probability density func-
tion for every source based on a large set of measurements.
However, none of the alternative techniques was able to
match NNDS in terms of accuracy.

Impact of Congestion and ICMP TraÆc
As mentioned earlier, network congestion can introduce

signi�cant noise in the delay measurements, thereby de-
grading the accuracy of GeoPing (and other delay-based ap-
proaches). Our experiments suggest that 10-15 delay sam-
ples are generally (but not always) suÆcient to determine
the minimum delay with high con�dence (i.e., the minimum
delay generally did not get any lower beyond the �rst 10-15

samples). However, sending or receiving several ICMP pack-
ets (for ping) to the target host from each probe location
may be undesirable, both because it may aggravate conges-
tion and because it may raise a ag with intrusion detection
systems. We discuss a way of alleviating this problem in
Section 6.5.

The Last Mile
In our evaluation of GeoPing we have only considered

hosts in the UnivHosts data set. These are typically well-
connected hosts on university campuses. The correlation be-
tween delay and distance may break down when we consider
hosts with a \last-mile" link that has a large delay (for ex-
ample, a dialup link or a satellite link). While this is clearly
problematic for GeoPing, we may be able to work around it
in certain situations. For instance, if we are able to tell that
the user is on a dialup line (say based on the observed band-
width to the user or traceroute measurements), we could use
GeoPing to determine the location of the last router (typ-
ically located at the dialup ISP's point-of-presence) along
the path to the target host. This location may serve as a
good approximation for the location of the target host since
users tend to dial in to modem banks in their local area.

6. THE GEOCLUSTER TECHNIQUE
The GeoCluster technique is di�erent from GeoTrack and

GeoPing in that it does not depend on active network mea-
surements. Instead it uses knowledge of network routing in-
formation and location information for a few hosts to build
a location map for a large subset of the IP address space.
GeoCluster operates as follows. First, the IP address

space is broken up into clusters such that all hosts with IP
addresses within a cluster are likely to be co-located2, i.e.,
the addresses form a geographic cluster. Then, knowing the
location corresponding to a few hosts in a cluster (and as-
suming the locations are largely in agreement), GeoCluster
deduces the location of the entire cluster.
The key to the operation of GeoCluster is IP-to-location

mapping information obtained from sources such as the ones
mentioned in Section 3.5. (We discuss the general problem of
obtaining such data in Section 6.5.) However, this mapping
information tends to be partial in coverage (since it includes
location information only for a relatively small subset of the
IP address space) and possibly inaccurate. These problems
limit the utility of the IP-to-location mapping data.
GeoCluster addresses both of these problems by clustering

IP addresses according to their (likely) location. Clustering
helps expand the coverage of the partial IP-to-location map-
ping information. The aggregation of location information
also enables us to identify and eliminate outliers caused by
inaccuracies in the individual location data points.
As an example, suppose we know that 128.127.126.0/243

forms a geographic cluster. Furthermore assume that the
partial mapping information tells us that the location corre-
sponding to 10 di�erent IP addresses in this cluster is Seattle
while that corresponding to one other IP address is Boston.
Then we can reasonably deduce that the Boston data point

2The granularity of the location depends on the application
context.
3The notation a.b.c.d/m denotes an address slice with a pre-
�x of length m bits speci�ed.



is erroneous and that all of the (256) IP addresses in this
cluster (if they are indeed in use) are likely to correspond to
hosts in (or near) Seattle.

6.1 Identifying Geographic Clusters
Identifying geographic clusters is a challenging problem.

The basic approach used by GeoCluster is to combine par-
tial IP-to-location mapping information with network rout-
ing information. We build on the work presented in [12] on
identifying topological clusters. Address allocation and rout-
ing in the Internet is hierarchical. Routing information is ag-
gregated across hosts that are under a single administrative
domain (also known as an autonomous system (AS)). For
example, the routes for hosts on a university campus would
typically be advertised to the rest of the Internet as a single
aggregate, say as the address pre�x 128.127.0.0/16, rather
than as 65536 individual IP addresses. Thus knowledge of
the address pre�xes (APs) used by the routing protocol en-
ables us to identify topological clusters, as observed in [12].
We surmise that APs are also likely to constitute geographic
clusters. We elaborate on this below.
We derive information on APs from the border gateway

protocol (BGP) used for inter-domain (i.e., inter-AS) rout-
ing in the Internet. Each entry in the BGP table at a router
speci�es a destination AP and the AS-level path leading to
it. For our purposes, we are only interested in the AP infor-
mation, so we construct a list of unique APs (over 100000
APs, as mentioned in Section 3.4). The number of APs is
an order of magnitude larger than the number of ASs. This
is because an AS, such as an ISP, may advertise more spe-
ci�c routes (say for certain customers) due to policy and/or
performance considerations (e.g., for load balancing).
An AS (and its associated AP(s)) often corresponds to a

geographical cluster such as a university campus or a com-
pany oÆce. Even when the AS is an ISP with large ge-
ographic coverage, the associated APs that are advertised
via BGP may be more speci�c (say corresponding to indi-
vidual customers), as explained above. In both these cases,
GeoCluster is in a good position able to identify geographic
clusters from AP information. However, large ISPs (e.g.,
AT&T, Sprint, UUNet, etc.) often advertise only aggregate
APs for reasons of scalability. In such cases, a single AP
may span a large geographical area. This problem would be
alleviated if we had more detailed knowledge of how a large
aggregate is subdivided by the intra-domain routing proto-
col used within the ISPs. However, obtaining such infor-
mation was not feasible for us, so we only use inter-domain
routing information derived from BGP.
In summary, our baseline GeoCluster algorithm, which we

term BGPonly, discovers APs based on BGP data and sur-
mises that these APs are geographic clusters. However, as
explained above this conjecture may not be always correct,
for instance when ISPs only advertise large aggregates. We
now present a sub-clustering algorithm designed to address
this problem. We term the variant of GeoCluster that in-
corporates this algorithm as BGP+subclustering.

6.2 Sub-clustering Algorithm
The BGP+subclustering variant of GeoCluster depends

only on inter-domain BGP data just like BGPonly. But the
novel idea is to use partial IP-to-location mapping informa-
tion to subdivide APs that have a large geographic spread.
For each original AP obtained from E-BGP, we use the IP-

to-location mapping information to determine whether their
is \signi�cant" consensus on the geographic location of the
AP. If there is, then we declare the AP to be a geographic
cluster. If not, we subdivide the AP into two halves (e.g., the
AP 152.153.0.0/16 would be subdivided into 152.153.0.0/17
and 152.153.128.0/17) and repeat the test on each half. We
stop when the subdivision contains too few IP-to-location
mapping data points for a reliable determination of geo-
graphic clustering to be made. In the end, we obtain a
mapping from APs (both original and subdivided ones) to
location. Given an IP address, we �rst �nd the matching
AP using longest pre�x match and then report the corre-
sponding location as the location of the IP address.
Here is the pseudocode for GeoCluster, including the sub-

clustering algorithm. Let IPLoclist be the list of IP-to-
location mapping data points sorted by IP address, BGPAPlist
be the list of APs obtained from E-BGP information,
IPLocAPlist be the sorted list obtained by augmenting the
entries in IPLoclist with the APs corresponding to the
longest pre�x match, newAPLoclist be the new list map-
ping APs to location obtained by (possibly) subdividing the
original APs, and cthresh be the minimum threshold on
the number of IP-to-location mapping data points within a
subdivision.
/* initialization */

IPLoclist = sorted IP-to-location mapping
BGPAPlist = APs derived from E-BGP info
/* determine matching APs */
foreach ((IP,location) in IPLoclist) f

AP = LongestPrefixMatch(IP,BGPAPlist)

Add (IP,location,AP) to IPLocAPlist
g
/* subdivide APs using IPLocAPlist */
sameAPlist = EMPTY
curAP = AP in first entry of IPLocAPlist
foreach ((IP,location,AP) in IPLocAPlist) f

if (AP in (IP,location,AP) == curAP) f
/* contiguous list with same AP */
Add (IP,location,AP) to sameAPlist

g else f
/* Subdivide curAP as appropriate */
if (jsameAPlistj� cthresh) f
if (sameAPlist is geographically clustered) f

avgLocation = average location of cluster
Add (curAP,avgLocation) to newAPLoclist

g else f
Divide curAP into two equal halves
Divide sameAPlist accordingly

Recursively test whether either/both of
subdivisions form a geographic cluster

g
g
/* reset/reinitialize sameAPlist */

sameAPlist = NULL
Add (IP,location,AP) to sameAPlist

g
g
newAPLoclist is the new list used for
IP-to-location mapping

Here is a simple example that illustrates the operation
of the sub-clustering algorithm (assume that cthresh = 15).
Consider an ISP who owns the address space 152.153.0.0/16.



Suppose that the ISP has allocated half of the address space
(152.153.0.0/17) to a customer in New York, and a quar-
ter each (152.153.128.0/18 and 152.153.192.0/18) to cus-
tomers in Dallas and San Francisco, respectively. Suppose
that the partial IP-to-location mapping information indi-
cates that the location is New York for 50 IP addresses in
152.153.0.0/17, Dallas for 20 addresses in 152.153.128.0/18,
and San Francisco for 10 addresses in 152.153.192.0/18. The
ISP only advertises the 152.153.0.0/16 pre�x via BGP, so
the sub-clustering algorithm starts with 152.153.0.0/16 as
the presumed geographic cluster. However, there is not
suÆcient consensus on the location of this cluster, so the
cluster is subdivided into two halves, 152.153.0.0/17 and
152.153.128.0/17. There is suÆcient consensus for the for-
mer address pre�x, so the algorithm declares 152.153.0.0/17
as a geographic cluster with its location as New York. How-
ever, 152.153.128.0/17 still lacks consensus, so it is subdi-
vided into 152.153.128.0/18 and 152.153.192.0/18. There is
suÆcient consensus on the location corresponding to 152.153.-
128.0/18, so it is declared as a geographic cluster with its
location as Dallas. However, there are fewer than cthresh
IP-to-location data points for 152.153.192.0/18, so the algo-
rithm terminates without declaring it as a geographic clus-
ter.
The e�ectiveness of the sub-clustering algorithm depends

on the richness of the partial IP-to-location mapping data
available. If insuÆcient data is available for certain APs,
these will not be included in newAPLoclist. So GeoCluster
will be unable to determine the location of IP addresses that
match those APs.
We have not speci�ed how it is determined whether a set

of locations is geographically clusterered or how the con-
sensus location of a cluster is computed. The answers to
both of these questions are context-dependent | dependent
on the granularity of the location information contained in
the partial IP-to-location mapping and on the needs of the
application.
In case the location information is relatively �ne-grained

(e.g., zip codes), the location of the individual points is
quanti�able using latitude and longitude. So we compute
a composite location using linear averaging of the latitudes
and longitudes4. We also compute a dispersion metric as
follows: dispersion =

P
l2L dist(l; lavg)= j L j, where L

is set of location data points corresponding to the cluster,
lavg is the composite location computed via averaging, and
dist(x; y) is the geographic distance between the locations x
and y. Intuitively, the dispersion quanti�es the geographic
extent or spread of a cluster. We decide whether a set of lo-
cations is geographically clustered by checking whether the
dispersion is smaller than a threshold.
In case location information is coarse-grained (e.g., states),

we test whether there are at least cthresh data points in the
cluster and whether at least a threshold fraction, fthresh,
of the points agree on location. If both conditions are met,
then the consensus location is assigned to the entire clus-
ter. As mentioned earlier, this aggregation procedure helps
eliminate errors due to erroneous location information.

6.3 Impact of Proxies and Firewalls
Many Internet clients lie behind proxies and/or �rewalls

that separate the corporate or ISP network from the rest of

4While not strictly correct, such averaging is a good approx-
imation when the individual points are close to each other

the Internet. In such a setting, the proxy or �rewall typically
connects to external Internet hosts, such as Web servers, on
behalf of the client hosts. The IP address of the client hosts
remains hidden from the external network. As such there is
no direct way to map from IP address to location for such
clients. (After all we are interested in the location of the
client, not that of the proxy or the �rewall.)
The sub-clustering algorithm in GeoCluster deals with

this issue elegantly. If the set of clients that connect via
a group of proxies (having IP addresses that are contained
within an address pre�x AP ) is clustered geographically
(say at location L), then given a suÆcient number of IP-
to-location data points, the sub-clustering algorithm will
(correctly) deduce an association between the address pre-
�x AP and the location L. This is what happens say in
the case of clients on a university or corporate campus, or
clients of an ISP that connect via a local or regional proxy.
However, there are instances, such as with the ISP Amer-
ica Online (AOL), where clients in geographically dispersed
locations share a common pool of proxies. (With AOL we
have seen clients thousands of kilometers apart connect via
a proxy with the same IP address!) In such a case, our
sub-clustering algorithm will not �nd suÆcient consensus to
be able to identify any geographic clusters, so it will not
try to map the \client" IP address to a location. We believe
this is an important property of the sub-clustering algorithm
because for many applications a highly inaccurate location
estimate may be strictly worse than no location estimate at
all. For instance, displaying a generic advertisement on a
New York user's screen would probably be better than mis-
takenly displaying an advertisement tailored for California
residents.

6.4 Experimental Results
We now analyze the performance of GeoCluster in several

ways using a variety of data sets. We compare the perfor-
mance of GeoCluster with that of GeoTrack and GeoPing.
We analyze two variants of GeoCluster: (1) only using AP
information derived from BGP tables (BGPonly), and (2)
post-processing the BGP tables using the sub-clustering al-
gorithm discussed in Section 6.2 (BGP+subclustering). We
compare both variants against a simplistic approach that
ignores BGP information and assumes that all APs to have
a 24-bit pre�x length (/24-clusters).

6.4.1 Locating hosts in UnivHosts
We �rst analyze the ability of the BGPonly variant of

GeoCluster in determining the location of hosts in the Uni-
vHosts data set (Section 3.3). We use partial IP-to-location
mapping data contained in the FooTV data set as input.
We convert each zip code contained in the FooTV data
to the corresponding (approximate) latitude and longitude.
We then cluster the (IP,latitude,longitude) data points us-
ing BGP address pre�x (AP) information and compute the
composite location for each AP (Section 6.2). Given a tar-
get IP address, we �nd the matching AP using longest pre-
�x match and declare the corresponding (latitude,longitude)
pair as the location estimate. We quantify the accuracy of
the location estimate using the error distance.
Figure 7 shows the CDF of error distance for GeoClus-

ter computed over the 265 university hosts. We also show
the CDFs of GeoTrack and the best case of GeoPing (us-
ing 9 probe machines) for comparison. GeoCluster is able



0

0.2

0.4

0.6

0.8

1

0 1000 2000 3000 4000

Error distance (kilometers)

C
D

F

GeoTrack GeoPing GeoCluster

Figure 7: CDF of the error distance computed over
the UnivHosts data set for GeoTrack, GeoPing, and
GeoCluster.

to deduce the location of only 233 out of the 265 university
hosts (i.e., about 88% of the hosts). This is because the IP-
to-location mapping data derived from FooTV is partial in
coverage, and despite the clustering performed using BGP
data, we still have no location information for about 12% of
the hosts. However, for the vast majority of hosts whose lo-
cation it is able to determine, GeoCluster signi�cantly out-
performs both GeoTrack and GeoPing. For instance, the
median and 80th percentile marks for GeoCluster are 28 km
and 226 km, respectively. The corresponding numbers are
102 km and 384 km for GeoTrack, and 382 km and 1201 km
for GeoPing.
GeoCluster performs well on the UnivHosts data set be-

cause these hosts are often clustered together geographically
on university campuses. Moreover, many universities have
distinct address allocations (e.g., 150.131.0.0/16 for the Uni-
versity of Montana) that are advertised via BGP as distinct
address pre�xes (APs). So GeoCluster is able to identify the
universities as geographic clusters with relative ease.

6.4.2 Locating hosts in bCentral
We now analyze the performance of GeoCluster using the

much larger bCentral data set. This data set contains 181246
unique IP addresses and their corresponding zip codes. (As
noted in Section 3.5, the zip code information may not be
entirely accurate. Hence, unlike the case of university hosts,
we are not entirely certain of the true locations of the bCen-
tral client hosts.) As before, we use the BGPonly variant
of GeoCluster, with the FooTV and the BGP data sets as
inputs to prime the GeoCluster algorithm.
For each IP address in bCentral, we estimate its location

and then compute the error distance. The error distance,
with the IP addresses sorted in increasing order of error dis-
tance, is shown in Figure 8. We observe that GeoCluster is
only able to estimate location for about 77% of the 181246
hosts. The 25th, 50th (median), and 75th percentile marks
of the error distance are 84 km, 685 km, and 3056 km re-
spectively. In other words, GeoCluster performs much worse
for the bCentral data set than for the UnivHosts data set.
The main reason for the worse performance is that the

bCentral data set is much more diverse than the UnivHosts
data set. Unlike UnivHosts, many of the IP addresses in
bCentral fall within APs corresponding to large and
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hosts in bCentral.

geographically-dispersed ISPs (e.g., 12.0.0.0/8 belonging to
AT&T WorldNet) or belong to proxies or �rewalls (e.g.,
AOL proxies). Hence GeoCluster is only able to determine
location accurately for a smaller fraction of the hosts.
Given the wide range of error distances for di�erent hosts,

it would be useful to be able to tell when GeoCluster's es-
timate is accurate and when it is not. For this purpose, we
compute the dispersion metric for each AP (Section 6.2).
We would expect that the larger the dispersion is, the less
accurate GeoCluster's estimate of location would be. This is
borne out by Figure 8, which depicts the (smoothed version
of) dispersion curve for the bCentral data set. In fact, the
dispersion curve matches the error distance curve quite well
(except for hosts at the extreme right). This makes intuitive
sense since the error in location estimation results from the
geographic spread of APs, and it is exactly this spread that
the dispersion quanti�es.
At the extreme right of the graph, we see that error dis-

tance shoots up while the dispersion drops sharply. To bet-
ter understand this puzzling phenomenon, we took a closer
look at the corresponding (IP,zip) data points in bCentral.
Based on this examination, we have come to the conclusion
that the discrepancy is caused mainly by clients that dial
in remotely. For example, bCentral contains the IP address
140.247.147.42 (DNS name roam147-42.student.harvard.edu),
which presumably corresponds a dial up connection at Har-
vard University in the northeastern corner of the U.S. (and
which is what GeoCluster deduces the location to be). How-
ever, the corresponding location recorded in the bCentral
data set is Portland, Oregon, 4000 km away in the north-
western corner of the U.S. We hypothesize that this discrep-
ancy is due to a user in Portland remotely dialing in to a
modem bank at Harvard and then connecting to bCentral.
However, it is diÆcult to know for sure | the Portland lo-
cation may simply be erroneous, in which case the (large)
error distance would be misleading.
Our results suggest that GeoCluster would not perform

as well for a diverse set of hosts as for the university hosts.
Still the error distance is relatively small (within a couple of
hundred kilometers) for a substantial fraction (around 40%)
of the hosts. And, quite importantly, GeoCluster is self-
calibrating in the sense that it is often able to tell when a
location estimate is likely to be accurate and when it is not.



6.4.3 Importance of the sub-clustering algorithm
Thus far we have considered the BGPonly variant of Geo-

Cluster, which only uses AP information derived directly
from BGP data. We now turn to the BGP+subclustering
variant that employs the sub-clustering algorithm (Section
6.2) to construct an AP-to-location mapping. This algo-
rithmmakes use of both BGP data and partial IP-to-location
mapping information. We are interested in studying what
bene�t, if any, the sub-clustering algorithm o�ers.
We use the partial IP-to-location mapping data obtained

from Hotmail (Section 3.5) as input to the sub-clustering
algorithm. Recall that the location information in Hotmail
is at the granularity of states. As discussed in Section 6.2,
we deem an AP to correspond to a geographic cluster if it
contains at least cthresh data points drawn from the IP-to-
location mapping data set and at least a fraction fthresh
of those data points agree on location (i.e., correspond to
the same state). In most of the results shown here, we set
cthresh = 20 and fthresh = 0:7 and denote this as (20; 0:7).
We also briey discuss results for the (5,0.6) setting.
We use bCentral as the test data. The location informa-

tion in bCentral is at the granularity of zip codes whereas
that in Hotmail is at the granularity of states. This raises
the question of how to quantify accuracy. We decided to do
all of our calculation at the granularity of the states. We
map the zip codes in bCentral to the corresponding states.
We then compute the zipcenter of each state by averaging
the coordinates of the zip codes contained within that state
(Section 3.5). The error distance is then computed as the
distance between the zipcenters of the actual and deduced
states. So the error distance is zero if the state is deduced
correctly and non-zero otherwise.
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Figure 9: CDF of the error distance (computed
at the granularity of states) for the BGPonly and
BGP+subclustering variants of GeoCluster, and for
the /24-clusters method.

Figure 9 shows the CDF of error distance. We observe
that BGP+subclustering signi�cantly outperforms BGPonly.
In particular, with the (20; 0:7) setting BGP+subclustering
gets the state right (i.e., an error distance of zero) for 53%
of the hosts while BGPonly does so only for 36% of the
hosts. The reason is that BGPonly is often stuck with
large and geographically dispersed APs obtained directly
from BGP data while the sub-clustering algorithm is of-
ten able to break these down into smaller and geographi-

cally more compact APs. It is interesting to note that even
/24-clusters, which completely ignores BGP data, outper-
forms BGPonly slightly, although it is still much worse than
BGP+subclustering.
Finally, we see that BGP+subclustering performs slighly

better with the (5; 0:6) setting compared to (20; 0:7) (the
correct state is deduced for 56% of the hosts compared to
53%). Nevertheless we believe that a (5; 0:6) setting may
be too aggresive in the sense that it may often misidentify
geographic clusters (after all (5; 0:6) requires just 3 out of
5 data points to agree on location for an AP to be deemed
a geographic cluster). We are presently investigating this
issue further.

6.5 Discussion
In summary, GeoCluster employs a novel algorithm that

combines partial IP-to-location mapping information with
BGP routing information to make an intelligent determina-
tion of a client's location. The algorithm is able to tolerate a
limited amount of inaccuracy in the IP-to-location mapping
information and remain e�ective in certain situations where
clients connect via proxies or �rewalls.
An interesting question is how one would obtain partial

IP-to-location mapping information in general. There are
several possible ways one might do this.

1. The likely location of a user can be inferred from the
kind of information accessed or queries issued by the
user (for example, as in the case of FooTV). Since it
only considers such information in an aggregated form
(corresponding to clusters), GeoCluster is able to tol-
erate a limited amount of inaccuracy in the inference.

2. Certain Web sites, such as Yahoo [32], o�er a mix of
generic content (e.g., news) and user-speci�c content
(e.g., email). Partial IP-to-location mapping informa-
tion may be derived from accesses made by registered
users to the latter content and then used in conjunc-
tion with GeoCluster to infer the location of (the pre-
sumably much larger number of) registered and casual
users who access generic content.

In general, we expect that there will be a relatively small
number of content providers and \location servers" (akin
to advertisement servers such as DoubleClick [23]) that will
employ GeoCluster (and possibly other techniques) to map
IP addresses to geographic locations. The vast majority of
Web sites would simply subscribe to the services provided by
the location servers and so would not need to be concerned
with the details of the location mapping techniques.
On a �nal note, we believe that the idea in GeoCluster of

clustering hosts together based on geographic location may
be quite useful in conjunction with GeoTrack and GeoPing.
Both GeoTrack and GeoPing conduct active measurements
by injecting traÆc into the network. This may be undesir-
able for several reasons (network load, security, etc.). Clus-
tering can alleviate this problem by making it unnecessary
to do pings or traceroutes to each new target host. It may
suÆce to do these measurements to just a fraction of the
hosts within an address pre�x cluster. In fact, GeoTrack
and GeoPing, used in this manner, can help GeoCluster con-
struct the partial IP-to-location mapping that it needs.



7. SUMMARY AND CONTRIBUTIONS
In this paper we have examined the interesting but chal-

lenging problem of determing the geographic location of an
Internet host knowing only its IP address. We have de-
signed and evaluated three distinct techniques, collectively
referred to as IP2Geo, to address this problem: (a) Geo-
Track, which extracts location information from DNS names
of hosts and routers, (b) GeoPing, which determines loca-
tion using network delay measurements made from several
known locations, and (c) GeoCluster, which combines par-
tial IP-to-location mapping information with BGP routing
data to determine location. These techniques span a broad
spectrum. Our evaluation of these techniques was based on
extensive and varied data sets.
Our �ndings suggest that GeoCluster is the most promis-

ing one of the IP2Geo techniques. The median error dis-
tance for GeoCluster varies from 28 km for well-connected
university hosts to a few hundred kilometers for a more het-
erogeneous set of clients. Importantly, however, GeoCluster
is self-calibrating in that the dispersion metric o�ers an in-
dication of how accurate a location estimate is likely to be.
Furthermore, the sub-clustering technique is often able to
infer more �ne-grained (geographic) structure in Internet
address ranges than is present in BGP routing data. Both
these features make GeoCluster more suitable than the other
techniques in the presence of clients that connect via prox-
ies. Finally, GeoCluster is passive in that it does not inject
extra traÆc into the network.
Our investigation of GeoTrack andWhois-based techniques

reveals the fundamental limitation due to proxies. Our eval-
uation of GeoPing suggests that contrary to conventional
wisdom there is a signi�cant correlation between network
delay and geographic distance that can be exploited to de-
termine coarse-grained location. We believe this will be the
case even more as the Internet becomes richly connected.
Our study also indicates that geography can be an inter-

esting tool for analyzing the behavior of network routing.
The ratio of linearized distance to geographic distance is in-
dicative of how \direct" a network route is. A large ratio
may be indicative of an anomalous route. For instance, by
computing this ratio, GeoTrack was able to automatically
ag an a highly circuitous route from Austin, Texas to Ken-
tucky via California, New Jersey, and Indiana!
Besides the speci�c techniques that we have developed,

we believe an important contribution of our paper is that
the systematic study of the IP-to-location mapping problem
using a wide range of interesting data sets.
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