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Abstract. Given a graph G and a parameter §, we want to decompose
the graph into clusters of diameter § without cutting too many edges.
For any graph that excludes a K, , minor, Klein, Plotkin and Rao [15]
showed that this can be done while cutting only O(r3/4) fraction of the
edges. This implies a bound on multicommodity max-flow min-cut ratio
for such graphs. This result as well as the decomposition theorem have
found numerous applications to approximation algorithms and metric
embeddings for such graphs.

In this paper, we improve the above decomposition results from O(r®)
to O(r?). This shows that for graphs excluding any minor of size r,
the multicommodity max-flow min-cut ratio is at most O(r?) (for the
uniform demand case). This also improves the performance guarantees
of several applications of the decomposition theorem.

1 Introduction

A natural generalization of the s-t flow problem is the multicommodity flow
problem, where we want to simultaneously route several commodities. Each com-
modity has a source and a sink, and the goal is to route the flows so that the
total flow on any edge does not exceed its capacity. An optimization version
of this problem is the concurrent flow problem, first defined by Shahrokhi and
Matula [32], where we wish to maximize the throughput A, such that we can
feasibly route a A fraction of each demand.

The sparsity of a cut (S, S) is defined as ¢(S, S)/d(S, S), where ¢(S, S) is the
sum of capacities of edges between S to S and d(S, S) is the total demand from
some source(sink) in S to a sink(source) in S. The sparsity of any cut gives a
upper bound on the maximum throughput. For the single commodity case, the
max-flow min-cut theorem of Ford and Fulkerson [9] and of Elias, Feinstein and
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Shannon [8], says that the maximum flow equals the value of the sparsest cut,
and also gives an algorithm for finding the minimum cut.

The seminal work of Leighton and Rao [18] first considered approximate
max-flow min-cut theorems. They showed that for the case of uniform demands,
the ratio of sparsest cut to the maximum throughput in any graph is at most
O(logn). Their proof also gives an algorithm to find a cut of sparsity no more
than O(logn) times the maximum throughput (and hence at most O(logn)
times the sparsest cut). This approximation algorithm is a basic subroutine for
approximation algorithms for a variety of NP-hard problems.

For arbitrary demands, such an approximate max-flow min-cut theorem was
discovered by Klein, Rao, Agrawal and Ravi [16], who showed an upper bound
of O(log Clog D) where C is the sum of all capacities and D is the sum of
all demands. This ratio has since been improved and the best currently known
bound is O(log k), where k is the number of commodities, due to Linial, London
and Rabinovich [19], and Aumann and Rabani [2] (see the related work section
for details). For arbitrary graphs, this is the best(upto constants) that one can
do, since an expander graph gives a matching lower bound.

Klein, Plotkin and Rao [15] considered restricted families of graphs, and
showed for graphs excluding a minor of size r, the gap is O(r?) for the uniform
demand case and O(r? log k) for the general case. The latter result was improved
to O(r*y/logk) by Rao [26]. In particular, this showed that for planar graphs,
which exclude K5 and K3 3 minors, the max-flow min-cut gap is O(1) for the uni-
form case. Both the aforementioned results use a decomposition lemma proved
in [15], which says that given a parameter §, one can decompose a graph exclud-
ing a K, minor into clusters of diameter §, while cutting only O(r3/4) fraction
of the edges®. Note that any such decomposition of a path graph must cut an
O(%) fraction of the edges, and thus the overhead for graphs excluding K, , was
shown to be O(r?). Not surprisingly, this decomposition lemma has found sev-
eral other applications to approximation algorithms, distributed computing and
embeddings results for such graphs.

In this paper we make some progress towards finding the right relation be-
tween the size of the forbidden minor and the overhead of such a decomposition.
We show that for any graph excluding a K, minor, we can find a decomposition
into clusters of diameter § while cutting only O(r?/§) fraction of the edges. This
shows that the max-flow min-cut gap for such graphs is O(r?) for the uniform
demands case and O(r%+/logn) for the general case. It also improves the perfor-
mance guarantees of approximation algorithms and embeddings results for such
graphs.

What is the right order of magnitude of the overhead of such a decomposi-
tion? An expander graph gives a lower bound of 2(logr), the upper bound we
show is O(r?). Moreover, can we bound this overhead in terms of some other
topological /metric properties of the graph? We leave open these intriguing ques-
tions.

3 The second result actually requires the decomposition to have an additional
“padding” property, details of which are deferred to the technical sections.



Related Work

As described above, Klein et.al. [16] gave the first non trivial upper bound
of O(log C'log D) for multicommodity max-flow min-cut ratio for arbitrary de-
mands. This was improved to O(logk*) through the works of Tragoudas [34],
Garg, Vazirani and Yannakakis [11], Plotkin and Tardos [23], Aumann and Ra-
bani [2], Linial, London and Rabinovich [19], and Giinliik [12] (k* here is the
size of the smallest vertex cover of the demand graph).

For several special classes of graphs, exact max-flow min-cut theorems have
been proved, for example, by Hu [14], Rothschild and Whinston [29], Dinits(see
[1]), Seymour [31], Lomonosov [20], Seymour [30] and Okamura and Seymour [22].
See [10] for more on this vein of work.

Network decomposition theorems like this one, are known for other classes of
graphs as well. For general graphs, it is known that it suffices to cut an O(logn/4)
fraction of the edges to decompose it into clusters of diameter §, and this is the
best one can do for general graphs. For graphs induced by real normed spaces
RZ, Charikar et.al. [7] show that such decompositions exist with an overhead of

O(d%) for 1 <p<2and O(dk%) for p > 2, and that this is tight.

The characterization of planar graphs in terms of forbidden minors is due to
Kuratowski [17]. Robertson and Seymour [28] showed that similar charcteriza-
tions exist for graphs of genus g for any g. In particular it is known that graphs
of genus g exclude Kg(,/7) minor.

The approximate max-flow min-cut theorems have found numerous appli-
cations such as Oblivious routing, Data management, small area VLSI layout,
efficient simulations of one interconnection network by another, etc. For more de-
tails on oblivious routing the reader is referred to the papers by Récke [25], Azar
et.al. [3], Bienkowski, Korzeniowski and Récke [5], and Harrelson, Hildrum and
Rao [13]. Data management applications have been looked at by Maggs et.al.[21].
The reader is referred to Bhatt and Leighton [4] for VLSI layout applications.

The decomposition theorem itself has found applications to approximation
algorithms for various NP-hard problems. We mention a few of these applications
here. Tardos and Vazirani [33] showed that the decomposition theorem implied
an O(r?) bound on the max (total) flow-min multicut gap and an approximation
algorithm for minimum multicut in graphs excluding a K, , minor.

Rao and Richa [27] gave O(r® loglogn)-approximation algorithms for mini-
mum linear arrangement and minimum containing interval graph on graphs ex-
cluding K, minor. Calinescu, Karloff and Rabani [6] gave an O(r®)-approximation
algorithm for the 0-extension problem on such graphs and Feige and Krauthgamer
gave an O(r®logn)-approximation algorithm to minimum bisection on such
graphs.

A slight modification of these decompositions have also been used in the area
of metric embeddings. Rao [26] showed that graphs excluding K, minors can
be embedded into ls with distortion O(r3+/logn). Moreover these embeddings
preserve not only distances but also volumes. Recently, Rabinovich [24] showed
how to embed a metric excluding K, into a line with average distortion O(r?).
For graphs with tree width r, they further improved the embedding to O(logr)



and left open the question of the correct order for graphs excluding K, minor.
Our results improve the 73 in all the above applications to 2.

A note on techniques

The techniques used in this paper borrow generously from those used by Klein,
Plotkin and Rao [15]. They showed that if their algorithm of repeatedly shatter-
ing BFS trees O(r) times produced a cluster of large diameter, then they could
construct a K, , minor, consisting of r well spaced points in the large diameter
cluster and the r roots of the BFS trees. We note that the roots of the BFS trees
used were chosen arbitrarily.

Instead, we are somewhat more careful in our choice of the roots. We make
sure that the roots of the BFS trees constructed are mutually far apart; this
allows us to construct disjoint paths connecting these roots. This allows us to
get a better guarantee on the diameter of the clusters.

2 Preliminaries

Let H and G be graphs. Suppose that for every vertex v of H, G contains a
connected subgraph A(v) and for every edge (u,v) in H, there is an edge &£ (uv)
connecting A(u) and A(v) in G. If the A(v)’s are pairwise disjoint, we say that G
contains an H-minor and call U, A(v) an H-minor of G. We refer to the A(v)’s
as supernodes and & (uv)’s as superedges.

We denote by K}, the complete graph on h nodes. Note that if G contains a
K}, minor, it contains every minor on h vertices. Thus if G excludes any minor
of size h, it excludes Kj. In particular, excluding a K, minor implies excluding
a Ky, minor. Moreover, a K, , contains a K, minor. Thus upto a factor of 2,
excluding a K, minor and excluding a K, , minor are equivalent.

Given a graph G = (V, E), we can define a natural distance measure on V:
dg(u,v) is the length of the shortest path from u to v. For a subset V' of V,
the weak diameter of V' is defined to be max, yev'{dg(u,v)}. In this paper, the
term diameter will always refer to weak diameter.

A §-decomposition 7 of G = (V, E) is a partition of V into subsets V1, V2, ..., Vj
such that each cluster V; (defined as {v € V : m(v) = i}) has (weak) diameter at
most . An edge e = (u,v) is said to be cut by this decomposition if u and v lie
in different V;’s.

Let IT be a set of d-decompositions of G and let D be a distribution over II.
We say (II,D) is a-padded if for any vertex v, and any ¢ < %, the probability
that v is at distance less than ¢d from any cluster boundary is at most 2ca. More
formally, for a partition 7, let d(v,T) = miny;(y)2x(v) d(u,v). Then we say that
(I1,D) is a-padded if Prre(mr,p)[d(v, ) < ¢d] < 2ca. A probabilisitic version of
the KPR decomposition was shown to be O(r®)-padded in [26]. We shall show
that our decomposition is O(r?)-padded.

For ease of notation in the rest of the paper, we shall give an algorithm to
construct an O(rd)-decomposition of the graph, which cuts O(r/§) fraction of



the edges, and is O(r)-padded. The result claimed in the introduction can of
course be derived by scaling d by a factor of O(r).

3 The decomposition procedure

We decompose the graph recursively r — 2 times. At each level i, given a cluster
G;, we do the following. We pick, if possible, an appropriate node (explained in
the next paragraph) a; in G; and construct a breadth first search tree rooted at
a;. We say a vertex v is at level [ if its distance in G;, from q; is I. We partition
the edges of G; into 6§ classes. For k = 0,1,...,5 — 1, the k** class consists of
edges between nodes at level j§ + k and jé + k + 1 for some integer j > 0. We
pick an integer k € {0,...,0 — 1} uniformly at random, and cut the edges in the
kth class. We recurse on the resulting clusters.

By appropriate above, we mean a node which is at least distance 470 far from
each of roots of the breadth-first search trees in the higher levels of recursion.
In case there is no such node in cluster G;, we shatter the cluster in a different
way - each cluster consisting of vertices close to one of the previous level roots.

Finally, we further shatter each resulting cluster G,_; into at most r — 1
pieces by cutting out clusters of inappropriate nodes; for each of the centers
ai,...,a._2, we cut out a set of vertices close to a; to form a separate cluster. We
redefine G,._1 to be the remaining set of nodes C'. The above procedures describe
the set of edges that are cut; the final clusters are defined by the connected
components of the remaining graph.

Figure 1 show the pseudocode of the procedures. We start by calling the
procedure Decompose(G; = G, 1,{}).

4 Proof of the decomposition procedure

We first show that the decomposition constructed has the two properties that
we needed.

Lemma 1. The expected number of edges that are cut by the above procedure is

O(r|E(G)]/9).

Proof. Note that we have at most r levels of recursion, and at most r cuts
made in any shatter procedure. Thus at most 2r cuts potentially involve any
particular edge. In each call to decompose or shatter, a fixed edge in the cluster
has a probability at most 1/4 of being cut (since it is at exactly one level, and
we choose one of § levels u.a.r.). Thus, any fixed edge has a probability at most
2r/§ of being cut. The claim follows by linearity of expectation.

Lemma 2. The decomposition produced is 2r-padded.

Proof. From the argument above, each cluster is produced as a result of at most
2r random cuts. Fix a vertex v and let Y; be a random variable denoting its
distance from the boundary of the i** cut. Clearly, d(v,7) = min; Y;. Moreover,



Algorithm Decompose(Gi,i,p = {a1,...,ai-1})

1. if there exists v € G; such that dg(aj,v) > 4rd for all 1 < j <i—1 then

1.1 a; V.

1.2 Create a BFS tree 7; in G; rooted at a;.

1.3 if 7; contains less than § + 1 level then

1.3.1 stop.

14 for k=0,1,...,6 —1do

1.4.1 Define the k-th cut S* to be the set of edges between nodes
at level j6 + k and j0 + k+ 1 in 7;, for some j > 0.

1.5 Pick a k randomly in 0,1,...,5 — 1. Let S = S.

1.6 Cut all edges in S.

1.7 for each component G’ in G; — S do

1.7.1 if i <r —2 then

1.7.1.1 Decompose(G’,i+ 1,{a1,...,ai—1,a;}).

1.7.2 else

1.7.2.1 Shatter(G', i, {al, ey @i—1, az})

2. else

2.1 Shatter(G;,i — 1, p).

Procedure Shatter(C, k,p = {a1,...,ar})

1. '+ C.

2. fori=1,...,k do

2.1 C; + all nodes v in C’ such that dg(v, a;) < 4r6.

2.2 Create a breadth-first search tree T; from nodes in C;.

2.3 Let T/ be the first § + 1 levels of T;.

2.4 if T} covers all C' then

2.4.1 C' +0.

2.5 else

2.5.1 Let j be chosen randomly in 0,1,...,§ — 1

2.5.2 Let T;' be a subtree of T; up to level j.

2.5.2 Cut all edges at level j.

2.5.3 C'+C —(C;uT/).

Fig. 1. The decomposition procedures.



the i** cut was chosen uniformly at random from § equispaced cuts, and thus Y;
is uniformly distributed in [1,/2]. Hence Pr[Y; < ¢d] < 2¢ for any ¢ < 1/2. The
claim then follows by a simple union bound.

Having established the required properties of the probabilistic decomposition,
we now proceed to show that it is indeed an O(rd)-decomposition. Note that
our decomposition consists of two kinds of clusters - those consisting of vertices
close to some root, formed by some call to procedure shatter, and those formed
by the procedure decompose. We first show that clusters of the first type have
small diameters.

Lemma 3. The procedure Shatter cuts out clusters each of weak diameter at
most (8r + 2)6.

Proof. For each j =1,...,1—1, we define the set C; to be the set of all vertices
in G; which are at distance at most 4rd from a;. The procedure cuts out cluster
T} formed by taking the set of vertices in C; closer than some randomly chosen
threshold ¢t < § to a;j. Consider any pair of nodes v and v in the same connected
component T} in the resulting graph. It must be the case that there is some a;
such that the distance from u and v to a; is at most (4r + 1)d in G1. Therefore

by triangle inequality, the weak diameter of each such component is at most
(8r +2)4.

We now consider the remaining case. We wish to show that if the graph
excludes a K, minor, then the diameter of each such cluster resulting from
our decomposition algorithm is small. We shall show the contrapositive - if the
resulting decomposition has some cluster with large diameter, we shall show how
to construct a K, minor in the graph. Let G,_; be a cluster of large diameter
and let a,—_1 and a, be two vertices in G,_1 which are at least distance 4ré
apart. We shall construct a K, minor, containing a supernode centered at each
a;, for i =1,2,...,r. We shall use the paths in the bfs trees to find superedges.

Lemma 4. Suppose that a cluster G._1 output by our algorithm has diameter
4r$. Then Gy contains a K, minor.

Proof. As above, denote by a,_1 and a, two nodes in G,._; at distance 4rd from
each other. Note that by our construction, every pair of a; and a; is at least
distance 4rd apart.

We shall show how to construct a K, minor in G;. We do so by reverse
induction - we give a procedure which, for b = r — 2,7 — 3,...,1, constructs a
K, _p-minor in Gpyg.

Recall that G;41 consists of § consecutive layers in the bfs tree 7; rooted at
a;- An ancestor-path of v in 7T; is the path in 7; from v to the root a; of 7;. We
shall construct the minor using suitable ancestor-paths in 7;’s.

Given a Kj-minor in G such that starting at each supernode A(g) there is
path Py, we say that the paths {P,} are tails if each path P, is disjoint from
the other paths and also from all supernodes except A(g). We shall refer to P,’s
ending node (outside of A(g)) as the tip of the tail P, and denote it by tip(P,).



Klein, Plotkin and Rao [15] show how to construct the minor inductively by
also constructing tails which are ancestor-paths of 7 and special nodes (which
they called middle nodes) on the tails which are far apart, and using them to
further construct disjoint components of the minor. We use a similar approach.

We shall construct a K,_p-minor in Gp11. In addition, we construct »r —b+1
tails {P;} which are ancestor-paths of T of length exactly 46 such that for each
tail P;, a middle node h; of P; is at distance 4bé from the other middle nodes
hj’s. Moreover, we require that every middle node is at distance at least 4bd
from the root ap of Tp. This shall be our (reverse) inductive claim.

For the basis step, when b = r — 2, let P be the shortest path from a,_; to a,
in G_1 (since G,_1 is connected, such a path exists). We construct a Ko-minor
from the path P. We let A(a,) be a path of length 40 — 1 on P starting from
ar. The other supernode A(a,—1) is then P — A(a,). We construct the tails by
taking P; to be the ancestor-paths in 7,_» of length 46 from a;, for j € {r,r—1}.
It can be checked that they are proper tails and the middle nodes in these tails
are at distance at least 4(r — 2)d from each other. Also the middle nodes in these
tails are at distance at least 4(r — 2)d from a, 5.

We now show the inductive step. Assuming that the claim is true for b = i+1,
we want to show that the claim is true for b = i, i.e., G;41 contains K,_; as a
minor and a new set of tails with the required properties.

We first construct the minor. For j > i+ 1, we create supernodes A'(a;) from
the supernodes of K,_;_; as follows. We let A'(a;) be A(a;) U (P; — {tip(P;)}).
From the inductive assumption, these supernodes are disjoint. This gives us
r — 1 — 1 supernodes. We let A’(a;y1) be a union of all ancestor-paths in 7;41
starting from the tip of all the tails {P;}.

We must show that A’(a;41) is disjoint from all other new supernodes. Since
we create tails of length 46 from the ancestor-paths in 7;;2, the end nodes of the
tails lie outside the subgraph G;; therefore, the supernodes A(a;), lying inside
Glit2, and A'(a;y1) are disjoint. Also, the tails {P;} and A'(a;4+1) are disjoint
by construction. Moreover, the last edges on the paths P; give us the required
additional superedges. This shows that G;4; contains a K, _;-minor.

To finish the inductive claim, we need to construct the tails with the desired
properties. For each middle node hj, let the tail Pj be the ancestor-paths in
7; from h; of length 44. These tails are mutually disjoint because h;’s are at
distance at least 4(i + 1)d from each other in G;. We also create another tail P}
starting from a; in the same way. It is straightforward to verify that the new
middle nodes {h;} are at the right distance of each other.

We must also show that the tail P; are disjoint from all A'(ay) where k # j.
Consider any node v in A’(ay). From the choice of hj, the levels of v and h; in
Tit1 differ by more than §. This implies that v does not lie on the ancestor-paths
of hj in T; for any j* (since G;;1 consists of at most & consecutive layers of 7,
there is a path of length at most 6 from h; to any 7;-ancestor (say w) of h; lying
in Gi1- Thus h; and w would be within ¢ layers of each other in 7; and hence
v is different from w). Thus for any j # k, P is disjoint from A'(ax). To show

4 This is exactly the “moat” argument in [15].
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that P; does not cross any tails P, we note that the distance between h; and
hx is more than 64. Finally, since a; is at distance 4(i 4+ 1)d from all the middle
nodes hj, the path P; is also a proper tail.

It only remains to show that the middles node h}’s are at distance at least
4i6 from a;_;. From our construction a;_; is at distance at least 4r0 from a;,
where j > i. We know inductively that the new middle node A} are at distance
at most 2(r —i)d from a;. By triangle inequality then, the distance from h/ and
a;—1 is at least 4r§ — 2(r — 4)d > 44d. This completes the inductive argument.

Thus, when b = 1, the induction claim says that G5 contains a K,_j-minor
and the tails with the appropriate properties. We can construct a K,.-minor in
(1 as in the inductive step. This completes the proof of Lemma 4.

From the above lemmas, we have the main theorem.

Theorem 1. Given a graph G and parameters § and r, we can either find a
K, minor in G or find a O(r)-padded O(rd)-probabilistic decomposition of the
G which expects to cut at most O(mr/d) edges.

We can also generalize this procedure for graphs with distances and weights
on the edges. Moreover, if the padding property is not required, we can easily
derandomize the algorithm by picking the best cut at each step.

5 Acknowledgement

We would like to thank Satish Rao for several helpful discussions. We would also
like to thank the anonymous referees for several helpful comments.

References

1. G. Adel’son-Vel’ski, E. Dinits, and A. Karzanov. Flow Algorithms. Nauka, Moscow,
1975. In Russian.

2. Y. Aumann and Y. Rabani. An O(log k) approximate min-cut max-flow theorem
and approximation algorithm. SIAM J. Comput., 27(1):291-301, 1998.

3. Y. Azar, E. Cohen, A. Fiat, H. Kaplan, and H. Ricke. Optimal oblivious routing
in polynomial time. In Proceedings of the thirty-fifth annual ACM symposium on
Theory of computing, 2003.

4. S. N. Bhatt and F. T. Leighton. A framework for solving VLSI graph layout
problems. Journal of Computer and System Sciences, 28(2):300-343, Apr. 1984.

5. M. Bienkowski, M. Korzeniowski, and H. Ricke. A practical algorithm for con-
structing oblivious routing schemes. In Fifteenth ACM Symposium on Parallelism
in Algorithms and Architectures, June 2003.

6. G. Calinescu, H. Karloff, and Y. Rabani. Approximation algorithms for the 0-
Extension problem. In Proceedings of the Twelfth Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA-01), pages 816, New York, Jan. 7-9 2001. ACM
Press.



10.

11.

12.

13.

14.
15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

M. Charikar, C. Chekuri, A. Goel, S. Guha, and S. Plotkin. Approximating a
finite metric by a small number of tree metrics. In IEEE, editor, 89th Annual
Symposium on Foundations of Computer Science: proceedings: November 8-11,
1998, Palo Alto, California, pages 379-388, 1109 Spring Street, Suite 300, Silver
Spring, MD 20910, USA, 1998. IEEE Computer Society Press.

P. Elias, A. Feinstein, and C. E. Shannon. A note on the maximum flow through
a network. IEEE Trans. Inform. Th., IT-2:117-119, 1956.

L. R. Ford and D. R. Fulkerson. Flows in Networks. Princeton Univ. Press,
Princeton, NJ, 1962.

A. Frank. Packing paths, circuits, and cuts - a survey. In B. Korte, L. Lovész, H.-J.
Promel, and A. Schrijver, editors, Paths, Flows and VLSI-Layouts, pages 47-100.
Springer Verlag, 1990.

N. Garg, V. V. Vazirani, and M. Yannakakis. Approximate max-flow min-
(multi)cut theorems and their applications. In Proceedings of the twenty-fifth an-
nual ACM symposium on Theory of computing, pages 698-707. ACM Press, 1993.
O. Giinlik. A new min-cut max-flow ratio for multicommodity flows. Lecture
Notes in Computer Science: Integer Programming and Combinatorial Optimiza-
tion, 2337:54-66, 2002.

C. Harrelson, K. Hildrum, and S. Rao. A polynomial-time tree decomposition
to minimize congestion. In Symposium on Parallel Algorithms and Architectures,
2003.

T. Hu. Multicommodity network flows. Operations Research, 11:344-360, 1963.
P. Klein, S. A. Plotkin, and S. Rao. Excluded minors, network decomposition, and
multicommodity flow. In Proceedings of the twenty-fifth annual ACM symposium
on Theory of computing, pages 682—690. ACM Press, 1993.

P. N. Klein, S. Rao, A. Agrawal, and R. Ravi. An approximate max-flow min-cut
relation for unidirected multicommodity flow, with applications. Combinatorica,
15(2):187-202, 1995.

K. Kuratowski. Sue le probléme des courbes gauches en topologie. Fund. Math.,
15:217-283, 1930.

T. Leighton and S. Rao. An approximate max-flow min-cut theorem for uniform
multicommodity flow problems with applications to approximation algorithms. In
29th Annual Symposium on Foundations of Computer Science, pages 422-431,
White Plains, New York, 24-26 Oct. 1988. IEEE.

N. Linial, E. London, and Y. Rabinovich. The geometry of graphs and some of its
algorithmic applications. COMBINAT: Combinatorica, 15, 1995.

M. V. Lomonosov. Combinatorial approaches to multiflow problems. Discrete
Applied Math., 11:1-94, 1985.

B. M. Maggs, F. M. auf der Heide, , B. Vocking, and M. Westermann. Exploiting
locality for data management in systems of limited bandwidth. In 38th Annual
Symposium on Foundations of Computer Science, pages 284-293, Miami Beach,
Florida, 20-22 Oct. 1997. IEEE.

H. Okamura and P. Seymour. Multicommodity flows in planar graphs. Journal of
Combinatorial Theory, Series B, 31:75-81, 1981.

S. A. Plotkin and E. Tardos. Improved bounds on the max-flow min-cut ratio
for multicommodity flows. In ACM Symposium on Theory of Computing, pages
691-697, 1993.

Y. Rabinovich. On average distortion of embedding metrics into I; and into the
line yuri rabinovich. In Proceedings of the thirty-fifth annual ACM symposium on
Theory of computing, 2003.



25

26.

27.

28.

29.

30.

31.
32.

33.

34.

H. Ricke. Minimizing congestion in general networks. In Proceedings of the 43rd
Annual Symposium on the Foundations of Comuter Science, pages 43-52, Nov.
2002.

S. Rao. Small distortion and volume preserving embeddings for planar and eu-
clidean metrics. In Proceedings of the fifteenth annual symposium on Computa-
tional geometry, pages 300-306. ACM Press, 1999.

S. Rao and A. W. Richa. New approximation techniques for some ordering prob-
lems. In Proceedings of the Ninth Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 211-218, San Francisco, California, 25-27 Jan. 1998.

N. Robertson and P. D. Seymour. Graph minors. VIII. a Kuratowski theorem for
general surfaces. Journal of Combinatorial Theory Series B, 48(2):255-288, 1990.
B. Rothschild and A. Whinston. On two commodity network flows. Operations
Res., 14:377-387, 1966.

P. Seymour. Matroids and multicommodity flows. European Journal of Combina-
torics, 2:257-290, 1981.

P. D. Seymour. Four-terminus flows. Networks, 10:79-86, 1980.

F. Shahrokhi and D. W. Matula. The maximum concurrent flow problem. Journal
of the ACM (JACM), 37(2):318-334, 1990.

E. Tardos and V. Vazirani. Improved bounds for the max-flow min-multicut ratio
for planar and k, ,-free graphs. Information Processing Letters, 47:77-80, August
1993.

S. Tragoudas. VLSI partitioning approzimation algorithms based on multicommod-
ity flow and other techniques. PhD thesis, University of Texas, Dallas, 1991.



